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Regulatory pathways affecting vascular stabilization via
VE-cadherin dynamics: insights from zebrafish (Danio rerio)
Shahram Eisa-Beygi1,2, R Loch Macdonald1,2,3 and Xiao-Yan Wen1,2

The endothelial-specific transmembrane glycoprotein, vascular endothelial (VE)-cadherin, is required for the organization of a stable
vascular endothelium. A number of cerebrovascular disorders are associated with mutations in genes that otherwise regulate
vascular integrity through VE-cadherin dynamics. Hence, identification and characterization of regulatory pathways contributing
to endothelial cell–cell adhesion is of clinical relevance, particularly in the treatment of aneurysms and cerebral cavernous
malformations. The zebrafish (Danio rerio) have recently emerged as a powerful paradigm for studies geared toward elucidating the
etiology of cerebrovascular disorders, principally in uncovering the genetic and mechanistic basis controlling endothelial adhesive
barrier function.
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VASCULAR ENDOTHELIAL CADHERIN MEDIATES
CEREBROVASCULAR STABILITY
Nascent blood vessels are particularly fragile and prone to
hemorrhages.1 Timely and rapid stabilization of blood vessels,
through establishment of endothelial cell (EC)–cell contacts, is
critical to prevent bleeding into the brain parenchyma.2

Endothelial cell–cell contacts are established and maintained by
transmembrane adhesion molecules that are anchored to
cytoskeletal elements near the plasma membrane, which confer
structural support and, thus, contribute to vascular stability.3–5 Of
these transmembrane proteins, the vascular endothelial (VE)
cadherin is enriched in the EC membranes, maintaining cell–cell
interaction and barrier integrity. Vascular endothelial cadherin
interacts, through a number of intracellular binding partners, with
the actin cytoskeleton, which is thought to coordinate the
mechanical properties of EC–cell contacts. This is evidenced by
the fact that exposure to thrombin, a clotting factor that induces
endothelial barrier dysfunction, depletes both the VE-cadherin–
catenin complex and actin filament organization from the EC
periphery.6 This linkage is under the tight control of tyrosine
kinases and Rho/Ras guanosine triphosphatase (GTPase).7,8

Membrane localization and activation of Rho/Ras GTPases
require prenylation to transport the inactive proteins to the cell
membrane, a step mediated by a pathway involving 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMGCR) activity. Increased
levels of the active (GTP-bound) Rho-GTPases, Rac1 and CDC42,
stabilize cadherin-mediated cell–cell adhesion.9 Similarly, acti-
vated CDC42 regulates permeability by enhancing the interaction
of VE-cadherin with the actin cytoskeleton in mice-derived ECs.10

Inactivation of VE-cadherin and truncation of the b-catenin-
binding cytosolic domain of VE-cadherin induces EC-specific
apoptosis, defective remodeling and maturation of the vascula-
ture and early lethality in mice.11 Endothelial-specific conditional
deletion of b-catenin, a protein interacting with the cytoplasmic

tail of VE-cadherin, induces altered vascular patterning, defective
lumenization and frequent hemorrhaging in vivo, as well as
decreased intricacy of EC–cell junctions in vitro.12,13 Congruent
with findings derived from mammalian studies, work in zebrafish
has shown that partial and transient loss of cdh5 expression, the
zebrafish homolog of the VE-cadherin encoding gene, induces
vascular instability, defective lumenization of vasculature, and
cranial hemorrhages in embryos and larvae.14 Complete depletion
of VE-cadherin levels results in more profound defects, including
total inhibition of EC sprouting activity, cardiac defects, and
embryonic lethality.14

WHY ZEBRAFISH?
The precise mechanistic basis as to how adhesive interactions
between ECs confer a functional vasculature is not fully eluci-
dated.15,16 As such, identification of the entire suite of genetic
networks regulating VE-cadherin dynamics is particularly relevant
for stroke research. However, some of the common encumbrances
of traditional murine models of cerebrovascular research include
the high cost, variable reproducibility of the desired phenotype,
high mortality, and most notably, the difficulty of in vivo imaging
of vascular dynamics. Accordingly, the use of zebrafish to model
the etiology of cerebrovascular disorders would not only
complement current in vitro and mammalian studies, but also
accelerate drug discovery by facilitating the identification of gene
regulatory networks and potential drug targets. Over the last
decade, zebrafish have emerged as viable models for cerebro-
vascular research. Zebrafish are vertebrates and thus share
conserved molecular mechanisms regulating vascular morpho-
genesis with mammals.17,18 A distinguishing feature of the zebra-
fish is their optical transparency through embryonic development,
which facilitates noninvasive and in vivo visualization of any
defects in vascular permeability through the use of bright-field
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microscopy. The presence of stable transgenic lines expressing
fluorescent markers in vascular and erythroid cell lineages further
enhances the sensitivity of phenotype-based screening, allowing
for assessment of vascular structure and patterning in vivo
(Figure 1).19

GENES REGULATING CEREBROVASCULAR STABILIZATION
IN ZEBRAFISH THROUGH VASCULAR ENDOTHELIAL
CADHERIN DYNAMICS
Studies in zebrafish have uncovered a number of regulatory
pathways that contribute to vascular stabilization through direct
or indirect effects on the dynamics of VE-cadherin (Figure 2).

P21-activated kinase 2a
A recessive zebrafish mutant, termed redhead (rhd), which was
identified in a chemical (N-ethyl-N-nitrosourea-derived) mutagen-
esis screen,20 is characterized by cerebral hemorrhages during
early development.21 The mutation in this strain is shown to be a
splice site error in the p21-activated kinase 2a (pak2a) gene, which
otherwise encodes a member of the pak2a gene family.21 The PAK
gene family are kinases that act downstream of the Rho-family
GTPases, CDC42 and RAC, and regulate actin organization at the
membrane–cytosol interface (Figure 2).22 The PAK gene family has
been shown to regulate a multitude of relevant biologic processes
in vitro, namely, cell motility, cytoskeletal rearrangements, and
angiogenesis.23 In light of the fact that the rhd mutants do not
display discernable defects of morphogenesis,21,24 it is reasonable
to speculate that the primary defects observed in these mutants
are specific to blood vessels in the central nervous system, which
is congruent with the preponderance of pak2a mRNA levels
detected in the brain at 36 hpf.21

Pak-interacting exchange factor, bPix
Another vascular mutant identified in the same chemical
mutagenesis screen is named bubblehead (bbh), presumably in
reference to the hydrocephalus observed in these fish.20 Addi-
tionally, the embryos are typified by cerebral hemorrhages.20

Molecular characterization, through positional cloning, high-
lighted the hypomorphic nature of this genetic defect owing
to a point mutation in the splice donor site of exon 14 of
bPix (Pak-interacting exchange factor), which is predicted to result
in a nonfunctional product.25 The functional role for bPix
was confirmed through injection of a number of nonover-
lapping oligonucleotides targeting distinct regions of bPix.
At the ultrastructural level, the bbh mutants have been shown
to exhibit ECs lacking contact with underlying mesenchyme.
The bPix gene encodes the b isoform of the Pak-interacting
exchange factor and a guanine nucleotide exchange factor,
required for the activation of the Rho GTPases, Rac, and CDC42
(Figure 2).25

Ras family small GTP-binding protein, Rap1b
Functional analyses of rap1b (Ras family small GTP-binding
protein), one of the two isoforms of rap1 gene, which encodes a
protein required for CCM1/KRIT1 localization to interendothelial
junctions as well as an effector (kinase) for Ras GTPase, shows
vascular-enriched expression in zebrafish.26 Moreover, knockdown
of rap1b in zebrafish induces cerebral hemorrhages, along with
reduction in the expression and membrane localization of
VE-cadherin and b-catenin. Interestingly, the incidence of central
nervous system hemorrhages have been shown to increase when
embryos were injected with combinations of morpholinos
designed against bPix and pak2a, two previously identified
Rac1/CDC42-interacting genes.26 This is highly suggestive of
synergy through genetic cross-regulation of components of Ras
and Rho GTPases in vascular stabilization.26

A-kinase anchoring protein 12, AKAP12
More recently, a role for A-kinase anchoring protein 12 (AKAP12)
in the regulation of endothelial integrity has been reported
in vivo.27 AKAP12 is a central mediator of cAMP-dependent protein
kinase A signaling pathway,28 which, in turn, is a modulator of
actin dynamics.29 Genetic disruption of either of the splice variants
of akap12 in zebrafish is associated with reduced EC–cell contacts,

Figure 1. Phenotypes of zebrafish embryos with or without intracra-
nial hemorrhage. (A and C) Transmitted light images of 48hpf
Tg(fli1:EGFP); (gata-1:DsRed) zebrafish embryos treated at the one-cell
stage with either dimethyl sulfoxide, A or atorvastatin (0.5mg/l).
(B and D) Representative composite confocal Z-stack projections of
the boxed regions in the same Tg(fli1:EGFP); (gata-1:DsRed) embryos
are shown. Blood vessels express EGFP and red blood cells express
DsRed protein. EGFP, enhanced green fluorescent protein.

Figure 2. Stable endothelial cell (EC) junctions are maintained by a
CDC42-dependent and vascular endothelial (VE) cadherin-mediated
cell–cell adhesion. Vascular endothelial cadherins are found on the
surfaces of EC–cell junctions. Vascular endothelial cadherins are
associated with b and a catenins at their cytoplasmic domains,
which connect them to the actin-based cytoskeleton (blue circles).
CDC42 belong to the Rho-family of small guanosine triphosphatases
(GTPases), which are the main regulators of VE-cadherin-based cell–
cell adhesion. Additional genes and regulatory pathways regulating
EC-junctional stability in zebrafish are indicated.
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giving rise to a discontinuous endothelial layer and abnormal
sprouting phenotype, followed by frequent cerebral hemor-
rhages.27 Analysis of AKAP12-deficient human umbilical vein
ECs is associated with disrupted EC–cell contacts and reduced
cortical actin filaments at the cell–cell contacts, all of which
are shown to be because of reduced pak2 levels.27 This
study provides an additional regulator of VE-cadherin depen-
dent interendothelial adhesion, mediated by pak2-dependent
assembly and disassembly of actin cytoskeleton in ECs
(Figure 2).27

Ets-related gene, Erg and Friend leukemia integration 1, Fli1
Molecular characterization of E26 transformation-specific family
genes in zebrafish have led to the identification of two
transcription factors involved in hematopoesis and angiogenesis,
namely, erg and fli1 (Ets-related gene and Friend leukemia
integration 1), both of which have been associated with vascular
stabilization.30 Both erg and fli1 exhibit expression profiles
restricted to angioblasts and developing blood vessels in
zebrafish embryos.30 Injection of nonoverlapping morpholinos
designed against erg or fli1 induce identical hemorrhage
phenotypes in the central nervous system. Moreover, whole-
mount in situ hybridization analyses of both erg and fli1
morphants show reduction of VE-cadherin mRNA levels in
these embryos,30 which is suggestive of erg and fli1-dependent
regulation of VE-cadherin transcription (Figure 2).

FUTURE DIRECTIONS
Studies over the last decade have been fruitful in identifying some
of the genes required for developmental vascular stabilization
through regulating VE-cadherin expression and membrane
localization (Table 1). It is hoped that along with testing key
scientific hypotheses relating to the genetic basis of cerebro-
vascular disorders, stroke research in zebrafish, which is still in a
state of infancy, will help establish the grounds to design and test
therapeutic strategies geared toward reversing defects in vascular
stability. This is especially encouraging, given the recent advances
in the successful application of high-throughput zebrafish drug
screening platforms.31,32
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