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Genetic inactivation of the pancreatitis-inducible
gene Nupr1 impairs PanIN formation by modulating
KrasG12D-induced senescence

D Grasso1, MN Garcia1, T Hamidi1, C Cano1, E Calvo2, G Lomberk3, R Urrutia*,3 and JL Iovanna*,1

Nuclear protein 1 (Nupr1), a small chromatin protein, has a critical role in cancer development, progression and resistance to
therapy. Previously, we had demonstrated that Nupr1 cooperates with KrasG12D to induce pancreas intraepithelial neoplasias
(PanIN) formation and pancreatic ductal adenocarcinoma development in mice. However, the molecular mechanisms by which
Nupr1 influences Kras-mediated preneoplastic growth remain to be fully characterized. In the current study, we report evidence
supporting a role for Nupr1 as a gene modifier of KrasG12D-induced senescence, which must be overcome to promote PanIN
formation. We found that genetic inactivation of Nupr1 in mice impairs Kras-induced PanIN, leading to an increase in
b-galactosidase-positive cells and an upregulation of surrogate marker genes for senescence. More importantly, both of these
cellular and molecular changes are recapitulated by the results of mechanistic experiments using RNAi-based inactivation of
Nupr1 in human pancreatic cancer cell models. In addition, the senescent phenotype, which results from Nupr1 inactivation, is
accompanied by activation of the FoxO3a-Skp2-p27Kip1-pRb-E2F pathway in vivo and in vitro. Thus, combined, these results
show, for the first time, that Nupr1 aids oncogenic Kras to bypass senescence in a manner that cooperatively promotes PanIN
formation. Besides its mechanistic importance, this new knowledge bears medical relevance as it delineates early
pathobiological events that may be targeted in the future as a means to interfere with the formation of preneoplastic lesions early
during pancreatic carcinogenesis.
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Pancreatic ductal adenocarcinoma (PDAC) is a highly
aggressive cancer with o5% survival after 5 years and a
median survival of o6 months after diagnosis.1 PDAC
progresses from precursor lesions named pancreas intrae-
pithelial neoplasias (PanINs). In this regard, it has been firmly
established that oncogenic mutations in KRAS behave as one
of the earliest stimuli for the formation of PanINs.2,3 These
data are strongly supported by animal models, such as the
Pdx1-Cre; LSL-KrasG12D transgenic mice, in which the
pancreas-specific expression of oncogenic Kras promotes
PanIN occurrence4 and, at a lower frequency, pancreatic
cancer. Thus, the role of Kras as an initiating cancer mutation
is one of the best-established pathobiological mechanisms
required for the development of pancreatic cancer. Note-
worthy, however, during the initiation stage, pancreatic cells
not only trigger protumoral processes but also cellular events
that aim at counteracting transformation. One of these tumor-
suppressive processes elicited by Kras activation is cellular
senescence (oncogene-induced senescence). In the pan-
creas, the induction of senescence underlies the resistance of
exocrine cells to oncogenic Kras-mediated transformation5

so as to prevent tumor promotion, which is often supported by
common diseases such as chronic pancreatitis.6 Indeed,
tissue injury, as it occurs in pancreatitis, weakens the defense
mechanism posed by senescence leading to its bypass by
exocrine cells, which can then readily form PanINs.5 There-
fore, the molecular mechanism that supports the development
of oncogene-induced senescence (OIS) needs to be fully
elucidated, if we want to advance our understanding of
pancreatic cancer development.

The nuclear protein 1 (Nupr1) is a basic helix–loop–helix
molecule that is strongly induced by acute pancreatitis and
several other cell stresses.7,8 Nupr1 is also overexpressed in
several types of human cancers, including PDAC. In this
regard, the expression of genes that are targets for regulation
by Nupr1 has been implicated in key protumorigenic path-
ways, including cell cycle regulation, matrix remodeling,
autophagy, cell cannibalism and apoptosis inhibition.9–16

Moreover, the fundamental role that Nupr1 has in pancreatic
tumorigenesis is underscorded by recent results, which
showed that, in mice, the oncogenic form of KrasG12D is
unable to promote PanINs in the absence of this chromatin
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protein,17 although the mechanisms responsible for this effect
remain an area of active investigation. Consequently, we
designed the current study with the aim of testing the
hypothesis that Nupr1 cooperates with oncogenic Kras to
induce PanIN formation by modulating the expression of gene
networks that are necessary for bypassing senescence. To
address this question, we characterized the effects that Nupr1
inactivation has on Kras-induced senescence using genome-
wide expression profiling, as well as both cellular and
molecular assays for this process. As a result of these
experiments, we found that, indeed, the genetic inactivation of
Nupr1 induces cellular senescence in exocrine pancreatic
cells and reduces Kras-induced PanIN formation. At the
molecular level, we demonstrated that this phenomenon is
characterized by the upregulation of gene networks, which are
known mediators of this phenomenon, by regulating at the
G1/S transition. Taken together, these results provide
mechanistic insights into how Nupr1 cooperates with Kras to
promote the development of pancreatic preneoplastic lesions
by discovering and characterizing a role for this pancreatitis-
inducible protein in modulating cellular senescence. Thus, the
new information emerging from this study has both mecha-
nistic and biomedical implications for a better understanding
of the pathobiology of pancreatic cancer.

Results

Inactivation of Nupr1 by homologous recombination
facilitates the development of KrasG12D-induced senes-
cence in vivo. We have previously shown that deletion of
the Nupr1 gene in mice prevents Kras-induced PanIN
development.17 However, the defined mechanisms under-
lying this phenomenon remain poorly understood. As Kras-
driven neoplastic growth induction can result from the effects
that this oncogene has on cell proliferation, apoptosis or
senescence, we reasoned that the effects of Nupr1 on
inhibiting PanIN formation may reflect at least one of these
functions. Consequently, we began our studies by carefully
examining expression profiles in RNA extracted from both
Nupr1þ /þ and Nupr1� /� , KrasG12D-expressing pancreata.
We compared microarray data of pancreata derived from
5-week-old animals (n¼ 3), as this developmental stage
precedes the appearance of PanINs. Gene set enrichment
analysis (GSEA) of these data sets indicated that deletion
of Nupr1 modifies KrasG12D-associated transcriptional
responses, in particular those linked to the regulation of
two highly interdependent cellular phenomena, namely
cell growth (Supplementary Table 1) and senescence
(Figure 1a). This finding suggests that Nupr1 deletion impairs
PanIN formation, at least in part, through an effect on the
OIS. Consequently, we investigated the senescence status
of both Nupr1þ /þ and Nupr1� /� KrasG12D-expressing
pancreata by performing histochemistry for senescence-
associated b-galactosidase activity (SA-bGal) followed by
morphometric analysis. Figure 1b shows that Nupr1 deletion
associates with an increase in the areas of exocrine
pancreatic tissue (mean 34±11%, n¼ 5). Notably, SA-bGal
activity in Nupr1� /� pancreata was detected as well-defined
isolated patches of morphologically normal acinar cells. On
the other hand, Nupr1þ /þ KrasG12D-expressing pancreata

display positive SA-bGal staining in PanINs lesions, although
not in morphologically normal acini (Figure 1b). As control, no
SA-bGal activity was detected in the pancreas from Nupr1þ /þ

and Nupr1� /� mice that do not carry an activated form of
Kras (Figure 1b), demonstrating that senescence correlates
with the oncogenic activity of this small GTPase. Pathway-
specific polymerase chain reaction (PCR) arrays demon-
strate that the enhanced SA-bGal staining in Nupr1� /�

pancreas is accompanied by the expression of well-char-
acterized surrogate markers for senescence, including the
downregulation of cell cycle progression-related genes and
upregulation of p27Kip1 and p21 (Figure 1c). Thus, we
decided to complement these studies by treating animals
with cerulein, a cholecystokinin analog, which activates the
Gq pathway, which synergizes with Kras so as to bypass
senescence and induce cell growth during pancreatic
carcinogenesis.5 Figure 1d shows that, in animals expressing
wild-type Nupr1 alleles but not oncogenic KrasG12D, cerulein
induced PanIN lesions as early as 8 weeks. In contrast,
PanIN formation was impaired in the pancreata of KrasG12D

-expressing Nupr1� /� animals treated with cerulein
(Figure 1d). Microscopic examination of the pancreas from
these animals revealed a rather normal morphology and
maintained high level of SA-bGal-positive areas (mean
41±14%, n¼ 4) (Figure 1d). Thus, Nupr1 deficiency appears
to favor the establishment of KrasG12D-induced senescence
in a manner that cannot be reversed by growth-synergizing
stimuli, such as those induced by cerulein treatment.

RNAi-mediated inactivation of Nupr1 recapitulates
the development of KrasG12D-induced senescence in
cultured human pancreatic cancer cells. To extend our
in vivo results, we next explored the role of Nupr1 as a
modifier of the effects of KrasG12D in cultured human
pancreatic cancer cells. We observed that Nupr1 is over-
expressed in several pancreatic tumor cells such as
MiaPaCa2, Panc1, CaPan2 and BxPC-3 cells
(Supplementary Figure 1). Figures 2b–d show that after 5
days of siNupr1 treatment, Nupr1 downregulation arrests cell
cycle progression (Figure 2b), inhibits cell proliferation
(Figure 2c) and induces senescence-associated SA-bGal
activity in MiaPaCa2 cells (mean 43±15 versus 11±10,
Po0.001) (Figure 2d). The reliability of this observation was
further enhanced by obtaining similar results in three
additional PDAC-derived cell lines, namely Panc1, CaPan2
and BxPC3 (Figure 2e). In addition, careful microscopic
examinations reveal that siNupr1-treated pancreatic cancer
cells adopt morphological features, which, when evaluated
morphometrically, are compatible with those previously
reported for cells undergoing OIS.18 These features include
an increase in cell area (mean 20.3±8.5 versus 9.1±1.8,
Po0.01), with a flat and rounded shape (Figure 2f), and
larger number of focal adhesions (mean 6.0±1.2 versus
3.0±1.0, Po0.01) (Figure 2g).

As described previously, we observed that Nupr1 silencing
increases apoptosis, in addition to senescence. Therefore, we
used flow cytometry analysis to simultaneously quantify
apoptosis and the SA-bGal activity assay in the same cell
population. As expected, siNupr1-treated cells presented a
significant increase in the number of apoptotic cells
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(Supplementary Figure 2). Interestingly, the inhibition of
apoptosis in siNupr1-treated cells using the pancaspase
inhibitor zVAD results in an increase of SA-bGal-positive cells
(Supplementary Figure 2).

Thus, these experimental manipulations in cultured human
pancreatic cancer cells recapitulate the results obtained in
genetically engineered mice and, together, demonstrate that
normal levels of Nupr1 expression are necessary for both
bypassing OIS and modulating neoplastic cell growth.

Nupr1 deficiency triggers OIS in cultured human pan-
creatic cancer cells through the activation of molecular
pathways that regulate cell cycle. As our data thus far
suggested that Nupr1 inactivation allows OIS, we subse-
quently focused on characterizing molecular mechanisms
underlying that effect. In this regard, the expression profile
data described above reveals that Nupr1 inactivation
increases FoxO3a expression,19 a transcription factor
involved in cell cycle arrest, which is a key step for
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establishing the senescence phenotype.19,20,21 Experiments
using RT-qPCR confirmed that siNupr1-treated pancreatic
cancer cells show an increase of 2.7-fold±0.1 in the levels of
FoxO3a mRNA (Figure 3a). Concomitantly, the treatment
with siNupr1 decreased the expression of Skp2 (1.2±0.2-
fold) (Figure 3a) and increased the expression of p27Kip1

(2.9±0.4-fold) (Figure 3a), both molecules that are part of a
single growth-regulatory pathway downstream of FoxO3a.22

Moreover, we observed that FoxO3a increase was accom-
panied by hypophosphorylation of this protein, which has
been previously observed to correlate with its activation and
nuclear translocation (Figure 3b). In fact, the active nuclear

form of FoxO3a downregulates Skp2, which in turn prevents
the degradation of p27Kip1, thereby increasing the levels of
this protein to arrest the cell cycle. Congruently, we find that
the specific silencing of Nupr1 in pancreatic cancer cells
increases the levels of the cyclin-dependent kinase (Cdk)
inhibitor p27Kip1(Figures 3a, c and d). Therefore, these data
demonstrate for the first time that Nupr1, FoxO3a, Skp2 and
p27Kip1 act in a network to influence the transcriptional
regulation of each other, suggesting that their cell biological
functions may also be linked. We next investigated whether
silencing of Nupr1 expression, when it occurs concomitantly
with increased levels of p27Kip1, contributes to the cell cycle
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Figure 2 Nupr1 silencing triggers OIS in human pancreatic cancer cells. (a) Western blot and RT-qPCR of Nupr1 showing the effectiveness of specific siRNA in MiaPaCa2
cells. (b) Cytometric cell cycle analysis showing increase of G1-arrested cells by siNupr1 treatment in MiaPaCa2 cells. (c) MiaPaCa2 cell proliferation curve shows a significant
stop in cell proliferation after siNupr1 silencing compared with siControl-treated cells. The relative cell number at each time point on the growth curves represents
the mean±S.D. of triplicate normalized to the cell number at day 1. (d) SA-bGal staining of MiaPaca2 cells. A very significant increase of senescent cells is observed
after Nupr1 depletion. (e) SA-bGal activity staining in Panc1, CaPan-2 and BxPC-3 cells treated with a siRNA against Nupr1. (f) Bright field and b-tubulin immunofluorescence
of MiaPaCa2 cells treated with siNupr1 or siControl. Change in cell morphology and significant increase in cell size is observed in Nupr1-silenced cells. (g) Vimentin
immunofluorescence showing significant increase of focal adhesions number in siNupr1-treated cells. Error bars±S.D.; *Po0.05, **Po0.01 and ***Po0.001.
Scale bar, 10mm
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arrest given by Nupr1 siRNA treatment as shown in Figures
2b and c. We found that the upregulation of p27Kip in
siNupr1-treated cells is accompanied by a decrease in the
levels of Cdk2, Cdk4 and cyclin D1, as well as Rb
phosphorylation, and E2F promoter reporter activity, which
are among the best characterized surrogates for p27Kip1-
mediated proliferation arrest during the induction of senes-
cence (Figures 3d–g). Hence, when combined, these data
suggest that downregulation of Nupr1 results in FoxO3a
overexpression, cell cycle arrest and senescence, a status
that is characterized by activation of the Skp2-p27Kip1-Rb-
E2F pathway.

Genetic inactivation of Nupr1 in vivo has an impact on
the regulation of the FoxO3a-Skp2-p27Kip1 pathway and
the regulation of OIS. Owing to the potential mechanistic
importance of the FoxO3a-Skp2-p27Kip1 pathway for Nupr1-
mediated modulation of OIS revealed by our in vitro
experiments, we subsequently investigated the status of this
pathway in vivo. Both RT-qPCR and western blot analyses
revealed an increase in the hypophosphorylated form of
FoxO3a within the pancreas from KrasG12D-expressing
Nupr1� /� animals (Figures 4a and b). Immunofluorescence
experiments reveal the presence of FoxO3a as a weak signal
present in the cytoplasm of exocrine pancreatic cells from
KrasG12D-expressing Nupr1þ /þ animals (Figure 4c). In
contrast, the pancreas from KrasG12D-expressing Nupr1� /�

mice show a strong nuclear signal for this protein (Figure 4c),
which marks the active form of this transcription factor.
Interestingly, the active FoxO3a signal was distributed in a

patched pattern similar to the one given by SA-bGal staining
(Figure 1b). Consistent with this notion, our expression
profiles, described in Figure 4d, reveal that pancreas tissue
from KrasG12D-expressing Nupr1� /� mice show significant
changes in the expression of Foxo3a target genes, which
also include the downregulation of Skp2 (Figure 4d). In
addition, although immunofluorescence for p27Kip1 appears
negative in the pancreas of KrasG12D-expressing Nupr1þ /þ

animals, the staining for this protein is readily positive in the
glandular tissue of KrasG12D-expressing Nupr1� /� mice
adopting a patched pattern throughout the tissue (Figure 4e).
In aggregate, these results demonstrate that the FoxO3a-
Skp2-p27Kip1 pathway, first defined by our in vitro mechan-
istic experiments in cultured pancreatic cancer cells
(Figure 3), associates with the Nupr1� /� genotype in vivo
giving rise to OIS with a concomitant impairment in PanIN
development.

Discussion

Elegant studies, primarily performed during the past three
decades, have focused on defining how pancreatic cancer
progresses through the successive transformation of normal
exocrine cells into those that have the ability to form PanINs
with various degrees of malignant potential. Additionally, the
collective works of many laboratories have clarified that, at a
molecular level, the progression of these lesions is caused by
the accumulation of genetic mutations in a subset of
well-known oncogenes and tumor suppressors. Although
the knowledge derived from these investigations have been
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remarkably helpful in providing a better mechanistic under-
standing of pancreatic cancer development and provide
potential markers for diagnosis as well as promising ther-
apeutic targets, it has mostly remained genetic centric.
Actually, oncogenic activation by mutation promotes cell
growth and transformation, although in some cases these
oncogenes result in insufficient senescence because the
simultaneous antitransformation mechanisms are activated
by the cells to counteract the oncogenic effect; among these
mechanisms the major one is the OIS. Consequently,
mechanisms regulating OIS may influence transformation.
In pancreatic cancer, one of the mechanisms regulating
senescence is pancreatitis, one of the better identified factors
promoting transformation by oncogenic Kras.5 Unfortunately,
the genes and mechanisms, which regulate OIS and thereby

promote transformation by pancreatitis, remain unidentified.
Thus, this work is very relevant to the field as we
demonstrated that the pancreatitis-induced protein Nupr1
acts in concert with the mutated Kras to facilitate the
progression of pancreatic cancer, at least in part, through
permissive effects for bypassing senescence.

Serrano et al.18 first reported the potential of oncogenic Ras
to induce a permanent cell growth arrest in non-pancreatic cell
populations. Today we know that oncogenic Ras promotes
cell cycle arrest, which accompanies morphological and
molecular changes in affected cells characteristic of replica-
tive senescence. In the pancreas, the expression of KrasG12V

in exocrine cells initially induces cell proliferation giving rise to
PanIN precursor lesions, although at a later point, these cells
subsequently stop dividing. At this point, the precursor lesions
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display both cellular and molecular changes, which are
characteristic of senescence and their progression to cancer,
an outcome that requires bypassing of this cellular mechanism.
Bypassing senescence has been proposed to result from
additional molecular defects that accompany Kras muta-
tions.23 This knowledge has fueled an active area of
investigation from which emerging data suggest that, through
the regulation of cell cycle-related genes, transcription factors
and chromatin proteins have a pivotal role in the regulation of
this process. Notably, previous investigations both in mouse
and human have demonstrated that Nupr1 cooperates with
Kras not only during PanIN formation and PDAC development
but, in addition, these two proteins arm frank pancreatic
cancer with a more aggressive phenotype, characterized with
poor survival and resistance to chemotherapy.24 Thus, the
current study not only identifies for the first time senescence
as a cellular mechanism linking the functions of these two
proteins but also adds Nupr1 to the growing group of stress-
associated proteins involved in the regulation of this process.

Interestingly, we also found that Nupr1 depletion induces
OIS in several human pancreatic cancer cells lines including
the BxPC-3 (Figure 2e), which express a wild-type version of
Kras protein.25 These data suggest that the OIS due to Nupr1
silencing is not exclusive of oncogenic Kras mutation, but
rather a more intrinsic cellular mechanism against cell
transformation. This concept is consistent with the flow
cytometry data (Supplementary Figure 2) where apoptosis
inhibition in Nupr1 silenced increases the percentage of
senescent cells. This finding suggests that senescence is an
alternative to apoptosis in response to transformation or
uncontrolled proliferation and differences between the appar-
ently two populations is just the alternative path chosen by
each cell. Thus, we are optimistic that future investigations,
using complementary cellular and biochemical approaches in
cells, mice and human, such as the ones shown in the current
study, will shed light on additional mechanisms that dictate
why some cells are prone to apoptosis and others to
senescence.

Owing to the fact that OIS acts as a crossroad in the path
toward cancer development, we sought to illuminate the
molecular underpinning of this cellular mechanism. In this
task, we were guided by the hypothesis that, because of its
function as chromatin protein, Nupr1 may modify the function
of Kras by regulating the expression of senescence-asso-
ciated gene networks. We initially tested this hypothesis,
using state-of-the-art methodology, by performing a genome-
wide expression profiling. Fortunately, the results of these
experiments provided the first available evidence supporting
the role of Nupr1 in the regulation of genes involved in cell
senescence and growth, for instance, FoxO3a. Mechanisti-
cally, we found that Nupr1 downregulates FoxO3a expression
at least in part by maintaining its promoter hypermethylated
through a pathway involving Dnmt1 (manuscript in prepara-
tion). It has been demonstrated that FoxO3a in re-expressed
in neuroblastoma cells treated with the DNA methylation
inhibitor 5-aza-2-deoxycytidine.26 Moreover, the same inhi-
bitor was related to dephosphorylation and nucleus transloca-
tion in acute leukemia.27 This suggests the DNA methylation
regulation of FoxO3a gene in cancer. In our unpublished data,
we found that Nupr1 silencing induces a strong reduction in

Dnmt1 expression which in turn allows a hypomethylated
state of FoxO3a promoter and by consequence to its
expression. Foxo3a is found to be a transcriptional repressor
of Skp2 gene expression by directly binding to the Skp2
promoter, thereby inhibiting Skp2 protein expression, which in
turn promotes p27Kip1 stability.22 Also, p27Kip1 is a key
regulator of cell cycle arrest and senescence.28 These
observations were function validated using a robust battery
of cellular and biochemical assays, which led us to uncover
the FoxO3a-Skp2-p27Kip1 axis as an example of a cell cycle
arrest effector pathway. However, in spite of the well-known
role of this cell cycle inhibitor cascade in the regulation of
senescence, we cannot exclude that other molecules, whose
expression is modified by Nupr1, may contribute to the
establishment and/or maintenance of this phenotype. Indeed,
functional alterations in Nupr1 have been associated with
several malignancies including breast, cholangiocarcinoma,
colon cancer, prostate, bladder and lung. Thus, it remains
possible that the observations resulting from the current study
have a wider application than previously anticipated. These
considerations raise optimism that this knowledge will fuel
future studies aimed at shedding light onto the function of
Nupr1 as a regulator of OIS in other organs and consequently
have an impact on cancer development.

In conclusion, when combined, the results of the experi-
ments reported in this article support the notion that gene
expression changes mediated by the pancreatitis-induced
protein Nupr1 modulate the function of well-characterized
pancreatic oncogenes, in which mutational activation occurs
early during the development of pancreatic cancer. In light of
the reduced success of previous attempts to correct genetic
alterations in pancreatic cancer through gene therapy, these
considerations also highlight the possibility that early interven-
tion against stress-induced proteins may be more beneficial for
the management of this cancer and likely other malignancies,
which are known to associate with Kras mutations.

Materials and Methods
Animals. Nupr1� /� mice bear a homozygous deletion of exon 2 of the Nupr1
gene and were reported previously.29 These mice are viable and fertile and exhibit
normal pancreatic development, although they are more sensitive to systemic
lipopolysaccharide and experimental pancreatitis.30 The Pdx1-cre;LSL-KrasG12D

mice were provided by R Depinho (Dana-Faber Cancer Institute, Boston, MA,
USA) and resulted from crossbreeding of the following strains: Pdx1-Cre31 and
LSL-KrasG12D.32 Pancreatitis was induced by intraperitoneal administration of
cerulein (Sigma-Aldrich, St. Louis, MO, USA) at 250mg/kg of body weight for five
consecutive days, followed by 1 week of recovery. Because animals are from
different genetic backgrounds, we systematically used littermate control and
experimental mice. Mice were kept within the Experimental Animal House of the
Centre de Cancérologie de Marseille (CRCM) pole Luminy, following institutional
guidelines.

DNA microarray. Total RNA was isolated and reverse transcribed for
hybridization to the Mouse Gene 1.0 ST Array (GeneChip; Affymetrix, Santa Clara,
CA, USA) as described previously.33 Arrays were processed using the Affymetrix
GeneChip Fluidic Station 450 (protocol EukGE-WS2v5_450) and scanned using a
GeneChip Scanner 3000 G7 (Affymetrix). GeneChip Operating Software
(Affymetrix GCOS v.1.4) was used to obtain chip images, with quality control
performed using the AffyQCReport software (Bioconductor, Berkeley, CA, USA).
GSEA was performed on the Board Institute Platform34,35 and statistical
significance (false discovery rate) was set at 0.25. Microarray data are available
from Gene Expression Omnibus (National Center for Biotechnology Information,
Bethesda, MD, USA) under the accession number GSE45232.
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Cell culture. MiaPaCa2, Panc1, CaPan2 and BxPC-3 cells were obtained from
ATCC (Manassas, VA, USA) and maintained in DMEM (Invitrogen, Carlsbad, CA,
USA) supplemented with 10% FBS at 37 1C with 5% CO2. INTERFERin reagent
(Polyplus-transfection, New York, NY, USA) was used to perform siRNA
transfections according to the manufacturer’s protocol. Scrambled siRNA targeting
no known gene sequence was used as negative control. The sequences of Nupr1-
specific siRNA (siNupr1 r(GGAGGACCCAGGACAGGAU)dTdT and siNupr1 no. 2
r(AGGUCGCACCAAGAGAGAA)dTdT) were previously reported.36

Histology and immunofluorescence. Pancreatic sections were fixed in
4% paraformaldehyde and paraffin embedded. H&E staining and immuno-
fluorescence were performed using standard procedures. Sections were probed
with primary antibodies: anti-p27 and anti-Rb polyclonal antibodies were from
Santa Cruz Biotechnologies (Santa Cruz, CA, USA); the FoxO3a and phospho-Rb
(Ser807/811) monoclonal antibodies were from Cell Signaling (Danvers, MA,
USA); and the anti-b-tubulin polyclonal and anti-vimentin monoclonal antibodies
were from Sigma-Aldrich. Alexa Flour 488 and 594 (Invitrogen) were used as
secondary antibodies. Samples were mounted in ProLong Antifade Reagent
with DAPI (Invitrogen) and examined in an Eclipse 90i Nikon microscope (Nikon
Instruments Europe B.V., Champigny-sur-Marne, France).

SA-b-galactosidase activity. Pancreas cryosections from Nupr1� /� and
Nuprþ /þ KrasG12D mice or cells cultured on glass coverslips were tested for
SA-bGal activity using the Senescence b-galactosidase Staining Kit (Cell Signaling)
according to the manufacturer’s protocol.

RT-qPCR. Pancreatic RNAs from Nupr1� /� and Nuprþ /þ KrasG12D mice
were prepared immediately after dissection following Chirwin’s protocol.37 RNA
from cells was prepared using Trizol reagent (Invitrogen) and reverse transcribed
using Go Script (Promega, Madison, WI, USA) according to the manufacturer’s
instructions. Real-time quantitative PCR was performed in a Stratagene Cycler
(La Jolla, CA, USA) using Takara reagents (Shiga, Japan). Primers sequences are
available upon request. For Figure 1c, Mouse Cellular Senescence RT2 Profiler
PCR array (Qiagen, SA Biosciences, Frederick, MD, USA) was used according to
the manufacturer’s instructions.

Immunoblotting. Protein extraction was performed on ice using total protein
extraction buffer: 50 mM HEPES (pH 7.5), 150 mM NaCl, 20% SDS, 1 mM EDTA,
1 mM EGTA, 10% glycerol, 1% Triton, 25 mM NaF, 10 mM ZnCl2 and 50 mM DTT.
Before lysis, protease inhibitor cocktail at 1:200 (Sigma-Aldrich; NUPR1340),
500mM PMSF, 1 mM sodium orthovanadate and 1 mM b-glycerophosphate were
added. Protein concentration was measured using a BCA Protein Assay Kit
(Pierce Biotechnology). Protein samples (80 mg) were denatured at 95 1C and
subsequently separated by SDS-PAGE gel electrophoresis. After being transferred
to nitrocellulose, the membrane was blocked with 1% BSA, and then the samples
were probed with primary antibody, followed by a horseradish peroxidase-
coupled secondary antibody. Primary antibodies used were as follows: anti-p27,
anti-Cdk2, anti-Cdk4, anti-cyclin D1 and anti-Rb polyclonal antibodies were from
Santa Cruz Biotechnologies; anti-Nupr1 monoclonal antibody was homemade
and described previously;17 FoxO3a monoclonal, phospho-FoxO3a (Ser253)
polyclonal and phospho-Rb (Ser807/811) monoclonal antibodies were from Cell
Signaling; anti-b-tubulin polyclonal and anti-vimentin monoclonal antibodies
were from Sigma-Aldrich. Image acquisition was made in Fusion FX image
acquisition system (Vilber Lourmat, VWR, Fontenay-sous-Bois, France) and
bands were quantified using the ImageJ software (NIH, Bethesda, MD, USA).

Reporter gene assay. The reporter assays were performed with Luciferase
Assay System (Promega) according to the manufacturer’s instructions. Cells were
plated in 24-well plates and the following day co-transfected with 200 ng of
pGl2-3�E2F and 20 ng of pRL-SV40 plasmids. The luciferase reporter activity of
each sample was normalized against the internal control activity of Renilla
luciferase developed with coelenterazine (Sigma-Aldrich). Each sample was
determined in triplicate. The results represent means±S.E. from three experiment
runs.

Flow cytometry. Cell cycle analysis was performed by standard propidium
iodide staining protocol on a FACSCalibur flow cytometer (BD Biosciences,
San Diego, CA, USA). SA-bGal activity was performed using the Quantitative
Cellular Senescence Assay Kit (Cell Biolabs, San Diego, CA, USA). Apoptosis

was measured with the Membrane Permeability/Dead Cell Apoptosis Kit with
YO-PRO-1 and PI Kit (Molecular Probes-Life Technologies, Eugene, CA, USA).
Acquisition of 50 000 events per sample was made in a MACSQuant-VYB
(Miltenyi Biotec, Surrey, UK). Data analysis was performed using the FlowJo
(Treestar, Ashland, OR, USA) software.

Statistics. Statistical analyses were performed using the unpaired two-tailed
Student’s t-test, and non-normal distribution, unpaired data were obtained using
the Mann–Whitney test. All tests of significance were two-tailed and the level of
significance was set at 0.05. Values are expressed as mean±S.E.M. RT-qPCR
data are representative of at least three independent experiments with technical
duplicates completed.
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