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To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the
human hosts and the infecting parasites affect one another. Here we report the RN A-seq analysis of 116 Indonesian patients
infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of
host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the
respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We
identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary
targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human
innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria in-
fection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3,
for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several
genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic varia-
tions which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated
data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which

are far more complex than those observed under laboratory conditions.

[Supplemental material is available for this article.]

Plasmodium species, including P. falciparum (Pf), cause worldwide
health problems that require immediate action (Aregawi et al.
2011). Intensive international efforts have been made to analyze
their genomes and transcriptomes (Daily et al. 2007; Volkman
etal. 2007; Mu et al. 2010; Otto et al. 2010). For various Plasmodium
species, including human malaria parasites Pf and P. vivax (Pv),
entire genome sequence data are now available (Aurrecoechea et al.
2009). Genetic variations of Pf in different regions of the world
have also been analyzed (Volkman et al. 2007). Manske et al.
(2012) generated a data set of 86,158 exonic single nucleotide
polymorphisms in 227 Pf samples from Africa, Asia, and Oceania.
Considerable efforts were also made to enrich the genome anno-
tations with transcriptome information (Daily et al. 2007; Otto
et al. 2010; Tuda et al. 2011). In PlasmoDB, a representative data-
base of Plasmodium species, a wide variety of expression data, such as
those collected at several time points during the intra-erythrocytic
developmental cycle, were archived and made freely available
(Aurrecoechea et al. 2009).

On the other hand, several pathways or genes that play piv-
otal roles in the host defense system in humans have been also
identified. Particularly, innate immune response genes are well
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characterized as first line defense sensors. Toll-like receptors (TLRs)
and several other pattern recognition receptors recognize patho-
gens and related components and trigger downstream signaling
cascades (Kawai and Akira 2010; Takeuchi and Akira 2010). Espe-
cially in a malaria infection, hemozoin, a degradation product of
heme, appears after heme is scavenged by parasites. TLR9 specifi-
cally recognizes hemozoin (Coban et al. 2005, 2010; Parroche et al.
2007). Upon recognition, the downstream TLR pathway is acti-
vated, eventually leading to the activation of two major groups of
transcription factors: the NF-kB (such as the NFKB1:RELA com-
plex) and AP-1 (such as the FOS:JUN complex) group and the IRFs.
Through these transcription factors, a series of proinflammatory
cytokines, such as TNF, IL1, and IL6, are subsequently induced
(Pahl 1999; Dinarello 2000; Gilmore 2006; Hoffmann et al. 2006;
Kishimoto 2006). Particularly, the IRF group of transcription factors
induces type I interferon (IFN) responses (Sato et al. 2009). They
further modulate the inflammatory responses and invoke acquired
immune responses (Ito et al. 2002; Palm and Medzhitov 2009).
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In spite of rapid progress in both parasite genomics and anal-
ysis of host immune responses in humans, current knowledge is
mostly limited to that obtained from either rodent models or lab-
oratory infection systems. Little is known about the in situ gene
expression patterns in humans and parasites in the field. Indeed,
clinical features, including the severity of malaria symptoms and
drug resistance, are highly variable depending on parasites and pa-
tients. To address this issue, we used RNA-seq analysis. To simulta-
neously analyze gene expressions from both the human hosts and
infecting parasites, we used a mixture of host and parasite RNA
isolated from infected patients for the RNA sequencing. In this way,
we also hoped to avoid the technical difficulties associated with
isolating parasites at field hospitals, which is frequently the largest
barrier to retaining the quality of the materials, or other manipu-
lations that might introduce bias to the expression information. In
addition, by utilizing the RNA sequences for calling single nucleo-
tide polymorphisms (SNPs), we were also able to analyze genetic
variation among the Pf samples at the same time. Here we describe
the interactive transcriptome analysis of clinical malaria patients.

Results

RNA sequencing of human-parasite mixed mRNA populations

To analyze the interactions between transcriptomes of human host
cells and infecting parasites, we carried out RNA-seq analysis of
peripheral blood samples of malaria patients (Fig. 1A). We generated
an average of 30 million RNA-seq tags per sample from each of 116
patients (Table 1). When the RNA-seq tags were mapped onto the
reference genomes of humans and parasites, we found that ~90%
were uniquely mapped to the human genome and the rest were
mapped to the Pf genome. There were essentially no RNA-seq tags
mapped to both the human and Pf genomes (Supplemental Table 1).
We also collected control samples from 25 healthy people and 28
people with other infectious diseases. From these control samples,
essentially no Pf tags were identified (Supplemental Table 1; Sup-
plemental Fig. 1). Based on these results, we concluded that we were
able to use the mixed RNAs for the RNA-seq analysis and to separate
the RNA-seq tags by mapping them to the respective genomes.

Based on the generated RNA-seq tag information, we analyzed
gene expression patterns in human and Pf (Supplemental Fig. 24,
B). Both human and parasite tags were normalized against the
expression of GAPDH in the respective organisms (see Supple-
mental Table 2 for gene expression information for each gene).
Figure 1B shows the average breakdown of the tags in a patient. In
humans, a considerable portion of the tags was derived from
immune-related genes, such as cytokine genes and their receptor
genes (2%-10%, depending on the category), although many of
them were from the beta globin gene (23%), as expected. In par-
asites, the largest portion of the tags was derived from functionally
uncharacterized genes (44%) (for details, see Supplemental Table 3),
perhaps due to still inadequate genome annotations in Pf.

For the validation analysis, we conducted real-time RT-PCR
assays for a total of 458 cases (Fig. 1C). A reasonable correlation
existed between the RNA-seq and the RT-PCR data, with an overall
Pearson’s correlation r = —0.83 (r = —0.86; n = 222 in humans and
r=—0.81; n =236 in Pf) (for examples, see Supplemental Fig. 3).

Variable gene expression patterns in humans and parasites

For a group of genes, expression patterns were widely varied
among samples, and this variation had little correlation with their

total expression levels (Supplemental Fig. 4A). For example, in
humans, the cytokine and interleukin genes showed a more diverse
expression, regardless of their expression levels, among patients
than did the ribosomal protein genes (P=6 X 10~?>andP=1 X 10~°,
respectively) (Fig. 1D, left panels; see Supplemental Table 4 for
a comprehensive list of genes). Similarly, in parasites, the expres-
sions of the FIKK and PfEMP gene families, which encode repre-
sentative surface proteins, were highly variable compared to the
ribosomal protein genes (P = 4 X 107 and P = 2 X 1072, re-
spectively) (Fig. 1D, right panels). These genes are known to en-
code proteins used by parasites to escape from host immune
systems. Considering that different patients have different malaria
symptoms, correspondingly, different expression patterns in hu-
man and parasite may represent different modes of host-parasite
interactions (also see Supplemental Fig. 4B).

Correlation of gene expression patterns with clinical
information

We compared the clinically observed parasitemia of the parasites
with the frequency of the Pf tags (%Pf tags). We found that the
infectious rate (as diagnosed by microscopic analysis of thin blood
films which is believed to be the most quantitative) and the Pf read
counts are reasonably well correlated (Pearson’s correlation r =
0.85; n = 14) (Fig. 2A,B). We also validated whether they are cor-
related in a wider dynamic range in an even more quantitative
manner. Using in vitro samples of a Pf strain, 3D7, for which par-
asitemia can be flexibly controlled and more precisely evaluated,
we analyzed and observed that the correlation was almost perfect
under this experimental condition (r = 0.97; n = 8 of diverse par-
asitemia, ranging from 0.5% to 10%) (Fig. 2C). In addition, for 40
samples correlation between the rapid diagnosis, which is a simple
but qualitative and less accurate method, and is more frequently used
in the field, and the Pf read counts is also reasonable (Spearman’s r =
0.53; n=40) (Fig. 2D). Taken together, we concluded that RNA read
counts correlate well with clinical statuses of malaria at a sufficient
level, at least for the present study.

Gene expression variations were occasionally associated with
the patients’ clinical data. The clinical data analyzed included the
%Pf tags, which should represent severity of malaria, body temper-
ature, age of the patient, and the duration since symptom onset
(Table 2A). In this study, even though it is technically molecular
information and not a direct indicator of malaria symptoms, we used
%Pf tags as a clinical condition based on the results of the correlation
analyses. We conducted an exhaustive statistical enrichment test
using the Wilcoxon signed rank test and identified a number of
genes whose expression patterns were significantly correlated with
clinical data (Table 2B; see Supplemental Tables 5-8 for details).

Among the identified genes, several are potentially involved
in the severity of malaria symptoms. As exemplified in Figure 3A,
expression of the haptoglobulin receptor gene (CD163 molecule)
was induced in patients with higher %Pf tags (P = 3 X 1077). Ob-
served expression changes were further validated by independent
real-time RT-PCR analysis (Fig. 3A, middle panel) and by RNA-seq
tag counts in finer bins (P =2 X 10~7). We also validated the sta-
tistical significance of the differences, considering the control
samples. We could show that the difference was significant between
malaria patients and healthy controls (Supplemental Fig. 5A,B).
Previous reports showed that this gene plays a role in clearance and
endocytosis of hemoglobin complexes by macrophages (Kristiansen
et al. 2001). Subsequently, accumulated hemozoin may induce
further responses of the innate immune system.
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Figure 1. RNA-seq analysis of human-parasite mixed transcriptomes. (A) Schematic representation of the RNA-seq analysis using mixed human-parasite

RNA. Note that in each sample, different cell types from both humans and parasites are represented. (B) Distribution of the RNA-seq tags assigned to the
indicated functional categories of genes in humans (left) and parasites (right). Definitions of the gene categories are shown in Supplemental Table 3. (C)
Real time RT-PCR validation of the RNA-seq analysis. A total of 458 cases ([left panel] 222 cases in humans; [right panel] 236 cases for parasites) were
examined. Overall correlation between RNA-seq and real time RT-PCR-based gene expression was r= —0.83 (r= —0.86 in humans; r = —0.81 in parasites).
(D) (Top) Distributions of the relative deviations in gene expression patterns in humans (left) and parasites (right). Relative deviation was calculated as the
standard deviation divided by the average of the expression levels for each gene. (Bottom) Distribution of the variance in gene expressions for the indicated
categories of genes. The y-axis represents the standard deviation of the gene expression level (Stdev) divided by the average gene expression level (Ave) for
the corresponding gene in the 116 patients. Horizontal bar represents the average of the Stdev/Ave value for the category. The number of genes (n)
included in the analysis for each category is shown in parentheses. All of the data for the genes binned under each category are presented in Supplemental
Table 4.

Fig. 5, C and D, shows the statistical significance in the difference
in the respective age range). Indeed, by also considering the control

Similarly, as exemplified in Figure 3B, expression levels of
CBLB were higher in younger malaria patients (P= 1 X 10~°), which

was also validated by real-time RT-PCR and tag counts in finer
bins (P = 3 X 10~%). Again, we found that the difference was statis-
tically significant against the age-matched controls (Supplemental

Table 1. Summary of the RNA-seq tag information

samples, we found that the difference was derived from insufficient
down-regulation of CBLB expression from the normal level in
young malaria patients (Supplemental Fig. 5D). Genes associated

No. of No. of

Average represented represented Average no. of
No. of  Total no. of No. of Total no. of frequency of No. of filtered genes genes cSNPs detected
Species samples mapped tags mapped tags filtered tags parasite tags tags (RPKM >0) (RPKM > 1) per sample
Pf 244,767,495 173,147,608 3742 3549 235 (0%
Human 116 3,016,323916 ; 794’371 79, 1,691,787,588  10.2% 1,518,640,922 13,769 10,594 361 (3%
For further details on individual samples, see Supplemental Tables 1 and 2.

For the detected SNPs in the parasite within the five bases of the known splice sites, values are shown in parentheses. For detailed statistics, see Sup-

plemental Table 1.
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Figure 2. Associations of RNA-seq read counts and clinical information of parasitemia. (A) Representative image of a thin blood film from a clinical
sample (top) and 3D7 (bottom) from which infected red blood cells were counted and parasitemia was calculated. Arrow indicates the stained parasite. (B)
Relation between the Pf read counts and the parasitemia, which was diagnosed by a microscopic view of the thin blood film (n=14). Numbers of infected
red blood cells were counted microscopically. (C) Results of a similar analysis from an in vitro cultured Pf strain, 3D7. Parasites were cultured at the
indicated parasitemia, which was validated microscopically and used for the RNA-seq analysis, as in the case in the clinical samples (n = 8). Pf tag counts
were normalized with those of the human beta globin gene. (D) Qualitative comparison between clinical parasitemia and Pf read counts (n = 40). For this
analysis, parasitemia was qualitatively determined by rapid diagnosis according to the standard protocol. The correlation coefficient calculated by the

indicated methods is shown in the respective graphs.

with young malaria patients are particularly important, as they
present the most pressing problem. It is known that CBLB, an E3
ubiquitin ligase (Sawasdikosol et al. 2000), negatively controls the
association between TLR4 and the intracellular adaptor MYD88
and thereby represses eventual mal-activations of T cells and in-
flammatory responses (Rao et al. 2002; Han et al. 2010). CBLB-
deficient mice showed an autoimmune disease-like phenotype
with enhanced T-cell activation, in which increased release of
inflammatory cytokines was also observed. As opposed to the
case in the CBLB-deficient mice, young patients occasionally
show more severe malaria symptoms (Rogier et al. 1996), be-
cause the retained expression of the CBLB gene may result
in insufficient activation of the cytokine and inflammatory
responses.

In the parasite genome, expression of the Pf pyruvate kinase
gene was enhanced in patients younger than 20 yr old (Fig. 3C).
Because a high expression level of this gene indicates active me-
tabolism in parasites, this observation may also reflect severe
malarial symptoms in young patients. We also found that the Pf

early transcribed membrane protein 5 gene is induced in young
patients (Fig. 3D). This gene may serve as a drug target for vaccine
development to block the parasite growth at an early stage, espe-
cially in young patients.

Correlation of a group of genes with clinical information

We also analyzed and identified several groups of genes belonging
to functional GO categories (Ashburner et al. 2000) and KEGG
pathways (Kanehisa et al. 2012) that showed statistically signifi-
cant associations with the indicated clinical data (Table 2C; see
Supplemental Tables 7 and 8 for further details). Among them, we
particularly focused on the innate immune response pathway.
Generally, genes in this pathway were up-regulated (Supplemental
Table 9), which is partly consistent with previous results (Hartgers
et al. 2008; Franklin et al. 2009; Fu et al. 2012). We also observed
that patients with higher %Pf tags showed characteristic patterns of
expression changes compared to patients with lower %Pf tags (Fig.
4). Also, by considering the healthy controls and the controls with
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Table 2. Gene or pathway enrichment analysis for diverse clinical malaria symptoms

(A) No. enriched genes (P-value by Wilcoxon test)®

Category %Pf tags Body temp. Age Gender Time from symptom onset
Threshold 5% 39°C 20 M/F 4d
Human genes 95 (1 X 1074 23 (5 x1073) 168 (5 X 107°) 156 (5 X 1072) 24 (5 X 107%)
Pf genes 234(1 X 1079) 126 (1 X 1072) 97 (5 X 1073 58 (5 X 1072 75 (5 X 1072)
(B) Lists of the representative individual genes®
Species Category Symbol Definition P-value (Wilcoxon test)
Human %Pf tags NM_203416 CD163 molecule 3x1077

Age NM_002561 Purinergic receptor P2X, ligand-gated ion channel, 3x1077

5, transcript variant 1

Body temp. NM_004235 Krippel-like factor 4 7x107*
Pf %Pf tags PF10_0030 Conserved Plasmodium protein, unknown function 2x10 "

Body temp. PFE0045c¢ Serine/threonine protein kinase, FIKK family 3x107*

Time from symptom onset MAL13P1.58 Plasmodium exported protein (PHISTa-like), 3x1073

unknown function

(C) Lists of the representative GO terms and KEGG pathways®

Species Category GO_ID GO term P-value (Phyper)

Human Age G0:0071013 Catalytic step 2 spliceosome 3x10°%°
%PF tags G0:0006369 Termination of RNA polymerase Il transcription 1x1077

Human %Pf tags KEGG:3040 Spliceosome 3x107°
Body temp. KEGG:4142 Lysosome 2x10°*

“Number of human and parasite genes associated with the indicated clinical information. The thresholds for these characteristics are indicated in the
second line. Thresholds for statistical significance, evaluated by Wilcoxon signed rank test, are indicated in parentheses. Only the cases where the dif-
ference was also significant against the healthy controls (P < 0.05) were counted.

They were significantly associated with the indicated clinical information.

other infectious diseases, we could further classify the gene expres-
sion patterns, namely, whether they are characteristic of malaria
patients or common to patients of different infectious diseases. For
example, the mRNA levels of the TLR2, which senses parasites’
glycosylphosphatidylinositol (GPI) anchors (Krishnegowda et al.
2005), was up-regulated, while those of TLR9, which senses
hemozoin, a degradation product of heme, (Coban et al. 2005,
2007, 2010; Parroche et al. 2007), remained almost the same in
given patients. Similarly, mRNA levels of TICAM2, but not TIRAP,
were up-regulated. We also observed that activations of the rep-
resentative downstream target genes involved in inflammatory
cytokine and type I interferon responses showed characteristic
patterns (Supplemental Table 9), depending on the patients.
Thus, quite unexpectedly, gene up-regulations proportional
to the %Pf tags occurred only for restricted members of the
pathway.

Correlated patterns of gene expression between humans
and parasites

We calculated the Spearman’s correlation for all pairs of human-Pf
genes. We identified a total of 52,044 pairs of human and parasite
genes with positive correlations and 188 pairs with negative corre-
lations (correlation > 0.5 or < —0.5, respectively) (Fig. 5A). Permu-
tation tests using randomly correlated human-Pf gene expression
patterns detected essentially no gene with correlations in this
range (Supplemental Fig. 6). For example, expression of the
tumor necrosis factor alpha-induced protein 3 (TNFAIP3) gene
in humans, which also belongs to the immune response or in-

flammatory pathway (Song et al. 1996; Vereecke et al. 2009), was
positively correlated with the Pf putative polyadenylate-binding
protein gene (r = 0.64) (Fig. 5B; also see Fig. SC for the case of the
human JUND and the Pf putative eukaryotic translation initia-
tion factor 3 subunit 10 gene). On the other hand, negative
correlation was observed between expression of the human
TNFAIPSL2 and the parasite putative methyltransferase gene (r =
—0.55) (Fig. 5D).

A hierarchical clustering analysis of the identified correlations
(Fig. 5E) showed that some of the positive or negative correlations
were enriched in particular GO categories. Namely, GO terms’ “in-
nate immune response (GO:0045087)” in humans and “metabolic
process (GO:0008152)” in parasites were enriched (P=3 X 10~*and
P=1x 10*, respectively) in a cluster of negatively correlated genes
(as indicated by Box 1), suggesting that active innate responses of
human hosts are repressive for parasite metabolisms in general. In
another cluster of positively associated genes (as indicated by Box 2),
the GO terms’ “sequence-specific DNA binding transcription factor
activity (GO:0003700)” in humans and “eukaryotic translation
initiation factor 3 complex (GO:0005852)” in parasites were
enriched (P = 0.04 and P = 1 X 107*, respectively). Among
these human transcriptional regulatory factors, the SUZ12
(NM_015355), which is a component of polycomb complex
(Birve et al. 2001), and other histone modifiers, such as the his-
tone-lysine N-methyltransferase (KMT2E) (Cosgrove and Patel
2010), were included. Although the general lack of gene function
information for Pf genes imposes an obstacle for further
interpretations of the observed associations, it would be in-
teresting to know whether positive or negative correlation of
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Figure 3. Association of gene expression patterns with clinical information. Examples of human genes (A, B) and parasite genes (C,D) associated with the
indicated clinical information. (Top) Bean plots of the gene expression levels (y-axis in reads per kilobase per million, RKPM) are shown for the indicated
populations. Statistical significances (P) of the differences are shown within the plots. (Middle) Validation analysis of the expression levels by real-time RT-
PCR. (Bottom) Differential expressions, identified by both RNA-seq tag counts and real-time RT-PCR validations, are shown for further breakdown of the
populations. Particularly for human genes (A, B), gene expression levels for the healthy controls are shown in Supplemental Figure 5. Detailed evaluation of
the statistical significances in the differences against the control samples is also shown there. Data represent the means of three experiments. The number
of samples used (n) is as indicated in the margin. Note that demographic data were not always available for all of the samples. Statistical significances of the

indicated differences are shown above the plots.

these gene expression patterns represents gene expression pro-
grams that aggressively compete for mutually conflicting bene-
fits between hosts and parasites.

Genetic variations of parasites

We were also able to collect information on SNPs. Although the
available information was only for expressed genes, and sequence
depth depends on their expression levels, we were still able to
confidently call an average of 235 SNPs per sample for parasites
(Supplemental Table 1).

We tentatively focused on the SNPs in previously characterized
drug resistance genes. In the Pf chloroquine resistance transporter
gene (PfCRT), whose mutation is reported to be responsible for
chloroquine susceptibility (Fidock et al. 2000), we confidently
called the T214A substitution in at least 17 cases and the G215C
substitution in two additional cases (Fig. 6A; Supplemental Table
10). Both of these substitutions cause cysteine to serine amino acid
changes at this position (C72S), which was reported to be one of
the representative mutations involved in acquiring drug re-

sistance. In addition, we detected the A227C substitution (K76T
substitution in amino acids), which is another drug susceptibility
mutation in 28 cases. Previously uncharacterized mutations were
also scattered throughout the gene. We similarly analyzed the SNPs
in the Pf multiple drug resistance gene 1 (PfMDRI) and the Pf
calcium-transporting ATPase 6 gene (PfATP6), which are re-
portedly responsible for resistance to a wide variety of anti-
malarial drugs, including quinine, halofantrine, mefloquine, and
artemisinin (Reed et al. 2000; Price et al. 2004; Duraisingh and
Cowman 2005). As shown in Figure 6, B and C, we found putative
drug resistance-acquiring mutations in a considerable number of
cases. These findings should sound an alarm that a significant
population of parasites in this region may have acquired drug
resistance.

Finally, we conducted an association study between the
presence of a particular SNP and %Pf read counts both for humans
and parasites. As shown in Figure 7, we could identify several
candidates of such associate genes both in humans and parasites.
Although further validation studies should be necessary using
a larger cohort, we believe this should lay the first important base
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Figure 4. Gene expression patterns of the TLR4 pathway genes. (A) Examples of the gene expression patterns between healthy controls, malaria
patients with %Pf tags of <5%, >5%, and patients with other infectious diseases. Left and right panels exemplify the cases where gene expression levels
increased with increasing %Pf tags (the case of the JUN gene) and where they decreased (the case of the IKBKG), respectively. Also note that left and right
panels exemplify the cases where the observed difference was malaria-specific and nonmalaria-specific, respectively, which was revealed by considering
the control patients with other infectious diseases. Statistical significances in the differences were evaluated by Wilcoxon signed rank test and are shown in
the margins. (B) Global patterns of gene expression in the TLR4 pathway. Significant differences between two populations (%Pf tags of >5% or <5%) are
shown above the plots. Genes significantly up-regulated in the patients with high %Pf tags (P < 0.05) are enclosed in bold boxes. Also, by considering the
controls (healthy controls and patients with other infectious diseases), “A” and “B” indicate genes where the increase and decrease in the gene expressions
were observed for the increasing or decreasing %Pf tags, respectively, and such differences were statistically significant against healthy controls. Among
them, “C” indicates the cases where the gene expression differences were significant against the control patients with other infectious diseases, thus, the
difference appeared to be malaria-specific. For evaluating statistical significance in the differences, Wilcoxon signed rank test was used.
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Figure 5.

Positive and negative correlations between expression patterns of human and parasite genes in 116 patients. (A) Distribution of the

Spearman’s correlation coefficients calculated for each pair of human-parasite genes. The number of gene pairs with correlation coefficients >0.5 (positive
correlation) or < —0.5 (negative correlation) is given to the right and left, respectively. (B—-D) Examples of positively (B,C) and negatively (D) correlated human
(blue) and parasite (red) gene pairs. (B) The human tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and the parasite putative polyadenylate-binding
protein gene; (C) the human JUND and the parasite putative eukaryotic translation initiation factor 3 subunit 10 gene; (D) the human TNFAIP3 and the
parasitic putative methyltransferase gene. Spearman’s correlation coefficients are shown above each plot. On the x-axis, patients are ordered by their patient
ID numbers (random order). (E) Hierarchal clustering analysis. Vertical and horizontal axes represent the human and parasite genes, respectively, each of
which was paired with at least one gene in the other organism with a Spearman’s coefficient of either >0.5 or < —0.5. The heat map represents the degree of
correlation according to the color scale shown in the legend. Numbered boxes represent clusters where genes with the indicated functional categories

described in the text are enriched.

to elucidate biological associations between host humans and
infecting parasites occurring in vivo.

Discussion

In this study, we used a mixture of human and parasite RNA for the
transcriptome analysis of malaria samples so that the expression
profiles of both could be represented simultaneously. A similar
approach could be applied to analyze any parasite in the field or to
parasites that are impossible to be isolated from patient tissues.
An obvious drawback of this approach is that obtained ex-
pression profiles should represent those of all cell types mixed
together. Consequently, it is difficult to precisely separate in-
formation from different types of human blood cells and different
stages of parasitic life cycles. Also, we have set a very conservative
threshold for statistical significance, considering the effects from
diverse environmental factors inherent to clinical samples, which,
in turn, may have caused false negative detection of otherwise
significant associations (Table 2A). Therefore, some subtle but solid
associations may have also been overlooked in this study. To
address this concern, sample size should also be expanded. To ac-

complish this, one of the recently introduced RNA-seq methods,
such as not so random (NSR) (Armour et al. 2009), might be useful.

It was also challenging to examine correlations between the
abundance of individual genes based on a single time point. For
example, Figure 5 shows some pairs of positively or negatively
correlated genes across the patient samples. However, it is possible
that these observations were obtained as a consequence of com-
plex factors. For example, some of the “anti-correlated” genes may
have appeared so because they are underexpressed in the parasite
in the bloodstream. This has in fact been shown to be true because
the circulating forms of Pf are mainly in the early stage ring form of
the parasite that is not actively metabolizing. Later forms are se-
questered in the vasculature, so that different expression patterns
may represent different populations of the parasites.

Despite these drawbacks, our approach has enabled the first
analyses of in situ samples in their intact statuses at the genome-
wide level. In particular, we have demonstrated that activation of
mRNA expression is not uniform throughout the TLR network (Fig.
4) in vivo. Interestingly, genes comprising the same signaling
complex occasionally responded differently (Fig. 4). These genes
might be differentially regulated at the translational or post-
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Figure 6. Identification of SNVs in parasite putative drug resistance-related genes. (A-C) SNVs detected in the Pf chloroquine resistance transporter
gene (A), Pf multiple drug resistance gene 1 (PfMDRT1) (B), and the Pf calcium-transporting ATPase 6 gene (PfATP6) (C). Patients are ordered by their
sample ID numbers (randomly) on the y-axis. Base changes observed at the indicated positions for each patient are indicated according to the color
scheme shown in the legend. Only the nonsynonymous SNPs are shown. The number of tags mapped at each genomic coordinate is represented by the
grayscale shown in the legend. Positions of the SNPs that were previously reported (known) or newly identified in this study (novel) are indicated by gray
and black vertical lines, respectively. For detailed information on SNPs in each sample, see Supplemental Table 10. Also note that SNPs located in
overlapping regions of the splicing sites may have an increased error rate, which is derived from mapping of RNA-seq tags onto the genome sequence.
Further intensive manual inspection may be necessary for these sites (Supplemental Table 1).

translational levels, such as via phosphorylation or ubiquitination
(Chuang and Ulevitch 2004; Miggin and O’Neill 2006). By doing
so, the host immune systems may realize a versatile network in
terms of its dynamics and robustness, enabling flexible responses
against various types of pathogens.

Indeed, our current analysis has brought numerous impor-
tant clues that deserve future in-depth biological analyses. We fully
acknowledge that intensive analyses of laboratory strains, such as
3D7, may be extremely useful; however, behaviors of the field
malaria parasites are far more complex than those observed under
laboratory conditions (Daily et al. 2007). Furthermore, it is now
recognized that parasite genotypes are rapidly diversifying (Miotto
et al. 2013). We believe complementary use of both in field and
laboratory strains will eventually reveal a global view of malaria
etiology occurring in patients.

Methods

Samples

Blood samples of 116 patients diagnosed with Pf infections by the
rapid malaria paper test (Abbott) and occasionally by the smear test
(according to the standard method [Moll et al. 2008]) were col-

lected at several field hospitals in the surrounding area of Sam
Ratulangi University Hospital in Manado, Indonesia from 2006
to 2010 (Supplemental Table 11). All of the samples were col-
lected following informed consent of the patients, and the col-
lections were approved by the local ethical committee of Sam
Ratulangi University and that of the University of Tokyo. To es-
timate false positive detection rates of Pf tags, samples were
similarly collected from 25 healthy people and 28 patients
infected with other pathogens. Details of the sample descriptions
are also shown in Supplemental Figure 1 and Supplemental Ta-
bles 1, 2, and 11.

RNA-seq

For the RNA-seq analysis, we used 2.5-mL samples of peripheral
blood that were first isolated and stabilized with a PAXgene Blood
RNA Tube (BD). From 2.5 mL of the PAXgene Blood RNA Tube
sample, total RNA was extracted using the PAXgene Blood RNA Kit
(BD). RNA-seq libraries were prepared following the manufac-
turers’ instructions using the TruSeq RNA-seq kit (Illumina). A
single lane of 36-bp single-end sequencing was performed for each
sample (Illumina GAIIx platform). The RNA-seq tags were then
mapped to the reference genomes of human (hg19) (UCSC Genome
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Figure 7. Association study to identify human and parasite genes related to severe malaria symptoms. (A) Results of the association study to identify
genes that are associated with the severity of malaria. Results are shown as Manhattan plots for humans (left panel) and parasites (right panel). Calculated
P-values are shown on the y-axis. Gene names are indicated by arrows. (B) Summarized information of the associated SNVs in humans (top) and parasites
(bottom). Genomic coordinates and the deduced amino acid change are shown.

Browser; http://genome.ucsc.edu/) and Pf (PlasmoDB Release 6.0;
http://plasmodb.org/plasmo/), allowing two-base mismatches, using
the BWA mapping software (Li and Durbin 2009). Details of the
mapping procedure are described in the legend for Supplemental
Figure 1. For the raw data for each gene used in this study, see
Supplemental Table 2. Experimental conditions, results of the real
time RT-PCR, and the primers used for the validation are shown in
Supplemental Table 12.

Computational procedures

Gene Ontology (GO) terms were obtained from the UCSC Genome
Browser for human and from PlasmoDB for parasites. KEGG data
were obtained directly from the KEGG database (http://www.
genome.jp/kegg/). Statistical significance was calculated using the
indicated methods. To identify the genes and pathways which are
associated with the clinical information, only the cases where the
difference was also statistically significant against the healthy
controls were counted. In all cases, the statistical analysis software
package R was used for the calculation (Gentleman et al. 2004).
For calling SNPs, a SNP caller GATK was used (McKenna et al.
2010). SNPs called with confidence scores greater than 50 were
selected. SNPs supported by more than five independent RNA-seq
tags were further selected and used for the analysis. Hierarchal

clustering was performed using Bioconductor in R. A phylogenic
tree for each gene was drawn using MEGA 4 (Tamura et al. 2007).
The genetic distance between each genotype was calculated by
considering the mutual Hamming distance of the detected SNPs
(Isaev 2004). Only genes with at least five mutually comparable
SNPs were considered. To identify SNVs which are associated with
%PF tags, statistical bias of the occurrence in the patient group giv-
ing a larger number of Pf read counts was evaluated for each of
the identified SNVs. For this purpose, Wilcoxon signed rank test
was used, and the cases giving P-values of 1 X 10~> were selected.

To provide a viewer, we constructed the Full-Malaria database
(http://fullmal.hgc.jp). A search example is also shown in Sup-
plemental Figure 7.

Data access

The sequencing data from this study have been submitted to the
DNA Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp/) under
accession number DRA000949.
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