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Designing appropriate techniques to effectively control the trapping process in complex systems towards
desirable efficiency is of paramount importance in the study of trapping problem. In this paper, we present
three different methods guiding trapping process in a scale-free small-world network with a deep trap
positioned at an initial node. All the proposed approaches dominate the trapping process by varying the
transition probability of random walks. In the first two techniques, the transition probability is modified by
an introduced weight parameter and a stochastic parameter, respectively. And the third scheme is a
combination of the first two approaches, controlled by both parameters synchronously. For all the three
control strategies, we derive both analytically and numerically the average trapping time (ATT) as the
measure of the trapping efficiency, with the obtained explicit expressions being in good agreement with their
corresponding exact numerical solutions. Our results indicate that the weight parameter changes
simultaneously the dominating scaling of ATT and its prefactor. Different from the weight parameter, the
stochastic parameter only modifies the prefactor, keeping the leading scaling unchanged. Finally, compared
with the first two manners, the third strategy is a fine control, possessing the advantages of the first two ones.
This work deepens the understanding of controlling trapping process in complex systems.

T
rapping is a paradigmatic dynamical process, which can describe a variety of other dynamical processes
occurring in diverse complex systems, e.g., lighting harvesting1–5, energy transport6,7 and target searching8,9.
Trapping problem constitutes an integral primary problem of random walks, defined as a kind of random

walks taking place in networks in the presence of a perfect trap, absorbing all particles that visit it10. A basic
quantity relevant to the trapping problem is trapping time, also called mean first-passage time (MFPT)11–16. The
MFPT from a node i to the trap is the expected time taken by a particle leaving from i to reach the trap for the first
time. The average trapping time (ATT) is defined as the average of MFPTs over all starting nodes other than the
trap. The ATT is a primary indicator of trapping, since it measures the efficiency of trapping process. Hitherto,
evaluating ATT has received considerable attention for diverse networks17–29.

Most previous works focused on unraveling the effects of geometrical structure on trapping efficiency. In the
research area of trapping, another central problem is to control the dynamical process. Recently, controllability of
complex networks has become a topic of active pursuit and has attracted extensive attention30–32. Within the
framework of controllability, several basic issues related to network control have been addressed, including
optimization of controllability33, energy required in control34, centrality control35, controlling edge dynamics36,
bimodality in control process37, and capacity control38. In the context of trapping in complex systems, it is
desirable to design control techniques steering the trapping process towards wanted trapping efficiency.
Significant efforts have been devoted to this problem in several networks, such as one-dimensional systems39,
dendrimers3, and treelike fractals40. However, related control approaches for trapping process in scale-free small-
world networks remains less understood, in spite of the fact that this network family displays some prominent
features of real systems41–43.

Although real-life networks are often random, the study of artificial networks with well-controlled properties is
also of high interest44. In this paper, we focus on the trapping process in a hierarchical small-world scale-free
network45, which has received much recent interest46–51. We propose three control strategies to steer the trapping
process with a perfect trap fixed at an initial node. All the three methods control the trapping efficiency by
modifying the local transition probability. In the first technique, a positive tunable weight parameter is intro-
duced, which acts as a similar role of energetic funnel in dendrimers1,3. The second approach is based on delay-
diffusion52,53, where a stochastic parameter is introduced to change the transition probability. The third manner is
a combination of the first two methods, which is controlled simultaneously by the weight and stochastic
parameters.
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For all the three control strategies, we derive analytically the ATT
and their leading scalings, which are consistent with the numerical
results. We show that the weight parameter has a strong effect on
both the leading scaling and the prefactor of the trapping efficiency,
by changing which the ATT can scale as a superlinear, linear, or
sublinear function of the system size. The stochastic parameter assoc-
iated with the delayed diffusion can only modify the coefficient of the
dominating scaling for ATT, without changing the leading behavior
of trapping efficiency. Finally, since the third approach combines the
advantages of the first two methods, it can finely control the trapping
process. This work opens new avenues to effectively control trapping
process towards a desirable case with ideal efficiency.

Results
Construction and properties of the network. We first introduce the
construction and some relevant features of the small-world scale-free
network, which is built in an iterative manner. Let Fn (n $ 0) denote
the network after n iterations (generations). Then, the construction
of Fn can be described as follows. Initially (n 5 0), F0 contains two
nodes connected by an edge. For any n . 0, Fn is obtained from Fn{1

by performing the following operation. For each edge in Fn{1, a new
node is introduced and linked to both end nodes of the edge. Figure 1
shows the construction algorithm schematically.

The particular construction allows determining relevant prop-
erties of Fn. The number of newly introduced nodes at generation i
(i $ 1) is �Ni~3i{1. Thus, the number of nodes Nn in Fn is

Nn~2z
XN

i~1

�Ni~
1
2

3nz3ð Þ: ð1Þ

Let Vn represent the set of nodes in Fn, and let �Vn be the set of nodes
created at generation n. It is evident that Vn~Vn{1|�Vn, jVnj5 Nn

5 (3n 1 3)/2, and �Vn

�� ��~�Nn~3n{1, where jVj denotes the number
of elements in set V.

In network Fn, the degree of all nodes created at the same iteration
is identical. Let ki(n) stand for the degree of node i in Fn, which fulfils
the relation

ki nz1ð Þ~2ki nð Þ: ð2Þ

Let Kn denote the sum of degrees for all nodes. Then,

Kn~2Kn{1z2 �Nn, ð3Þ

which, together with the initial condition K0 5 2, leads to

Kn~2|3n: ð4Þ

Thus, the average degree of Fn is Ækæn 5 Kn/Nn 5 (4 3 3n21)/(3n21 1

1), which is approximatively equal to 4 when the network is very
large, indicating that the network is sparse.

The network being studied presents some remarkable properties
as observed in most real systems45,47,48. It is scale-free with the degree
of nodes following a power-law degree distribution P(k) , k2c, where
the exponent c 5 1 1 ln 3/ln 2. Its average path length, defined as the
mean of the shortest distance over all pairs of nodes, increases loga-
rithmically with the network size45,49. Moreover, in the large network
size limit, its average clustering coefficient tends to 4/5. Thus, the
network exhibits the small-world effect54.

Formulation of trapping in the network with a perfect trap at an
initial hub node. As shown above, the goal of the present paper is to
introduce three techniques to control the trapping process in the
scale-free small-world network Fn. Since any trapping process is
dominated by the transition probability from one node to another,
below we will address three control approaches by modifying the
transition probability in different ways. In the first method, we
change the transition probability by introducing a weight for every
edge, which leads to qualitatively different behavior in the scaling of
ATT; in the second approach, we modify the transition probability
according to the birth times of different nodes, which cannot change
the leading scaling of ATT but can vary its prefactor. The third
manner is a combination of the former two approaches, which can
alter the ATT both qualitatively and quantitatively.

Before introducing the control methods, we first formulate the
problem of trapping in Fn in the presence of a deep trap located at
an initial node. We focus on the discrete-time trapping problem
described by discrete-time random walks. For the convenience of
description, we label all the nodes in Fn in the following way. The
initial two nodes in F0 are labeled as 1 and 2, respectively. In each new
generation, only the new nodes created at this generation are labeled,
while the labels of all old nodes remain unchanged, i.e., we label new
nodes in Fn as Nn{1z1, Nn{1z2, � � � , Nn. Without loss of gen-
erality, we assume that the trap is placed at the initial node labeled by
1. Note that throughout the whole paper, we only consider the near-
est-neighbor random walks, where the walker is not allowed to stay
put. At each time step, the probability of the walker moving from its
current position, say node i (i $ 2), to one of its neighboring nodes j (j

? i) is pij, satisfying
XNn

j~1
pij~1. Moreover, for two different adja-

cent nodes j and k of node i, the transition probability pij might be not
equal to pik.

Let T nð Þ
i stand for the trapping time, that is, the expected time for a

walker starting from node i to arrive at the trap in Fn for the first time.

By definition, T nð Þ
i obeys the following relation

T nð Þ
i ~

XNn

j~2

pijT
nð Þ

j z1: ð5Þ

Equation (5) characterizes the Markovian property of the random
walks, which can be recast in matrix notation as

T~PTze, ð6Þ

where P 5 [pij] is a matrix of order Nn 2 1,

T~ T nð Þ
2 ,T nð Þ

3 , � � �T nð Þ
Nn

� �>
is an (Nn 2 1)-dimensional vector, and

e is the (Nn 2 1)-dimensional vector of ones, i.e., e~ 1, 1, � � � , 1ð Þ>.
From equation (6), we obtain

Figure 1 | Illustration for the evolution process of the small-world scale-
free network.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6274 | DOI: 10.1038/srep06274 2



T~ I{Pð Þ{1e, ð7Þ

where I is the (Nn 2 1) 3 (Nn 2 1) identity matrix.
Using equation (7), the ATT, denoted by ÆTæn, which is the mean

of T nð Þ
i over all non-trap starting nodes distributed uniformly over

the whole network Fn, can be obtained by

Th in~
1

Nn{1

XNn

i~2

T nð Þ
i ~

1
Nn{1

XNn

i~2

XNn

j~2

tij, ð8Þ

where tij is the ijth element of matrix (I2P)21. The quantity ÆTæn is
significantly important since it is a quantitative indicator measuring
the trapping efficiency: the less the ATT, the more efficient the trap-
ping process, and vice versa.

Equation (8) shows that the problem of determining ATT ÆTæn can
be reduced to finding the sum of all elements of a matrix. Although
the computation of inverting a matrix puts heavy demands on time
and memory for large networks, equation (8) can be used to check the
results for ATT derived by other methods, at least for networks with a
small number of nodes. In what follows, we will apply equation (8)
to verify our analytical solutions for the three proposed control
techniques.

Qualitatively controlling the trapping efficiency by introducing
edge weight. The first control method changes the local transition
probability through introducing a weight for each edge. As will be
shown, using this method, the ATT can behave superlinealy, linearly,
or sublinearly, with the system size.

Numerical solution to ATT in a weighted scale-free small-world net-
work. The aforementioned binary network Fn can be extended to a
weighted network, by introducing a weight parameter w (w . 0) in
the construction algorithm. We use Wn to denote the weighted net-
work, which is built as follows. For n 5 0, W0 is composed of two
nodes linked by an edge with unit weight. For n $ 1, Wn is derived
from Wn{1 in the following way. For each existing edge in Wn{1, a
new node is created and attached to both end nodes of the edge by
two new links. The weight of both new edges is w times that of the
original edge giving birth to the two new edges. Repeating the iter-
ative steps, we obtain the weighted version of Fn. Note that Wn

reduces to the binary case Fn when w 5 1.
By construction, the total strength Sn of network Wn, namely the

sum of weights of all edges, follows the recursive relation:

Sn~Sn{1z2w Sn{1: ð9Þ

Considering S0 5 1, we have

Sn~ 2wz1ð Þn: ð10Þ

Mathematically, the properties of network Wn are reflected in the
generalized adjacency matrix (weight matrix) W with the element wij

specifying the weight of the edge linking nodes i and j. Let si denote
the strength55 of node i in Wn, which is the sum of weights over

all edges incident to i. In other words, si~
XNn

j~1
wij. Notice that

si is the ith nonzero entry of the diagonal strength matrix
S~diag s1, s2, � � � , sNnð Þ of network Wn.

After defining the weighted network Wn, we now study trapping
in Wn with a deep trap positioned at an initial node 1. For discrete-
time random walks in Wn, at each time step, the walker moves from
its current location, say node i, to one of its neighboring nodes j by
probability pij 5 wij/si. In fact, all the entries pij (2 # i, j # Nn)
constitute matrix P that is an (Nn 2 1) 3 (Nn 2 1) sub-matrix of
S21W with the row and column corresponding to trap being
removed. Thus, the ATT ÆTæn can be computed by using equation (8).

In addition to equation (8), the exact value of ATT ÆTæn for trap-
ping in Wn can be also determined in terms of the eigenvalues and
eigenvectors of the Laplacian matrix of network Wn, by applying the
universal framework for random walks in weighted networks56. We
use L to represent the Laplacian matrix of Wn, defined as L 5 S 2 W.
Let l1, l2, � � � , lNn be the Nn eigenvalues of L, rearranged as
0~l1vl2v � � �vlNn , and let m1, m2, � � � , mNn

be their corres-
ponding mutually orthogonal eigenvectors of unit length, where

mi~ mi1, mi2, � � � , miNn

� �>
. Then, the quantity ÆTæn can be repre-

sented as

Th in~
Nn

Nn{1

XNn

k~2

1
lk

Sn|m2
k1{mk1

XNn

z~1

szmkz

 !
: ð11Þ

We have performed extensive numerical computation for ÆTæn using
both equations (8) and (11), the results of which are consistent with
each other. In the following text, we will utilize these numerical
results to check our analytical expression for ÆTæn.

Although one can employ equations (8) or (11) to obtain numer-
ically but exactly the ATT ÆTæn, either inverting a matrix or deter-
mining the full spectrum of a matrix is prohibitively time and
memory consuming, making it intractable to employ equations (8)
or (11) to compute ÆTæn for a large network. In particular, by making
use of equations (8) or (11), it is hard and even impossible to obtain
asymptotic scaling for the ATT ÆTæn. Hence, it is of utmost import-
ance to develop a computationally cheaper method for computing
ÆTæn. Fortunately, the peculiar construction and structure of the
studied network allow to analytically treat ÆTæn as well as the ATT
for the other two trapping problems, obtaining closed-form solutions.

Analytical solution to ATT. For the purpose of studying ATT ana-
lytically, let’s begin with examining random walks in Wnz1. By con-
struction, upon growth of the network from generation n to next
generation n 1 1, the degree of node i doubles, that is, it grows from
ki(n) to ki(n 1 1) 5 2ki(n). These 2ki(n) neighbors of i can be
classified into two categories: one half are the original neighbors
belonging to Vn, and the other half are newly introduced neighbors
in �Vnz1. Let Z represent the MFPT for going from node i to any of its
ki(n) old neighbors; and let X be the MFPT for going from any of the
ki(n) new neighbors of i to one of its ki(n) old neighbors. Then we can
establish the following underlying backward equations:

Z~
1

1zw
z

w
1zw

1zXð Þ,

X~
1
2
z

1
2

1zZð Þ,

8><
>: ð12Þ

which lead to Z 5 (4w 1 2)/(w 1 2). Thus, upon the evolution of the
weighted network from generation n to generation n 1 1, the trap-
ping time for an arbitrary node i increases by a factor of (4w 1 2)/(w
1 2), that is,

T nz1ð Þ
i ~

4wz2
wz2

T nð Þ
i , ð13Þ

which will be helpful for the following evaluation of the exact formula
for ÆTæn.

Having obtained the evolution rule of trapping time for any node
in the weighted network, we continue to determine the ATT in Wn.
For this purpose, we define the following intermediary quantities for
1 # g # n:

T nð Þ
g,tot~

X
i[Vg

T nð Þ
i ð14Þ

and

�T nð Þ
g,tot~

X
i[�Vg

T nð Þ
i : ð15Þ
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Then, ÆTæn is given by

Th in~
1

Nn{1
T nð Þ

n,tot, ð16Þ

which reduces the problem of evaluating ÆTæn to determining T nð Þ
n,tot.

By definition,

T nð Þ
n,tot~T nð Þ

n{1,totz
�T nð Þ

n,tot~
4wz2
wz2

T n{1ð Þ
n{1,totz

�T nð Þ
n,tot, ð17Þ

where equation (13) is used. Equation (17) indicates that, in order to

obtain T nð Þ
n,tot, we should first deduce �T nð Þ

n,tot.
By construction, for each new node x in �Vn, it has only two neigh-

bors u and v, both belonging to Vn21. The ATTs of these three nodes
obey

T nð Þ
x ~1z

1
2

T nð Þ
u z

1
2

T nð Þ
v : ð18Þ

Summing equation (18) over all nodes in �Vn, we obtain

�T nð Þ
n,tot~

�Vn

�� ��z X
i[Vn{1

ki n{1ð Þ| 1
2

T nð Þ
i

� �
, ð19Þ

based on which we can further derive

�T nz1ð Þ
nz1,tot~

�Vnz1

�� ��zX
i[Vn

ki nð Þ| 1
2

T nz1ð Þ
i

� �
ð20Þ

Equation (20) minus equation (19) times 2(4w 1 2)/(w 1 2) and
recalling equations (2) and (13), we obtain the following recursive
relation:

�T nz1ð Þ
nz1,tot{

8wz4
wz2

�T nð Þ
n,tot

~ �Vnz1

�� ��{ 8wz4
wz2

�Vn

�� ��zX
i[�Vn

T nz1ð Þ
i

~ �Vnz1

�� ��{ 8wz4
wz2

�Vn

�� ��z 4wz2
wz2

�T nð Þ
n,tot:

ð21Þ

Using �Vn

�� ��~3n{1 and �T 1ð Þ
1,tot~3 wz1ð Þ= wz2ð Þ, equation (21) can

be resolved inductively to yield

�T nð Þ
n,tot~

3n{3

2w
11wz4ð Þ 4{

6
wz2

	 
n

z10w{4

� �
: ð22Þ

Substituting equation (22) into equation (17) leads to

T nð Þ
n,tot~

4wz2
wz2

T n{1ð Þ
n{1,totz

3n{3

2w
11wz4ð Þ 4{

6
wz2

	 
n

z10w{4

� �
:

ð23Þ

Considering T 1ð Þ
1,tot~1z3 2wz1ð Þ= wz2ð Þ, equation (23) is solved to

yield

T nð Þ
n,tot~

3n{1

2
2|3nznz4ð Þ ð24Þ

and

T nð Þ
n,tot~

1
36w w{4ð Þ ½ 11wz4ð Þ w{4ð Þ 6z12w

wz2

	 
n

z 45w2{72w
� � 4wz2

wz2

	 
n

z3n 16{32w{20w2
� �

�
ð25Þ

for w 5 4 and w ? 4, respectively.
Plugging the results in equations (24) and (25) into equation (16),

we arrive at the closed-from expressions for ÆTæn given by

Th in~
2|3nznz4

3nz3
|3n{1 ð26Þ

and

Th in~
1

18w w{4ð Þ 3nz3ð Þ ½ 11wz4ð Þ w{4ð Þ3n 4wz2
wz2

	 
n

z 45w2{72w
� � 4wz2

wz2

	 
n

z3n 16{32w{20w2
� �

�
ð27Þ

for w 5 4 and w ? 4, respectively. When w 5 1, Wn reduces to the
unweighted network Fn, and equation (27) is consistent with the
result previously obtained in Ref. 57.

We have checked our analytical formulas against numerical results
obtained from equations (8) and (11). For different values of w and n,
the analytical results obtained from equations (26) and (27) comple-
tely agree with those numerical ones; see Fig. 2. This agreement
serves as an independent test of our theoretical formulas.

Equations (26) and (27) show that for trapping in Wn, the exact
expression of ATT to an initial hub node is dependent on the weight
parameter w. We now proceed to show how the leading behavior of
ATT scales with the number of nodes in network Wn.

Leading scalings of ATT. Recalling Nn 5 (3n 1 3)/2, equation (26)
shows that ÆTæn , Nn for w 5 4. When w ? 4, the first term on the
right-hand side (rhs) of equation (27) dominates, implying that
Th in*N log3 4wz2ð Þ= wz2ð Þ

n . Therefore, in the whole range of w . 0,
the leading scaling of ÆTæn can be unified as

Th in*Ng wð Þ
n ~N

log3
4wz2
wz2

n , ð28Þ

where the exponent g wð Þ~log3

4wz2
wz2

is an increasing function of

parameter w and can be less than, equal to, or greater than 1.
Concretely, if 0 , w , 4, g(w) , 1, implying that ÆTæn scales sub-
linearly with Nn; if w 5 4, g(w) 5 1, implying that ÆTæn behaves
linearly with Nn; and if w . 4, g(w) . 1, implying that ÆTæn varies
superlinearly with Nn.

Equation (28) indicates that the parameter w has a significant
impact on the trapping efficiency, by adjusting which the ATT can
display rich behavior revealed by exponent g(w). When w grows
from zero to infinite, g(w) increases monotonously from 0 to
log3 4. Thus, one can adjust the parameter w to modify the transition
probability and qualitatively control the trapping process.

Figure 2 | ÆTæn as a function of n for three different values of w. The filled

symbols are the data coming from numerical results obtained by direct

calculation from equations (8) and (11); while the empty symbols

correspond to the exact analytical values given by equations (26) or (27).
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Quantitatively modifying the trapping efficiency by delayed ran-
dom walks. We now present a control technique to quantitatively
alter the trapping efficiency. It is often the case, when a network
assembly is finished, its new topology does not come into play in
dynamical processes right now. That is, there is delay for the new
structure to influence dynamical processes taking place on the
network. This phenomenon inspires us to propose the second
control strategy that includes the delay of operation for new
structure.

Definition of delayed random walks. By construction, the structure of
Fn{1 is embedded in Fn. Then, we can define the following random
walks with delay, called delayed random walks, performed on the
binary network Fn. During the process of delayed random walks, a
walker starting from an old node in Fn, which is already existent in
Fn{1, is allowed to perform isotropic nearest-neighbor random
walks in either Fn{1 or Fn, with respective probabilities p and 1 2 p
(0 # p # 1). That is to say, for delayed random walks in Fn, the
transition probability from an old node i to one of its adjacency nodes
j is given by

pij~

p|
1

ki n{1ð Þz 1{pð Þ| 1
ki nð Þ , j [ Vn{1,

1{pð Þ| 1
ki nð Þ , j [ �Vn:

8>><
>>: ð29Þ

If the current state of the walker is at a new node, then it performs
uniform nearest-neighbor random walks in Fn.

There are two limiting cases for the above-defined delayed random
walks in Fn. When p 5 0, it reduces to unbiased random walks in Fn;
when p 5 1, it is exactly unbiased random walks in Fn{1. As
expected, the probability parameter p governs the process of delayed
random walks in Fn. Below we will show that by varying p, significant
modification occurs in the prefactor of ATT, with its dominating
behavior unchanged.

Closed-form expression for ATT. We here concentrate on delayed
random walks in Fn with a perfect trap at an initial node. In this case,

we use F nð Þ
i to represent the trapping time for a walker starting from

node i to first arrive at the trap in Fn, and use ÆFæn to denote the ATT.
In order to determine ÆFæn, we define two quantities for g # n:

F nð Þ
g,tot~

X
i[Vg

F nð Þ
i and �F nð Þ

g,tot~
X

i[�Vg
F nð Þ

i . Then, the ATT ÆFæn is

given by

Fh in~
1

Nn{1
F nð Þ

n,tot: ð30Þ

Next, we determine F nð Þ
n,tot.

Before evaluating F nð Þ
n,tot, we first derive the evolution rule of F nð Þ

i .
Analogous to random walks in Wnz1, the quantities Z and X for
delayed random walks follow relations:

Z~pz 1{pð Þ 1
2
z

1
2

1zXð Þ
� �

,

X~
1
2
z

1
2

1zZð Þ,

8>><
>>: ð31Þ

which lead to Z 5 2(3 2 p)/(3 1 p). Thus, we have

F nz1ð Þ
i ~

2 3{pð Þ
3zp

T nð Þ
i , ð32Þ

where T nð Þ
i is trapping time of node i for random walks in Wn,

corresponding to the particular case of w 5 1.

Using equation (32), F nð Þ
n,tot can be computed as

F nð Þ
n,tot~F nð Þ

n{1,totz�F nð Þ
n,tot~

2 3{pð Þ
3zp

T n{1ð Þ
n{1,totz�F nð Þ

n,tot: ð33Þ

Substituting w 5 1 into equation (25) gives T n{1ð Þ
n{1,tot in equation (33):

T n{1ð Þ
n{1,tot~

1
12

5|6n{1z3|2n{1z4|3n{1
� �

: ð34Þ

Thus, to obtain F nð Þ
n,tot, we only need to determine �F nð Þ

n,tot.
By using a similar process as that for random walks in Wn, we can

obtain

�F nð Þ
n,tot~

�Vn

�� ��z X
i[Vn{1

ki n{1ð Þ| 1
2

F nð Þ
i

� �

~ �Vn

�� ��z X
i[Vn{1

ki n{1ð Þ| 3{p
3zp

T n{1ð Þ
i

� � ð35Þ

and

�F nz1ð Þ
nz1,tot~

�Vnz1

�� ��zX
i[Vn

ki nð Þ| 3{p
3zp

T nð Þ
i

� �
: ð36Þ

Equation (36) minus equation (35) times 4 and considering the

relations T nð Þ
i ~2T n{1ð Þ

i and ki(n) 5 2ki(n 2 1), we obtain the recurs-
ive relation:

�F nz1ð Þ
nz1,tot{4�F nð Þ

n,tot~
�Vnz1

�� ��{4 �Vn

�� ��z 2 3{pð Þ
3zp

X
i[�Vn

T nð Þ
i

~ �Vnz1

�� ��{4 �Vn

�� ��z 2 3{pð Þ
3zp

�T nð Þ
n,tot:

ð37Þ

Combining equation (23) for w 5 1, �Vn

�� ��~3n{1 and the initial

condition �F 1ð Þ
1,tot~6= pz3ð Þ, we can resolve equation (37) to obtain

�F nð Þ
n,tot~

3n{2

2 3zpð Þ 5 3{pð Þ|2nz10pz6½ �: ð38Þ

Plugging equations (34) and (38) into equation (33) leads to the

explicit expression for F nð Þ
n,tot:

F nð Þ
n,tot~

3{p
3zp

|2n{2z
5 3{pð Þ
2 3zpð Þ 6n{1z3n{1, ð39Þ

which, together with equation (30), produces the exact formula for
the ATT ÆFæn given by

Fh in~
1

6 3nz3ð Þ
3{p
3zp

|2n{2z
5 3{pð Þ
2 3zpð Þ 6n{1z3n{1

� �
: ð40Þ

We have confirmed the analytical solution in equation (40) by com-
paring it with equation (8). The analytical and numerical results are
completely consistent with each other, indicating that the predicted
formula in equation (40) is valid. In addition, for the two special cases
of p 5 0 and p 5 1, equation (40) agrees with the values of ÆTæn and
ÆTæn21 for random walks in Wn corresponding to w 5 1, also indi-
cating the validity of equation (40).

Leading behavior of ATT and its prefactor. Considering Nn 5 (3n 1 3)/2,
the expression for ÆFæn in equation (40) can be represented in terms of
the system size Nn in the following form:

Fh in~
1

12Nn

"
5 3{pð Þ
4 3zpð Þ 2Nn{3ð Þ1zlog3 2

z
3{p

4 3zpð Þ 2Nn{3ð Þlog3 2
z

2
3

Nn{1

#
,

ð41Þ
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which provides the exact dependence of ÆFæn on the network size Nn and
parameter p. For a large system, i.e., Nn R ‘, we have the following
expression for the dominating term of ÆFæn:

Fh in<
5 3{pð Þ

24 3zpð Þ 2Nnð Þlog32*N log32
n : ð42Þ

Equation (42) indicates that in the whole range of 0 # p # 1, the ATT
increases sublinearly with the system size Nn, with the exponent log3 2
independent of parameter p. Although parameter p has little influence
on the dominating behavior of ATT, it modifies significantly the pre-
factor [5(3 2 p)]/[24(3 1 p)] of the dominating term of ATT, which is a
descending function of p. When p grows from 0 to 1, the prefactor drops
from 5/24 to 5/48, suggesting that the inclusion of delayed random walks
can improve the trapping efficiency in a significant way. For the two
extreme cases of p 5 1 and p 5 0, the ATT for the former with maximal
delay is only one half of that for the latter without any delay.

Unifying control technique. Thus far, we have described two
different approaches to control the efficiency for trapping in the
network concerned. The first method can change the leading term
of ATT and its coefficient simultaneously, while the second
technique only modifies the prefactor but keeps the leading term
unchanged. In the sequel, we will present a unifying control
scheme incorporating the two previous methods.

Explicit formula for ATT. The new technique is in fact a delayed
random walk in the weighted network Wn. For this case of random
walks, if the walker is currently at an old node belonging to Vn21, it
can perform random walks either in Wn{1 with probability p or in
Wn with complementary probability 1 2 p; if the walker is currently
at a new node belonging to �Vn, it performs random walks in Wn.
Then the quantities Z and X obey the relations

Z ~ pz 1{pð Þ 1
1zw z w

1zw 1zXð Þ
h i

,

X~
1
2
z

1
2

1zZð Þ,

8><
>: ð43Þ

which give Z 5 2(1 1 2w 2 wp)/(2 1 w 1 wp).
For delayed random walks in Wn with a trap fixed at an initial

node, we use P nð Þ
i to denote the trapping time for node i, and use ÆPæn

to represent the ATT to the trap. Then, from equation (43), we have

P nz1ð Þ
i ~

2 1z2w{wpð Þ
2zwzwp

T nð Þ
i : ð44Þ

In order to determine ÆPæn, for g # n, we define Pg,tot~
X

i[Vg
P nð Þ

i

and �P nð Þ
g,tot~

X
i[�Vg

P nð Þ
i as before. Then,

Ph in~
1

Nn{1
P nð Þ

n,tot, ð45Þ

where P nð Þ
n,tot can be rewritten as

P nð Þ
n,tot~P nð Þ

n{1,totz�P nð Þ
n,tot

~
2 1z2w{wpð Þ

2zwzwp
T n{1ð Þ

n{1,totz�P nð Þ
n,tot:

ð46Þ

The quantity �P nð Þ
n,tot can be evaluated as follows. First, it is easy to

derive

�P nð Þ
n,tot~

�Vn

�� ��z X
i[Vn{1

ki n{1ð Þ| 1z2w{wp
2zwzwp

T n{1ð Þ
i

� �
ð47Þ

and

�P nz1ð Þ
nz1,tot~

�Vnz1

�� ��zX
i[Vn

ki nð Þ| 1z2w{wp
2zwzwp

T nð Þ
i

� �
, ð48Þ

both of which yield the relation

�P nz1ð Þ
nz1,tot~

2 4wz2ð Þ
wz2

�P nð Þ
n,totz Vnz1j j{ 2 4wz2ð Þ

wz2
Vnj j

z
2 1z2w{wpð Þ

2zwzwp
�T nð Þ

n,tot :

ð49Þ

Using �P 1ð Þ
1,tot~ 3z3wð Þ= 2zwzpwð Þ, equation (49) is solved to

obtain

�P nð Þ
n,tot~

3n{3

2w 2wz1ð Þ pz1ð Þwz2½ �

wz2ð Þ 11wz4ð Þ 2{pð Þwz1½ � 4wz2
wz2

	 
n�

z2 2wz1ð Þ w 11wz4ð Þpz5w2z8w{4
� 
�

:

ð50Þ

Substituting equations (24), (25) and (50) into equation (46) yields

P nð Þ
n,tot~

3n{2

4pz6
9{4pð Þ 2|3nznð Þz4 9zpð Þ½ � ð51Þ

and

P nð Þ
n,tot~

1
54w pz1ð Þwz2½ �

3 2{pð Þwz1½ � 11wz4ð Þ wz2ð Þ
2 2wz1ð Þ

�
12wz6

wz2

	 
n

z
27w 2{pð Þwz1½ � 5w{8ð Þ wz2ð Þ

2w{8ð Þ 2wz1ð Þ
4wz2
wz2

	 
n

z
3n

w{4
6 7p{5ð Þw3{12 4pz9ð Þw2
�

{24 2pz3ð Þwz48�g,

ð52Þ

for w 5 4 and w ? 4, respectively.
Then, according to equation (45), the explicit expression for ATT

is

Ph in~
2|3n{2

4pz6ð Þ 3nz1ð Þ 9{4pð Þ 2|3nznð Þz4 9zpð Þ½ � ð53Þ

and

Ph in~
2

54w pz1ð Þwz2½ � 3nz1ð Þ
3 2{pð Þwz1½ � 11wz4ð Þ wz2ð Þ

2 2wz1ð Þ

�
12wz6

wz2

	 
n

z
27w 2{pð Þwz1½ � 5w{8ð Þ wz2ð Þ

2w{8ð Þ 2wz1ð Þ
4wz2
wz2

	 
n

z
3n

w{4
6 7p{5ð Þw3{12 4pz9ð Þw2
�

{24 2pz3ð Þwz48�g,

ð54Þ

for w 5 4 and w ? 4, respectively.
For the particular case w 5 1, equation (54) reduces to equation (40);
and for the special case p 5 0, equations (53) and (54) reduce to
equations (26) and (27), respectively. Thus, for these two limiting
cases, equations (53) and (54) are correct. Furthermore, we have also
verified the exact expressions given by equations (53) and (54)
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against direct computation from equation (8). For various w and p,
the analytical and numerical results agree with each other.

Dominating scaling for ATT and its prefactor. For a very large net-
work, according to equations (53) and (54), the leading term of ÆPæn

can be expressed in terms of network size Nn in a single formula as

Ph in<
2{pð Þwz1
1zpð Þwz2

11wz4ð Þ wz2ð Þ
18w

2Nnð Þlog3
4wz2
wz2 : ð55Þ

From equation (55), we can see that the weight parameter w deter-
mines the dominating scaling of ÆPæn, and that parameters w and p
together determine the prefactor. Therefore, in order to obtain
needed trapping efficiency, one can first adjust parameter w to attain
the desired dominating scaling, then continue to change parameter p
until the prefactor is desired.

Discussion. We have proposed three techniques controlling the
efficiency for trapping in a small-world scale-free network with an
immobile trap located at an initial node. The first method can
qualitatively change the leading scaling of trapping efficiency,
which is realized by introducing a parameter governing the weight
of each edge. By tuning the weight parameter, the ATT can scale
superlinearly, linearly, or sublinearly with the system size. The
second approach is based on delayed random walks, controlled by
a stochastic parameter that has little influence on the leading scaling
of ATT but can significantly affect its prefactor. The third method is a
combination of the firth two approaches, it can thus vary both the
leading scaling of ATT and its prefactor. For the three trapping
problems, we have studied both numerically and analytically the
ATT, the results of which are in good agreement with each other.
We expect that similar techniques can also be applied to control other
dynamics performed in complex networked systems, such as
synchronization58, navigation59, and search60.
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