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Abstract

A marked increase in the utilization of umbilical cord blood (UCB) transplantation has been

observed in recent years; however, the use of UCB as a hematopoietic stem cell (HSC) source is

limited primarily by the number of progenitor cells contained in the graft. Graft failure, delayed

engraftment and profound delay in immune reconstitution lead to significant morbidity and

mortality in adults. The lack of cells available for post transplant therapies, such as donor

lymphocyte infusions, has also been considered to be a disadvantage of UCB. To improve

outcomes and extend applicability of UCB transplantation, one potential solution is ex vivo

expansion of UCB. Investigators have used several methods, including liquid suspension culture

with various cytokines and expansion factors, co-culture with stromal elements and continuous

perfusion systems. Techniques combining ex vivo expanded and unmanipulated UCB are being

explored to optimize the initial engraftment kinetics as well as the long-term durability. The

optimal expansion conditions are still not known; however, recent studies suggest that expanded

UCB is safe. It is hoped that by ex vivo expansion of UCB, a resulting decrease in the morbidity

and mortality of UCB transplantation will be observed, and that the availability of additional cells

may allow adoptive immunotherapy or gene transfer therapies in the UCB setting.
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Introduction

Umbilical cord blood (UCB) has become an important source of hematopoietic stem cell

(HSC) support after myeloablative and non-myeloablative therapies.1–6 UCB is rapidly

available and seems to have a lower incidence of GVHD despite HLA disparity, which make

it an attractive option when traditional HSC donors would not be optimal. In addition,

because of the allowance of greater HLA disparity than BM or PBSC grafts, UCB has
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provided a significantly higher chance of finding a donor for minority populations who are

currently under-represented in donor registries.

Although the use of UCB as a stem cell source has observed a significant increase in recent

years, especially in children and young adults, it is not without drawbacks. One major

limitation of UCB as an HSC therapy is the low cell dose available for transplantation. It is

now well documented that the total nucleated cell dose (TNC) transplanted per kg of body

wt of the recipient correlates with outcomes. Patients >45 kg receiving a single UCB unit

tend to have markedly prolonged time to neutrophil and plt engraftment and higher rates of

engraftment failure.7–11 As a consequence, UCB transplantation remains significantly more

successful in children.9,10,12 Even in small children receiving satisfactory cell doses, there is

still a delay in engraftment on all cell lines when compared with traditional stem cell

sources13–15 and some delay in immune reconstitution,16,17 suggesting that even in the

optimal patient population, the low progenitor cell dose given with UCB transplantation has

negative effects on the outcomes.

In general, there have been two approaches to overcome the obstacle of low TNC cell dose

observed with UCB transplantation. One approach is the usage of more than one UCB unit

to achieve a higher number of TNC available for infusion.18–22 Many trials are currently

underway in assessing efficacy in both adults and children. The second approach has been

the attempt to expand UCB units ex vivo. Ex vivo expansion can be performed on either a

portion of a UCB unit or on the unit in its entirety, with the expanded cells infused either at

the time of transplant of ‘unmanipulated’ fraction, or can be given at a separate time. The

manipulated UCB could be from either the same unit, or potentially a different UCB unit.

The combination of ex vivo-expanded fractions and unmanipulated UCB fractions might

prove to be a beneficial strategy.23,24 Clinical protocols that explore these approaches are

currently being assessed at the University of Texas MD Anderson Cancer Center and in

other clinical centers23–27 (Table 1).

Ex vivo expansion strategies are not unique to UCB, and could also be applied to HSC

derived from BM and mobilized peripheral blood,28–30 as there is evidence of functional and

phenotypic heterogeneity within the HSC population.31–35 Regardless of HSC source, there

is a concern that during ex vivo expansion, one may selectively expand a particular subset,

specifically a short-term reconstituting, lower ‘quality’ HSC at the expense of long-term

reconstituting, higher ‘quality’ HSCs. If this occurs, it could potentially lead to earlier initial

hematopoietic recovery with later graft failure, by diminishing the long-term reserve of the

graft.36 McNiece et al.37 report compromised long-term repopulating activity after ex vivo

expansion in a fetal sheep model; Von Drygalski et al.38 report the loss of radioprotective

and long-term engraftment potential with ex vivo expansion of murine BM; and in a clinical

study, Holyoake et al.39 report the absence of durable engraftment from ex vivo-expanded

CD34+ cells. On the contrary. Piacibello et al.40 observe evidence of self-renewal and

amplification of HSC during ex vivo expansion; Lewis et al.41 report that UCB cells capable

of engraftment in primary, secondary and tertiary xenogeneic recipients are preserved after

ex vivo expansion;and Guenechea et al.42 report a delay in engraftment in a mouse model,

suggesting that potentially more primitive and less rapidly engrafting cells are preserved

during ex vivo expansion. Homing of the cells after a short-term ex vivo expansion does not
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seem to be affected;43 however, the overall durability of the grafts is an issue that will need

to be clarified as more clinical expansion studies in humans progress.

Ex vivo-expanded products may possess an inherent reduction in the long-term

hematopoietic reconstitution potential under certain conditions.36,37,39 The potential

skewing of the UCB product to a more rapidly reconstituting, but short-lived, HSC profile

could potentially be exploited to provide a clinical advantage, especially when ex vivo-

expanded and ‘unmanipulated’ UCB fractions are combined for transplantation. Clinical

data have suggested that UCB that has been subject to ex vivo expansion does provide more

rapid initial hematopoietic reconstitution, whereas ‘unmanipulated’ UCB is the source of the

long-term, sustainable hematopoiesis.24 There are other clinical data, however, that suggest

that augmenting UCB with ex-vivo expanded cells may not provide any benefit in terms of

outcomes,24–26 a discrepancy that further studies may elucidate. The goal of ex-vivo

expansion of cord blood is at least twofold. The primary focus of expansion has been to

generate sufficient numbers of HSCs to optimize the graft available for transplant. Another

important goal is to generate higher numbers of lineage-committed progenitor cells that,

although transient, would allow rapid recovery from pancyotpenia, thus decreasing early

morbidity and mortality. Combining expanded and unmanipulated products may provide the

best product for transplantation. Currently, there are several different strategies used for ex

vivo expansion.

Liquid suspension culture

In their natural microenvironment, HSCs are surrounded by marrow stroma that provides the

required cytokines and growth factors to control hematopoiesis. In an effort to expand HSCs

ex vivo, one method has been liquid culture, in which UCB cells are cultured with

combinations of cytokines, growth factors and other growth-promoting compounds in

various flasks, bags or containers. Before expansion in liquid culture, primitive

hematopoietic progenitor cells (primarily CD133+ or CD34+) from UCB, BM or mobilized

peripheral blood30 must first be isolated from hematopoietic tissue, using one of the number

of techniques available to perform this isolation at a clinical grade (including the Miltenyi

CliniMACS system (Clinimacs-Milteny Biotec Inc., Auburn, CA, USA) and the Nexell

Isolex device (Isolex-Baxter International Inc., Deerfield, IL, USA)). Once isolated, the

hematopoietic progenitor cells are incubated in a culture medium. The centers have

experimented with various ‘cocktails’ of growth factors and compounds targeted at

stimulating the proliferation of primitive hematopoietic progenitors. Common components

used in ex vivo HSC expansion protocols include: SCF, IL-3, IL-6 and G-CSF;30 SCF, TPO

and G-CSF;24,29 and Flt-3 ligand (FL), SCF, IL-3, IL-6 and G-CSF,44,45 although the

concentration of the cytokines may not correlate with HSC expansion.46 One of the concerns

of expansion is telomere degradation with subsequent cycles of proliferation. It seems that

FL and TPO may be important in preventing this from occurring and therefore protecting the

self-renewal ability of primitive stem cells.45,47 Increasing the proliferative potential of the

HSC, and therefore the numbers of HSCs available, is a main goal of expansion, and SCF

and IL-6 possibly enhance the proliferation of subpopulations.48–50 IL-11 has also been

incorporated into ex vivo expansion cocktails.38,51–55 The optimal combination has yet to be

defined.
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In a 37-patient study (25 adults and 12 children), Shpall et al.23 showed the efficacy of ex

vivo expansion of isolated CD34+ UCB cells. UCB units were selected that matched at 4–6/6

HLA loci. In the majority of cases, the UCB was frozen in two fractions (40 and 60%). The

patients received an ablative preparative regimen according to disease, age and previous

treatment. One of the two strategies was adopted. (1) One fraction was thawed, CD34+ cells

isolated (Nexell Isolex 300-i device) and cultured ex vivo in defined medium (Amgen,

Amgen Inc., Thousand Oaks, CA, USA) in the presence of SCF, TPO and G-CSF (each at

100 ng/ml) for 10 days. After 10 days, the remaining (unmanipulated) fraction of the UCB

unit was thawed and administered with the ex vivo-expanded cells. (2) The whole CB unit

was thawed, one fraction transplanted unmanipulated and the remaining fraction cultured ex

vivo in defined medium (Amgen) in the presence of SCF, TPO and G-CSF for 10 days,

before administration. The resulting expansion increased TNC 56-fold (median, range 1.03–

278) and the total number of CD34+ cells fourfold (median, range 0.1–20.0). There was no

significant difference in the times to neutrophil and plt engraftment between groups.

McNiece et al.28 subsequently developed a two-step, 14-day cord expansion protocol that

they showed yields more effective ex vivo expansion than does the single-step 10-day

protocol described above. An initial 7-day small-volume culture is followed by an additional

7-day larger-volume culture (total 14 days), yielding a >400-fold increase in TNC and a

>20-fold increase in CD34+ cells.56 This two-step strategy was used at MD Anderson in a

recent prospective randomized trial comparing double cord blood transplant with transplant

using one unmanipulated UCB unit combined with one unit that was expanded ex vivo.57 In

all, 71 patients with advanced hematologic malignancies were randomized. Patients either

received a myeloablative preparative regimen (n= 41) or non-myeloablative regimen

(N=30), depending on the disease and clinical status. In patients who received an expanded

UCB unit, the smallest unit was CD133 selected using the CliniMACS device (day –14).

The T cell containing CD133− fraction was frozen. The CD133+ fraction was cultured for 14

days in media containing SCF, G-CSF and TPO. On day 0, the unmanipulated UCB unit

was infused, followed by both the CD133− and the ex vivo-expanded fractions of the second

unit. The infused median TNC × 107/kg was 3.5 and 3.6, and median CD34 × 105/kg was

1.8 and 1.1, respectively, for expanded and unmanipulated patients, with a median TNC fold

expansion of 23 (0.44–275) and for CD34+ cells, 2.3 (0–957). The patients undergoing a

reduced-intensity regimen who received an expanded UCB unit engrafted neutrophils in a

median of 7 days (range 4–15 days; n = 14) vs 14 days (range 5–32 days; n = 12) in those

receiving two unmanipulated units. (P=0.05). In total, 34 (48%) have survived for a median

of 11.3 (range 2–49) months. Most of the patients on the expanded arm had some evidence

of the expanded UCB chimerism after transplant (7–82%); however, by 14 months all

patients had predominance of the unmanipulated cord. This suggests that expansion may

affect the durability of engraftment by ex vivo-expanded cells.

Further modifications to this liquid ex vivo expansion technique have included attempts to

further optimize ex vivo culture conditions;46,48,52–55,58 the development of serum-free

culture systems;52,56,59 the use of tetraethylenepentamine, a copper chelator thought to

modulate the proliferation and differentiation of primitive hematopoietic progenitors;60–62

the use of histone deacetylases, thought to promote HSC self-renewal;63 and the use of
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glycogen synthase kinase-3 inhibitors reported to maintain the pluripotency of stem cells.64

A phase I/II trial was conducted by de Lima et al.27 to analyze the potential therapeutic

efficacy of tetraethylenepentamine added in liquid UCB expansion. Ten heavily pre-treated

patients were allocated UCB units that were frozen in fractions. At 21 days before

transplant, the smaller fraction was thawed, CD133+ cells were isolated using the

CliniMACS device and liquid culture expansion was performed in minimum essential

medium α-medium containing 10% FCS (Hyclone, Thermo Fisher Scientific Inc., Waltham,

MA, USA) and supplemented with SCF, FL, IL-6 and TPO and tetraethylenepentamine.

Before transplant, the patients received myeloablative therapy, and on day 0 received the

unmanipulated UCB fraction with the expanded fraction infused on day +1. In total, 9 of the

10 patients engrafted at a median of 30 days (n = 9; range 16–46 days) with 100% donor

chimerism despite the low TNC/kg infused in this study (mean = 1.7 × 107/kg). Plt

transfusion independence occurred at a median of 48 days (range 35–105). Nine patients

were alive at day 100 and three died during the 180-day study period due to infectious

complications. No grade III or IV GVHD occurred. The average fold expansion of TNC in

the expanded fraction was 219 with a CD34+ cell mean increase of sixfold over the CD34 +

cell content of the entire unit. The small sample size and heterogeneous makeup of UCB

units prohibited correlation between CFUs, CD34 cell dose or TNC count and engraftment.

Additional studies will be required to analyze the efficacy of tetraethylenepentamine in the

expansion of UCB.

As a variation on the liquid culture technique, Delaney et al. at the Fred Hutchinson Cancer

Center recently used an immobilized, engineered form of the Notch ligand d–1 with

recombinant cytokines (SCF, FL, IL-6, TPO and IL-3) to stimulate ex vivo UCB

expansion.65 Five patients with aggressive leukemias received fludarabine, cytoxan and TBI

as a preparative regimen, followed by one unmanipulated UCB unit and a second unit that

was CD34 enriched and cultured for 16 days with the combination of cytokine and ligand.66

The median age of the patients was 28 years. The CD34 population increased at an average

of 160-fold (range 41–382), with an average TNC fold increase of 660 (range 146–1496).

The infused TNC/kg × 107 average was 2.9 (range 1.9–5.8) for the unmanipulated cells and

4.6 (range 0.6–9.1) for the cultured cells, with an infused CD34 cells/kg (× 105) of 2.2

(range 1.1–3.4) and 53.4 (range 9.3–133), respectively. All patients engrafted at a median of

14 days (range 7–34), as compared with 25 days (range 16–48) in patients (n =17) who

underwent an identical transplant regimen with two unmanipulated UCB units. In patients

who showed a trend toward early engraftment (ANC > 500 at days 7, 9 and 16), myeloid

cells were mainly derived from the expanded unit at day 14, whereas in the other two

patients who achieved ANC >500 at day 13 and 20, myeloid engraftment was derived from

the unmanipulated cells. Two patients had persistence of expanded cells, one until day 280,

now no longer present; the other still has persistence at day 75. Five of six patients are

surviving in remission for an average of 277 days (range 70–632). These results further

suggest that the expanded unit may provide short-term repopulating cells that may facilitate

and improve speed of engraftment of the non-cultured unit. This is a promising study as

expansion seems to have favorably affected outcomes. Regardless, the optimal combination

of cytokines and growth factors has yet to be defined, and liquid culture is limited by smaller

volumes and by the static nature of the culture.
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Stromal co-culture

The hematopoietic microenvironment is composed of hematopoietic and non-hematopoietic

(cellular and extracellular) components.67–69 Complex molecular cues that direct

hematopoiesis are provided by the stem cell ‘niche’, and are, at least in part, re-responsible

for the regulation of differentiation and maturation of HSCs.70–86 When cells are expanded

ex vivo, they lose the support and regulation provided by the microenvironment, and receive

only the specific cytokines and growth factors provided in the culture media, thus relying on

exogenous direction, and potentially driving differentiation at the expense of self-renewal.

MSC can be isolated as plastic adherent cells from a variety of fetal and adult tissues.87–96

The third-party (neither donor nor recipient) allogeneic MSCs have been shown in NOD-

SCID mice to promote engraftment of UCB CD34+ when co-administered93,97 and also to

possess immunomodulatory activity.96,98–104 In culture, MSCs are characterized by a

spindle-shaped and plastic-adherent morphology and are phenotypically characterized as

HLA-I (ABC), CD105, CD73, CD90 and CD166 positive, and HLA-DR (II), CD80, CD31,

CD34 and CD45 negative. Unfortunately, UCB and mobilized peripheral blood are poor

sources of MSCs,105 although a recent study did suggest that MSCs from the Wharton’s

jelly of umbilical cords showed surface receptors similar to other MSCs, and may be able to

support UCB expansion.106 Co-culture of UCB with MSCs (even allogeneic) can restore

some of the interaction that occurs between the microenvironment of the marrow stroma and

the HSC.80–84 The foci of hematopoiesis and cobblestone areas are visible during co-

culture,92 showing that direct HSC-MSC interactions are occurring and that the MSCs are

not simply acting as a feeder layer.

For stromal co-culture, MNCs are isolated by density separation and co-cultured with

established MSC monolayers in a medium containing FBS and a growth factor cocktail (for

example, SCF, TPO and G-CSF, as with liquid culture expansion).92 The non-adherent cells

are removed from the co-culture after 7 days and subjected to a secondary expansion on an

additional MSC monolayer. The original adherent layer, which is then composed of MSC

and HSC, is re-fed with fresh medium containing growth factors. Culture is then continued

for an additional 7 days (total 14 days).92 A 10- to 20-fold increase in total nucleated cells,

7- to 18-fold increase in committed progenitor cells (GM-CFC), two- to five-fold increase in

primitive progenitor cells (high proliferative potential-CFC) and a 16- to 37-fold increase in

CD34+ cells, have been reported using co-culture expansion.92 Co-administration of third-

party MSC with the UCB-derived HSC may aid engraftment93,97 and provide

immunomodulatory benefits;98–103,107 therefore, it may prove clinically beneficial to re-

infuse both non-adherent and adherent cells from the expansion process.

A clinical trial is underway at MD Anderson using UCB expanded on related donor MSCs

combined with an unmanipulated UCB unit. A family member (minimum of 2/6 HLA

match) serves as the BM-derived MSC donor. Approximately 100ml of BM is aspirated and

confluent MSCs are generated over approximately 21 days. The UCB unit with the lowest

TNC dose is then thawed, washed and divided into 10 equal fractions. Each fraction is

placed into one flask containing >70% of the confluent MSC and cultured in ex vivo

expansion medium. After an incubation for 7 days at 37 °C, the non-adherent cells are
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collected from each flask. The content of a single flask is then placed into a 1 l Teflon-

coated culture bag and cultured for an additional 7 days (14 days total). The flasks are then

re-fed and incubated as well. The myeloablative therapy for this protocol is antithymocyte

globulin and fludarabine, melphalan and thiotepa, and the non-myeloablative therapy is

antithymocyte globulin and fludarabine, CY and 200 cGy TBI. On day 0, the unmanipulated

UCB unit is infused, followed by the expanded UCB cells (from both the bags and the co-

culture flasks). A median fold expansion of 12 was observed in both the TNC and the

CD34+ subsets. For the six recipients of myeloablative therapy, the median time to

neutrophil engraftment has been 14.5 days (range 12–23) and 30 days (range 25–51) for plt

engraftment. In total, two of six patients developed grade II acute GVHD that resolved with

steroids; One patient died of pneumonia in remission at day 150; and five of the six patients

are alive and in complete remission at a median follow-up of 1 year with accrual

continuing.108

As with the development of liquid ex vivo expansion, optimization of culture conditions for

this approach will continue, including the growth factor cocktail used, the length of MSC

and hematopoietic cell co-culture for most effective HSC expansion and the development of

potentially more effective stromal cell lines to support the HSC expansion.109

Continuous perfusion culture systems

Automated, continuous perfusion culture systems, or ‘bioreactors’, are also being analyzed

for the ex vivo expansion of HSC, rather than the use of ‘static’ culture (culture flasks or

bags).24–26,110–114 These systems were designed to allow larger volumes as well as to

provide improved nutrient delivery and gas exchange. The secreted products of mature

granulocytes and macrophages are toxic to progenitors,115 and mature macrophages can

directly damage cultured stroma and hematopoietic pro-genitors.116 Therefore, a continuous

perfusion of culture medium that removed mature cells could protect the cultured cells from

toxic byproducts. In one phase I trial,25 fractions of UCB were expanded ex vivo using

Aastrom Replicell bioreactor technology (Aastrom Biosciences, Inc, Ann Arbor, MI, USA)

and a growth factor cocktail (PIXY321, FL and EPO). The expanded cells were

administered 12 days after the transplant of unmanipulated fractions of UCB. No difference

in the time to myeloid, erythroid or plt engraftment was observed. In a second study with

two patients, ex vivo-expanded UCB cells (Aastrom Replicell bioreactor), generated to

augment unmanipulated UCB, seemed to facilitate hematopoietic recovery.24 A newer

bioreactor that uses serum-free medium, the Dideco ‘Pluricell System’ (DIDECO srl,

Mirandola, MO, Italy) was used in recent preclinical and murine studies, in which Astori et

al.117 showed an MNC fold expansion of 230.4±91.5 and a CD34+ fold expansion of

21.0±11.9 at 12 days, as well as improved engraftment in NOD-SCID mouse model. Other

technologies, such as rotating wall vessels that decrease sheer stress while maintaining

consistent environment, are being evaluated.118 The effect of bioreactor-expanded UCB

remains uncertain, and further clinical trials are necessary to establish its safety and efficacy.
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Summary

Current clinical trials have shown that the use of expanded UCB can be safe and recent

results suggest the potential for improved outcomes; however, the optimal expansion

conditions have yet to be identified. The ongoing trials are addressing the clinical

implications of expansion of all or part of an UCB unit. New data suggest that perhaps

engraftment and outcomes can be favorably altered. Although current trials are primarily

using expansion of UCB to either increase the progenitor number or to facilitate and/or

accelerate engraftment, ex vivo expansion technology could have additional clinical

applications. Through cell sorting and manipulation of culturing techniques, it is possible to

expand particular subsets of UCB-derived cells, such as T cells119 or natural killer cells.120

The ex vivo-expanded cells could then be available as a platform for adoptive

immunotherapy to target either tumor or infectious pathogens. In addition, ex vivo expansion

could allow gene transfer technologies to be available in the UCB setting.

It is hoped that expansion of the UCB populations responsible for engraftment could

favorably alter the kinetics of neutrophil and plt recovery and possibly even immune

reconstitution, depending upon the expansion conditions used. Shortening the time to

engraftment and reducing graft failure should reduce the morbidity and mortality of UCB

transplantation. Expansion techniques could also allow adoptive immunotherapy or gene

transfer therapy in the UCB setting. With the rapidly evolving expansion technologies

described, important improvements in the safety, efficacy and application of UCB

transplantation may be observed in the near future.
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