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Microbiota modulate transcription in the intestinal
epithelium without remodeling the accessible
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Microbiota regulate intestinal physiology by modifying host gene expression along the length of the intestine, but the
underlying regulatory mechanisms remain unresolved. Transcriptional specificity occurs through interactions between
transcription factors (TFs) and cis-regulatory regions (CRRs) characterized by nucleosome-depleted accessible chromatin.
We profiled transcriptome and accessible chromatin landscapes in intestinal epithelial cells (IECs) from mice reared in the
presence or absence of microbiota. We show that regional differences in gene transcription along the intestinal tract were
accompanied by major alterations in chromatin accessibility. Surprisingly, we discovered that microbiota modify host
gene transcription in IECs without significantly impacting the accessible chromatin landscape. Instead, microbiota regu-
lation of host gene transcription might be achieved by differential expression of specific TFs and enrichment of their
binding sites in nucleosome-depleted CRRs near target genes. Our results suggest that the chromatin landscape in IECs is
preprogrammed by the host in a region-specific manner to permit responses to microbiota through binding of open CRRs
by specific TFs.

[Supplemental material is available for this article.]

Animal physiology is directed by interactions between factors

encoded in the animal’s genome and those encountered in its

environment. The impact of these interactions on animal health is

most evident in the intestine, where digestion and absorption of

dietary nutrients occur in the presence of complex communities of

microorganisms (intestinal microbiota). The identification of in-

testinal microbiota as prominent environmental factors shaping

diverse aspects of intestinal and extraintestinal health and disease

has fueled intense interest in defining themechanisms underlying

host-microbiota interactions (Sommer and B€ackhed 2013). The

primary interface between animal hosts and theirmicrobiota is the

intestinal epithelium, which encounters dynamic environmental

stimuli from microbiota along the length of the gut (Camp et al.

2009; Pott and Hornef 2012). As with other tissues, intestinal

epithelial function is predicated on the ability to produce and

maintain multiple cell types while also retaining the ability to re-

spond to environmental stimuli, all using the same genome. Ac-

cordingly, the intestinal epithelium exhibits extensive functional

specialization along its proximal-distal axis characterized by dis-

tinct gene expression programs and differences in cell-type abun-

dance (van der Flier and Clevers 2009). Comparisons of mice

reared in the absence of microorganisms (germ-free or GF) to those

colonized with a normal microbiota have revealed that gene ex-

pression in the intestine is profoundly altered by the presence of

a microbiota (Rawls et al. 2006; El Aidy et al. 2012; Larsson et al.

2012; Pott et al. 2012). Furthermore, comparisons of GF mice to

those colonized bymicrobiota for variable lengths of time revealed

that microbiota-induced alterations to host gene expression are

temporally dynamic and require several weeks to reach homeo-

stasis (El Aidy et al. 2012, 2013). Proper orchestration of these

microbiota-induced gene expression programs in a tissue-specific

context is essential for establishing host-microbe commensalism

and sustaining host health. However, the regulatory mechanisms

through which microbiota modify host gene expression in the

intestinal epithelium remain unresolved.

Specification and tuning of gene transcription proceeds in

part through coordinate interactions between transcription factors

(TFs) and cis-regulatory DNA. Cis-regulatory regions (CRRs) harbor

binding sites for multiple activating or repressing TFs and can be
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located proximal to the transcription start site (TSS), within gene

bodies, as well as in intergenic regions distal to the TSS (Bulger and

Groudine 2011). CRRs are generally distinguished by the low oc-

cupancy of nucleosomes on genomic DNA, which can be experi-

mentally captured by hypersensitivity to DNase I cleavage (Boyle

et al. 2008). DNase-seq is a high-throughput, quantitative method

that generates genome-wide accessible chromatin profiles which

strongly correlate with in vivo transcription factor occupancy and

gene expression levels (Thurman et al. 2012). We reasoned that

DNase-seq could be used to discover CRRs of various types (e.g.,

promoters, enhancers, silencers, locus control regions) that medi-

ate host transcriptional responses to microbiota in epithelial cells

along the length of the intestinal tract. We found that regional dif-

ferences in gene transcription along the length of the intestine were

accompanied by major alterations in the accessible chromatin

landscape. Surprisingly, we discovered that commensal microbiota

modify the transcriptional landscape in the intestinal epithelium

without significantly impacting the accessible chromatin landscape.

Instead, we find that open intestinal CRRs linked to microbiota-

responsive genes are enriched with binding motifs for microbiota-

responsive TFs. Our results suggest that the chromatin landscape

in intestinal epithelial cells is ‘‘preprogrammed’’ by the host in a

region-specific manner to permit transcriptional responses to en-

vironmentally acquired intestinal microbiota likely through dif-

ferential binding of CRRs by specific TFs. This data extends support

for the model that cell fate specification is associated with acqui-

sition of a specific accessible chromatin architecture, which is

subsequently utilized by cells to respond to a perpetually dynamic

environment (John et al. 2011; Samstein et al. 2012). Cumula-

tively, this work provides a foundational approach and essential

resource for understanding the role of the cis-regulatory genome in

mediating host-microbe commensalism in the intestine.

Results

RNA-seq reveals acute and chronic transcriptome alterations
in response to microbiota in the mouse ileal and colonic
epithelium

To determine the genome-wide impact of microbiota on host gene

transcription in the gut epithelium, we measured the messenger

RNA transcriptome in intestinal epithelial cells (IECs) isolated

from the ileum and colon of mice reared in the presence and ab-

sence of microbiota (Fig. 1; Supplemental Table S1). We compared

three distinct microbial states in order to determine acute and

chronic effects of microbiota on host transcription (Fig. 1A). Germ-

free (GF) mice were reared for 10–12 wk in the absence of any mi-

crobes. Conventionally raised (CR) mice were reared since birth in

the presence of microbiota for 10–12 wk (chronic colonization).

Conventionalized (CV) mice were reared under GF conditions for

8–10 wk and then colonized for two weeks with microbiota (acute

colonization). Isolated IECs display uniform expression of the pan-

epithelial cell surface marker EpCAM (Bjerknes and Cheng 1981;

von Furstenberg et al. 2011) and lack the CD31 endothelial and

immune cell surface marker (Fig. 1B). As expected, we observed ro-

bust differences between ileal and colonic IEC transcriptomes,

supporting the significant physiological differences between these

distinct tissues (Fig. 1C,D; Supplemental Figs. S1, S2; Supplemental

Table S2). Biological replicates from each microbial state clustered

together, a result consistent in both the ileal and colonic epithelium

(Fig. 1C).We found that acute colonization (CV) has a larger impact

on IEC gene expression than lifelong presence ofmicrobiota (CR) in

comparison to GF IEC transcriptomes, a finding supported by pre-

vious studies of temporal responses tomicrobiota (Fig. 1C,D; El Aidy

et al. 2012, 2013). We determined a set of genes from CR and CV

mice that were significantly different than GF in either the ileum or

colon (Fig. 1E; Supplemental Table S3). Hierarchical clustering of

these genes followed by Gene Ontology (GO) functional categori-

zation revealed the impact of microbiota on distinct intestinal epi-

thelial biological processes in each tissue (Supplemental Table S4).

Consistent with previous studies (Rawls et al. 2006; El Aidy et al.

2012; Larsson et al. 2012; Pott et al. 2012), our RNA-seq data reveal

that microbiota induce various aspects of immune response in both

ileal and colonic IECs under both CR and CV conditions (Fig. 1F).

Gene clusters involved in transport and metabolism of lipids and

other nutrients were generally down-regulated by microbiota in

both the ileum and colon. Together, our RNA-seq data revealed that

gut microbiota elicit genome-wide alterations to host gene tran-

scription in the intestinal epithelium, a response that varies

depending on intestinal region and time post-colonization.

Chromatin accessibility displays regional variation along
the length of the GI tract and correlates with gene expression

We next sought to determine the feasibility of using DNase-seq to

discover cis-regulatory regions (CRRs) that control epithelial tran-

scriptional response to gut microbiota along the length of the in-

testine (Fig. 2). Because there is high endogenous DNase activity

in the intestine (Fig. 2A; Lacks 1981), we developed a modified

DNase-seq protocol (Song and Crawford 2010) using endogenous

DNases to digest IEC chromatin (Fig. 2B). Using CRmice, we found

that endogenous DNase activity identified duodenal, ileal, and

colonic DNase hypersensitive sites (DHSs) that are highly repro-

ducible (Supplemental Fig. S3), often evolutionarily conserved

(Fig. 2C; Supplemental Fig. S4B), demarcate transcription start sites

in promoter regions (Fig. 2D,E), and overlap both novel and pre-

viously described intestinal enhancers (Fig. 2E; Supplemental Fig.

S4C–F; Madison 2002; Shen et al. 2012). In addition, DNase-seq in

IECs identified accessible chromatin at biomarker genes associated

with abundant and rare epithelial cell types including enterocytes,

enteroendocrine cells, goblet cells, Paneth cells, and stem cells

(Supplemental Fig. S5). These results confirm that our modified

DNase-seq strategy effectively captures the IEC accessible chro-

matin landscape in the duodenum, ileum, and colon and exhib-

ited hallmarks of previously described DNase-seq data sets that

used exogenous DNase to digest chromatin.

Proximal-distal functional specialization along the intestinal

tract is associated with widespread alterations in gene expression

(Fig. 1; Supplemental Fig. S2), but the relationship with the ac-

cessible chromatin landscape was unknown.We compared DNase-

seq in IECs isolated from the duodenum, ileum, and colon of

CR mice (see Methods) in order to discover segment-specific cis-

regulatory regions (CRRs) along the length of the intestine (Fig. 2E;

Supplemental Table S5). We identified 131,073 accessible chro-

matin regions that are shared between each segment of the in-

testinal tract (Fig. 2F). These ‘‘pan-intestine’’ DHSs are associated

with a wide variety of genes that have known functions in in-

testinal epithelial cell biology including an enrichment near genes

involved in nutrient transporter activity, adherens junctions, and

intestinal morphogenesis (Supplemental Table S6). We identified

7211 DHSs that are common to both the epithelium of duodenum

and ileum but absent from the colon (small intestine-specific).

These DHSs are near genes enriched in GO Biological Process cat-

egories characteristic for small intestinal activities including me-
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tabolism of steroids, peptides, lipids, and lipoproteins (Sup-

plemental Table S6). In addition, we identified 2361, 2554, and

21,724 DHSs that are specific to the duodenum, ileum, or colon,

respectively, with a false discovery rate (FDR) < 0.0001 (Fig. 2F,G).

These segment-specific DHSs are generally located in intergenic or

intronic DNA (Fig. 2H, D), are enriched for whole intestine-specific

H3K4me1 histone marks (enhancers) (Supplemental Fig. S4D–F),

and are near genes enriched in diverse molecular functions and

Figure 1. RNA-seq reveals transcriptome alterations in the presence and absence of microbiota in the mouse ileal and colonic epithelium. (A) Overview
of experiments described in this study. Schematic of the mouse gastrointestinal tract showing the stomach (dark gray), duodenum (teal), jejunum (dark
gray), ileum (blue), cecum (dark gray), and colon (red). Adapted from Stevens (1977). � 1933 by H.H. Dukes; � 1977 by Cornell University. Used by
permission of the publisher, Cornell University Press. Approximately 6-cm sections of the duodenum, ileum, or colon were used for intestinal epithelial cell
(IEC) isolation (seeMethods). DNase-seq and RNA-seq were performed on intestinal epithelial cells (IECs,;90% purity) isolated from the ileum and colon
of germ-free (GF), conventionally raised (CR), and ex-GF conventionalized (CV)mice. DNase-seq was also performed on IECs isolated from the duodenum
of CR mice. (B) Fluorescence-activated cell sorting of pooled duodenal and ileal IECs labeled with antibodies marking either epithelial cells (EpCAM) or
endothelial cells/leukocytes/platelets (CD31) reveal that;90% of cells were epithelial (EpCAMpositive and CD31 negative). Similar results were obtained
from colonic IEC preparations (data not shown). (C ) Dendrogram of Jensen-Shannon divergence shows that RNA-seq replicates fromGF, CR, or CV ileal or
colonic IECs cluster. Note that anatomical location and environmental condition, rather than sibling relationship, drives the clustering. (D) Principal
component analysis (PCA) confirms tissue type (PC1) and colonization state (PC2 and PC3) explains much of the variance observed in the RNA-seq data.
Arrow tips denote sample position in PCA coordinates. (E) Volcano plot showing pairwise comparisons of RNA expression between GF versus CR and GF
versus CV conditions for each tissue. Green dots represent genes that are significantly different (FDR < 0.05). (F) Hierarchical clustering of FPKM values for
all genes that exhibited differential expression in the pairwise comparisons in D. Gene clusters were submitted to DAVID to determine Gene Ontology
functional enrichment. Shown are top enrichments for each gene cluster. See also Supplemental Tables S1, S3, and S4.
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biological processes specific to each intestinal segment (Supple-

mental Table S6). These data provide a genome-wide atlas of acces-

sible chromatin in the intestinal epithelium of conventionally

raised mice and indicate significant regional specialization of gene

regulatory activity in IECs along the length of the intestinal tract.

We next compared the mRNA and accessible chromatin

landscapes in CR ileal or colonic IECs to determine the correlation

of segment-specific DHSs with gene expression. We identified

2773 transcripts that are differentially expressed between ileal and

colonic IECs (Fig. 3A; Supplemental Fig. S2; Supplemental Table

S2).We also identified numerous quantitative differences inDNase

hypersensitivity between ileal and colonic IECs (Fig. 3B). Qualita-

tively, we found thatmany differentially expressed genes have one

or more segment-specific DHSs nearby, which likely explains dif-

ferences in gene expression observed between ileal and colonic

IECs. For example, diacylglycerol O-acyltransferase 1 (Dgat1), an

enzyme that catalyzes the formation of triglycerides in ileal

enterocytes (Lee et al. 2010), is highly expressed in the ileum but

not the colon (Fig. 3C). DNase-seq identified accessible chromatin

in the first and third introns of Dgat1 specific to the ileal epithe-

lium (Fig. 3C). In contrast, the aquaporin 8 (Aqp8) gene encodes

awater channel proteinhighly expressed in the colonic epithelium

(Yang et al. 2005) and has a colon-specific DHS;13 kb upstream of

the transcription start site (Fig. 3C). Indeed, most genes (1897 out

Figure 2. Endogenous DNase activity distinguishes open chromatin in mouse intestinal epithelial cells. (A) Pulse-field gel image of nuclei digested for
15 min at 37°C with increasing concentrations of exogenous DNase I. Note that high-molecular-weight (HMW) DNA is stable at 0°C; however, there is
significant DNA digestion even with no addition of exogenous DNase when nuclei are incubated for 15 min at 37°C. (m) Yeast chromosome marker.
(B) Endogenous DNase activity is detected within 30 sec after moving nuclei to 37°C, and by 8min, most HMWDNA is digested. Patterns were consistent
for duodenum, ileum, and colon (see Supplemental Fig. S4). The observed digestion pattern is similar to reported digestion patterns using exogenous
DNase I (Song and Crawford 2010). For DNase-seq library preparation, nuclei digested for 2, 4, and 8 min were pooled to capture a range of DNase
hypersensitivities. Libraries were prepared for duodenal, ileal, and colonic IECs. (C ) Average phastCons scores plotted for the top 100,000 DHSs from
duodenal, ileal, and colonic IECs centered at the peak maximum. Nongenic DNA flanking ileal DNase hypersensitive sites (DHSs) was used to assess
background conservation (control). (D) Feature distribution of the top 100,000 and 25,000 DHSs from each tissue. Note the increased representation of
promoter-associated sites (<2 kb from annotated transcription start sites) in the 25,000 DHSs with the highest signal intensity. (E) DNase-seq signal tracks
from conventionally raised (CR) duodenal, ileal, and colonic IECs at the villin 1 (Vil1) locus. Note strong peaks at the transcription start site (DHS 1) andwithin
the first intron (DHS 2). A 12.4-kb region including both DHS 1 andDHS 2 drives IEC-specific crypt and villous expression in the duodenum, ileum, and colon
(Madison 2002); however, DHS 2 is required for crypt expression. For comparison, DNase-seq signal from the liver is also shown. (F) Venn diagram enu-
merating differential DHSs along the length of the GI tract. (G) Hierarchical clustering of differential DHSs across replicates of CR duodenal, ileal, and colonic
IECs reveals open chromatin sites specific to each tissue. (cs) Colon-specific; (i:c) ileum and colon; (ds) duodenum specific; (d:c) duodenum and colon; (is)
ileum specific; (d:i) duodenum and ileum. (H) Feature distribution showing that the majority of segment-specific DHSs are located in intergenic (>2 kb away
from a gene body) or intronic regions of the genome. See also Supplemental Figures S2–S4 and Supplemental Tables S4 and S6.
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of 2175; 87.2%) that are differentially expressed between the ileal

and colonic IECs have a segment-specific DHS within their gene

regulatory domain (see Methods; Figs. 3D, 5D). Additionally, we

find that increased DNase hypersensitivity at the proximal pro-

moter is best associated with increased gene expression (Supple-

mental Fig. S6A). However, the greatest number of differential DHSs

associated with differential gene expression are within the gene

body, and we speculate that many of these tissue-restricted DHSs

are facilitating enhancer activity to promote nearby gene ex-

pression (Supplemental Fig. S6B). Collectively, these results in-

tegrate genome-wide RNA-seq and DNase-seq data to identify

putative CRRs controlling segment-specific patterns of gene

transcription in IECs underlying proximal-distal functional spe-

cialization along the intestinal tract.

Microbiota modulate gene expression without remodeling
the intestinal epithelial accessible chromatin landscape

Our comparative analysis of accessible chromatin across intestinal

segments suggested that DNase-seq could be used to identify CRRs

that mediate intestinal epithelial responses to microbiota. To test

the hypothesis that commensal microbiota modify IEC transcrip-

tion through modification of the accessible chromatin landscape,

we generated DNase-seq data sets from IECs isolated from the ile-

um and colon of GF mice and compared them to CR animals that

had been exposed to microbiota from birth (Fig. 1A). Surprisingly,

we discovered that the accessible chromatin landscape in IECs of

GF and CR mice is nearly identical for both the ileum and colon

(Fig. 4). Hierarchical clustering did not identify a significant sub-

population of DHS specific to GF or CR conditions in either the

colon or the ileum (Fig. 4A). In accord, DNase signal intensities

within GF and CR accessible chromatin in the ileum and colon

were highly correlated with Spearman’s rho of 0.938 and 0.919,

respectively (Fig. 4B). This is in contrast to the correlation observed

between CR ileum and CR colon (0.634), CR duodenum and CR

colon (0.647), and CR duodenum and CR ileum (0.777) (Fig. 4B;

Supplemental Fig. S7). We scanned the genome for differential

DNase cleavage in GF and CR ileal or colonic IECs across 250-bp

windows. Using the same FDR threshold (<0.0001) from our

analysis that discovered thousands of differential DNase hyper-

sensitive sites between intestinal segments in CR mice (Fig. 3B;

Supplemental Fig. S7B), we found only one DHS that was signifi-

cantly different between GF and CR conditions in either the ileum

or colon (Fig. 4C). Loosening the FDR threshold 500-fold to FDR <

0.05, we identified only nine 250-bp windows (Supplemental Ta-

ble S7) with significantly differentDNase hypersensitivity between

GF ileum and CR ileum and identified none in the colon (Sup-

plemental Fig. S8). The nine DHSs reachingmodest significance in

the ileum were not near any gene known to be regulated by

microbiota (Supplemental Table S7; Rawls et al. 2006; Donohoe

et al. 2011; El Aidy et al. 2012; Larsson et al. 2012; Pott et al. 2012).

Therefore, the differential transcript levels observed for many

genes in GF and CR IECs (Fig. 1E; Supplemental Table S3) were

not linked to any significant alteration in local chromatin acces-

sibility. For example, angiopoietin-like 4 (Angptl4), known to be

suppressed by microbiota in ileal IECs (B€ackhed et al. 2004; Camp

et al. 2012), was corroborated by our RNA-seq analysis. However,

the accessible chromatin landscape at this locus is identical in

both the GF and CR ileum (Fig. 4D). A similar relationship was

observed for other genes with known gene expression responses to

microbiota, including fibroblast growth factor 15 (Fgf15) (Sayin

et al. 2013), cytochrome P450, family 4, subfamily b, polypeptide 1

(Cyp4b1) (Larsson et al. 2012), and angiogenin, ribonuclease A

family, member 4 (Ang4) (Hooper et al. 2003). These results

revealed that mice, reared lifelong in the presence or absence

of microbiota, have nearly identical IEC accessible chromatin

landscapes.

Colonization of GF mice with microbiota is known to evoke

dynamic temporal alterations in gene expression (El Aidy et al.

2012, 2013), raising the possibility that transcriptional responses

to acute and lifelong colonization may utilize distinct regulatory

Figure 3. Differential open chromatin between ileal and colonic IECs
correlates with differential gene expression. (A) Volcano plot showing
pairwise comparison of RNA expression between conventionally raised
(CR) ileal and colonic epithelium. Blue and orange dots represent genes
more highly expressed in the ileum or colon, respectively (FDR < 0.05).
(B) The fold difference in DNase signal intensity from CR ileal versus co-
lonic IECs plotted against the average DNase signal observed in 250-bp
windows. Significantly differential windows are highlighted in red and
blue (FDR < 0.0001). (C ) Representative signal track view highlighting two
genes, diacylglycerol O-acyltransferase 1 (Dgat1) and aquaporin 8 (Aqp8),
that exhibit differential open chromatin and transcript abundance in
the ileum or colon. (D) Two-sided Kolmogorov-Smirnov goodness-of-fit
test shows a positive relationship between the presence of a nearby tissue-
specific DHS (within 2 kb of and including the gene body) and
increased transcript abundance in that tissue. The y-axis shows the cu-
mulative fraction of genes linked to a nearby tissue-specific DHS. Deviation
from the null expectation that linked genes display a normal distribution
centered on a fold change of 1 (black line) suggests that segment-specific
DHSs are enriched near genes of higher expression in that tissue. See also
Supplemental Figures S5 and S6.
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mechanisms. We therefore tested whether acute colonization with

microbiota would alter IEC accessible chromatin by generating

DNase-seq data sets from IECs isolated from the ileum and colon of

mice raised GF for 8 wk, then conventionalized (CV) for 2 wk with

microbiota. Again, despite a robust effect on the gene expression

landscape (Fig. 1C–F), conventionalization with microbiota had

minimal impact on the accessible chromatin landscape in either

the ileumor colon (Fig. 5A,B). Loosening the FDR threshold (FDR <

0.05), we were able to identify regions of differential accessible

chromatin in the ileum that are near microbiota-regulated genes

(Supplemental Fig. S8A,B; Supplemental Table S8). DHSs more open

in CV had a weak but significant correlation with differential

gene expression in the ileum (Fig. 5C); however, the vast majority

(91%) ofmicrobiota-regulated genes in CV versus GF ileumdid not

have a differential DHSnearby (Fig. 5D). Visual inspection ofmany

of the putatively differential DHSs revealed qualitatively minimal

alterations in accessible chromatin (Supplemental Fig. S8C,D).

Notably, there was no significant functional enrichment of genes

linked to nearby DHSs putatively differential in GF versus CV il-

eum (GREAT v2.0.2 default thresholds) (data not shown). In ad-

dition, we failed to identify any differential DHSs near microbiota-

regulated genes in the colon (Fig. 5D). Indeed, we failed to observe

any regions of substantial accessible chromatin differences in the

presence or absence of microbiota in either the ileum or colon. This

result was fundamentally different from results obtained in our be-

tween-tissue comparisons (Figs. 2E, 3B,C; Supplemental Figs. S4D–G,

S7). Cumulatively, these data revealed that commensal microbiota

modify the transcriptional landscape in the intestinal epithelium

without remodeling the host’s accessible chromatin landscape.

Microbiota-regulated transcription factors have binding sites
enriched in accessible chromatin near microbiota-responsive
genes

Our results indicate that microbiota-induced modifications to the

transcriptional landscape in the intestinal epithelium are achieved

Figure 4. Life in the presence or absence of microbiota does not affect the intestinal epithelial accessible chromatin landscape. (A) Hierarchical clus-
tering of differential DHSs across all replicates of conventionally raised (CR) versus germ-free (GF) ileal and colonic IECs. Note the similarity betweenGF and
CR conditions for each tissue. (B) Density scatter plot showing the correlation of DNase-seq signal intensity for the top 100,000 DHSs for CR colon and CR
ileum (top), GF ileum andCR ileum (bottom left), andGF colon and CR colon (bottom right). (C ) The fold difference in DNase signal intensity plotted against
the average DNase signal observed in 250-bp windows. Significantly differential windows are highlighted in red and blue (FDR < 0.0001). Comparing
across tissues (CR colon vs. CR ileum) discovered thousands of differential DNase hypersensitive sites (see Fig. 3B). Comparing tissues in the presence or
absence of microbiota reveals undetectable change in the open chromatin landscape in response to microbiota. (D) Representative signal track high-
lighting multiple genes in the ileum or colon that show differences in transcript abundance in the presence of microbiota but no change in the open
chromatin landscape. (Angptl4) Angiopoietin-like 4; (Fgf15) fibroblast growth factor 15; (Cyp4b1) cytochrome P450, family 4, subfamily b, polypeptide 1;
(Ang4) angiogenin, ribonuclease A family, member 4. See also Supplemental Tables S3 and S7.
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by a mechanism other than overt chromatin remodeling. We

therefore tested the hypothesis that differential TF binding to sites

within a tissue-restrictive accessible chromatin landscape could

explain the observed differences in gene expression. First, we tested

whether this hypothesis could explain the distinct transcriptional

responses to acute (CV) and chronic (CR) microbiota exposure (Fig.

1; Supplemental Fig. S9A,C; Supplemental Table S3). Indeed, we

found that many TFs that exhibit differential expression between

CV and CR states (Supplemental Fig. S9C,D) have binding sites

enriched within accessible chromatin near genes differentially

expressed between CV and CR states (Supplemental Fig. S9E,F;

Supplemental Tables S9, S10). For example, nuclear factor of acti-

vated T cells 5 (NFAT5) has previously been shown to regulate IEC

differentiation (Wang et al. 2011, 2013), suggesting that a compo-

nent of the initial response to microbes may be mediated through

IEC turnover. Moreover, both JUN (also known as AP-1 in humans)

(Hasselblatt et al. 2008) and early growth response 1 (EGR1) (Moon

et al. 2007) have been implicated in the response to injury in the

intestine and might mediate the initial response to microbiota

during conventionalization (Mukherji et al. 2013).

When comparing our data with other published results, we

did not find a robust set of genes that consistently discriminate CR

and CV states (Supplemental Figs. S9, S10; Rawls et al. 2006;

Donohoe et al. 2011; El Aidy et al. 2012; Larsson et al. 2012; Pott

et al. 2012; data not shown). Differences related to experimental

design (e.g., whole tissue vs. IEC), expression detection method

(e.g., RNA-seq vs. microarray), mouse strain,microbial community

composition, time post-colonization, diet, and tissue heterogene-

ity may explain differences between various CR and CV data sets.

However, despite these differences, we were able to identify core

sets of genes that were consistently regulated by the presence of

microbiota in the ileum or colon (up- or down-regulated in both

CR and CV compared with GF) (Supplemental Fig. S10; Supple-

mental Table S11). We combined these sets with our accessible

Figure 5. Microbiota do not substantially remodel the intestinal epithelial chromatin landscape upon acute colonization. (A) The fold difference in
DNase signal intensity from conventionalized (CV) versus germ-free (GF) ileal or colonic IECs plotted against the average DNase signal observed in 250-bp
windows. Significantly differential windows are highlighted in red and blue (FDR < 0.0001). (B) Representative signal track highlighting multiple genes in
the ileum or colon that show differences in transcript abundance upon colonization with microbiota but no detectable change in the open chromatin
landscape. (Bambi ) BMP and activinmembrane-bound inhibitor; (Sprr2b ) small proline-rich protein 2B; (Fabp6) fatty acid binding protein 6; (Plec) plectin.
See also Supplemental Tables S3 and S7. (C ) Two-sided Kolmogorov-Smirnov goodness-of-fit test shows a weak relationship between the presence of
a nearby tissue-specific DHS (within 2 kb of the gene body) and increased transcript abundance in the GF versus CV ileum comparison at FDR < 0.05. The
y-axis shows the cumulative fraction of genes linked to a nearby tissue-specific DHS. Deviation from the null expectation that linked genes display a normal
distribution centered on a fold change of 1 (black line) suggests that CV-specific DHSs are enriched near genes of higher expression in CV ileal IECs. (D)
Percent of differentially expressed genes that have a differential DNase hypersensitive site within their regulatory domain at two cutoffs (FDR < 0.0001 and
FDR < 0.05). See also Supplemental Figure S7 and Supplemental Table S8.
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chromatin data to identify TFs that might mediate a consistent

response to microbiota in either the ileum (Fig. 6) or colon (Fig. 7).

We found that genes consistently up-regulated in the ileum and

colon are significantly enriched for immune and inflammatory

response GO categories, whereas genes down-regulated in the il-

eum and colon are enriched for diverse metabolic processes (Figs.

6A, 7A).We queried these groups of up- or down-regulated genes to

identify TFs that are consistently regulated by microbiota across

multiple studies (Figs. 6B, 7B). Next, we searched for TF binding

sites (TFBSs) in DHSs within the regulatory domains of up- or

down-regulated genes in either the ileum or colon (Figs. 6C, 7C;

Supplemental Tables S12, S13). Strikingly, we found TFBS enrich-

ment of many of the TFs that are themselves differentially regu-

lated by microbiota (Figs. 6B,C, 7B,C). For example, DHSs near

genes up-regulated in the ileum are enriched for motifs matching

Interferon regulatory factors (IRFs), signal transducer and activator

of transcription (STATs), and E-twenty-six (ETS) family members.

Consistent with these observations, the TFs Stat4, Stat1, Stat2, Irf1,

Irf8, and Ets1 are all up-regulated in the colonized ileum. In con-

trast, TFBSs for many nuclear receptors are enriched in accessible

chromatin near genes down-regulated in colonized versus GF il-

eum. In accord, we find that nuclear receptors Pparg, Ppara, Thra,

Thrb, Nr1h3, Nr1i3, Nr1d1, Nr1d2, Nr2e3, Nr3c2, and coactivator

Ppargc1a all display decreased expression in the colonized ileum.

Similar relationships between enriched TFs and their TFBSs were

observed in the colon data (Fig. 7B,C). Finally, several of these TF

expression-TFBSs enrichment correlations were validated using

Ingenuity Pathway Analysis (IPA) upstream regulator prediction

(Figs. 6D, 7D) and ChIP-seq data (Figs. 6E, 7E). Thoughmost of the

ChIP-seq experiments were performed in nonintestinal tissues

(Supplemental Table S14), this in vivo binding data provides

strong support for these predicted TFs to regulate microbiota re-

sponse through DHSs identified in our study. Collectively, this

analysis integrates accessible chromatin and transcriptome data to

suggest specific transcription factors and target cis-regulatory re-

gions that likely mediate the impact of microbiota on IEC tran-

scription and physiologic function.

Discussion
The ability of the intestinal epithelium to serve as an effective

interface between animals and their microbial environment is

achieved through orchestration of tissue-specific and microbiota-

induced gene expression programs. This orchestration is fundamen-

tal to intestinal physiology and host-microbe commensalism,

and the underlying mechanisms represent attractive therapeutic

targets for promoting health. In order to understand how IECs

interpret microbial inputs to regulate gene expression in a tissue-

specific context, we generated a total of 20 DNase-seq and 18 RNA-

seq data sets from primary IECs isolated from multiple intestinal

segments from CR, CV, and GF mice. We developed a modified

DNase hypersensitivity assay allowing for the identification of

segment-specific CRRs covering a range of abundant and rare IEC

types whose loci were distinguished by accessible chromatin dis-

tinct from other tissues. These atlases of the IEC accessible chro-

matin and gene expression landscapes should be a valuable re-

source for researchers interested in (1) discovering molecular

mechanisms controlling cell type-specific and microbiota-regu-

lated gene transcription in different segments of the intestine, (2)

discovering differential splicing and novel transcripts regulated by

microbiota in the intestine, and (3) generating cell type- or tissue-

specific transgenic constructs.

Previous studies in gnotobioticmice have established that the

commensal microbiota modify host physiology through impact-

ing gene expression in the intestinal epithelium along the length

of the intestinal tract (B€ackhed et al. 2004; Hooper 2004; Rawls

et al. 2006;Donohoe et al. 2011; Vaishnava et al. 2011; El Aidy et al.

2012, 2013; Pott andHornef 2012; Alenghat et al. 2013; Sayin et al.

2013). Here we observed that microbiota, although potent ma-

nipulators of host transcription, have essentially no impact on the

accessible chromatin landscape in the ileal and colonic intestinal

epithelia of healthy mice (see Supplemental Material). These re-

sults suggest a model in which chromatin accessibility is organized

during intestinal development in a region-specific manner and

maintained similarly in the presence or absence of microbiota

(Supplemental Fig. S11). In accord, adult rodents reared in the

absence ofmicrobiota develop crypt-villus units and donot display

major alterations in the frequency of IEC types (Kandori et al.

1996; Falk et al. 1998). Our results imply that intestinal epithelial

cells utilize a strategy other than large-scale chromatin remodeling

to respond to the complex activities of the microbiota. This also

suggests that the distinct accessible chromatin landscapes of dif-

ferentiated cells are restricted in their range of response to envi-

ronmental variables. This supports recently published data show-

ing that TFs utilize pre-existing chromatin landscapes to respond

to extracellular cues following terminal differentiation programs

(John et al. 2011; Samstein et al. 2012). Interestingly, the accessible

and histone-modified chromatin landscape in intestinal stem

cells was recently found to be very similar to their differentiated

epithelial cell lineages in CR mice (Kim et al. 2014). Together,

these findings suggest that a significant component of intestinal

epithelial specification is the establishment of a chromatin envi-

Figure 6. Integrating gene expression and open chromatin data identifies candidate transcription factors regulating response to microbiota coloni-
zation in the ileum. (A) Integration of our data set with published studies comparing ileum gene expression in the presence and absence of microbiota
reveals a set of genes consistently up- or down-regulated by microbiota across at least four studies. Significant functional enrichments are shown for each
gene set (see Supplemental Fig. S9; Supplemental Table S11). (B) Heat map of known transcription factors (TFs; including DNA binding transcription
factors and transcription cofactors) that consistently display differential RNA expression levels in response to microbiota across multiple experimental
studies in the ileum. Relative expression levels are indicated, where white represents no data. TFs are annotated with their predicted DNA binding domain
family. Highlighted with blue or red circles are TFs with motif (C ) or binding support (E). (C ) Transcription factor binding site (TFBS) prediction in DHSs
within the regulatory domain of genes consistently differentially regulated by microbiota in the ileum (see Supplemental Tables S12, S13). Fold en-
richments were calculated relative to a GCmatched background (Guturu et al. 2013). Motifs are colored based on fold enrichment ratios between down
and up gene sets. (Teal) Enriched in DHSs near down genes; (brown) enriched in DHSs near up genes. Highlighted with blue or red circles are motifs
matching TFs with differential expression (B) or binding support (E). (D) Scatter plot showing P-values for IPA upstream regulator analysis for the ileum up
and ileum down gene lists identifies TFs and other factors that have previously been shown to influence expression of genes within these lists. (E) Plot
showing the overlap of ChIP-seq peaks from multiple TFs (measured in various tissues) (see Supplemental Table S14) with DHSs within the regulatory
domain of genes either consistently up-regulated (y-axis) or down-regulated (x-axis) bymicrobiota in the ileum. Fold enrichments were calculated relative
to a uniformly distributed nullmodel. Highlighted are the TFs where the up/down fold ratio is at least one standard deviation away from themean of all fold
ratios.
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ronment competent to maintain appropriate tissue-specific phys-

iological function while also allowing appropriate tissue-specific

responses to microbiota.

Based on our results, we predict that differential occupancy or

activity of specific TFs within tissue-specific accessible chromatin

may underlie much of the differential transcript abundance ob-

served in GF versus CR or CV conditions (Supplemental Fig. S11).

Some TF families implicated here, such as STATand IRF, are known

to integrate inflammatory stimuli to promote expression of im-

mune response genes in the intestinal epithelium and mediate

crosstalk with underlyingmucosal immune cells (Jiang et al. 2009;

Shulzhenko et al. 2011). Our results also identify TFs not pre-

viously implicated in microbiota responses. Strikingly, TFBSs for

nuclear receptor TFs were enriched near down-regulated genes in

both ileum and colon, withmany nuclear receptor transcripts also

being down-regulated by microbiota in these tissues. This associ-

ation of nuclear receptors withmicrobiota-dependent reduction of

host gene expression suggests an important role for this family

of ligand-binding TFs (Markov and Laudet 2011). Furthermore,

comparisons of GF animals to those raised under CV or CR con-

ditions suggest specific TFs that might mediate acute or chronic

responses tomicrobiota, respectively. Future studies will be needed

to define the particular TF binding events that regulate gene ex-

pression though identified CRRs and to elucidate the upstream

host-microbe signal transduction networks converging on these

TFs and CRRs.

In this study, we focused on healthy mice reared GF or colo-

nized with specific pathogen-free microbiota. Our results provide

a framework for future exploration into how disease states, host

genotype, microbiota composition, and other environmental

challenges such as infection by pathogenic microbes, diet alter-

ations, or drug exposures may impact the chromatin landscape in

the intestinal epithelia. For example, human SNPs associated with

inflammatory bowel diseases are enriched in putative cis-regula-

tory regions (Mokry et al. 2014), demanding improved un-

derstanding of howvariation in the regulatory genome contributes

to this and other human diseases. It will also be important to de-

termine whether the hyporesponsiveness of the accessible chro-

matin landscape observed in IECs is shared by other cell pop-

ulations, such as leukocytes, which may exhibit chromatin-based

adaptations to particularmicrobial stimuli (Ganal et al. 2012). This

work marks a significant step toward integrating transcriptional

regulatory genomics with microbiota research to identify the

mechanisms that underlie host-microbe commensalism in the

intestine. Future investigations in appropriate gnotobiotic animal

models will be required to interrogate the underlying regulatory

logic that governs tissue-specific host transcriptional responses to

intestinal microbiota.

Methods

Mouse husbandry
All mice used in this study were in the C57BL/6 strain originally
sourced from Jackson Laboratories andmaintained in the National
Gnotobiotic Rodent Resource Center (NGRRC) at the University of
North Carolina (UNC) at Chapel Hill. Mice were reared under
specific pathogen-free (conventionally raised or CR) conditions,
germ-free (GF) conditions, or reared GF and colonized with a con-
ventional microbiota from SPF mice for 14 d (conventionalized or
CV). Production, colonization, maintenance, feeding, and sterility
testing of GFmice were performed using the standard procedures of
theNGRRC. Animals were housed onAlpha-dri bedding (Shepherd)
and fed 3500 Autoclavable Breeder Chow (Prolab) or Picolab mouse
diet 5058 (LabDiet) ad libitum. All experiments using mice were
performed according to established protocols approved by the In-
stitutional Animal Care and Use Committee at UNC at Chapel Hill.
For additional information, see Supplemental Table S1.

DNase hypersensitivity on IECs

IECs were isolated from the duodenum (anterior 5 cm of midgut),
ileum (posterior 6 cm of midgut), and colon (6 cm of terminal
hindgut) of 8- to 12-wk-old mice as described (Gracz et al. 2012).
DNase hypersensitivity assays were performed as described (Song
and Crawford 2010) with the following modifications using en-
dogenous DNase activity to digest chromatin. Cells were gently
lysed by adding 10mL 0.1% Igepal in resuspension buffer (RSB; 10
mM Tris-Cl at pH 7.4, 10 mM NaCl, 3 mM MgCl2) containing 13
Complete Protease Inhibitors. Isolated nuclei were incubated for
30 sec, 1 min, 2 min, 4 min, or 8 min at 37°C; and endogenous
DNase activity was stopped by addition of 0.33 mL cold 50 mM
EDTA, and stored on ice. Stabilization of nuclei in agarose plugs,
determination of appropriate DNase digestion patterns, library
preparation, and sequencing were performed as described (Song
and Crawford 2010). See Supplemental Material for additional
information.

RNA preparation and sequencing

Total RNA was isolated using TRIzol Reagent (Invitrogen) and
further purified using the Qiagen RNeasy (Qiagen) kit according to
the manufacturer’s protocol. Two micrograms of total RNA were
used for standard TruSeq library preparation with polyA selection

Figure 7. Integrating gene expression and open chromatin data identifies candidate transcription factors regulating response to microbiota coloni-
zation in the colon. (A) Integration of our data set with published studies comparing colon gene expression in the presence and absence of microbiota
reveals a set of genes consistently up- or down-regulated by microbiota across at least four studies. Significant functional enrichments are shown for each
gene set (see Supplemental Fig. S9; Supplemental Table S11). (B) Heat map of known transcription factors (TFs; including DNA-binding transcription
factors and transcription cofactors) that consistently display differential RNA expression levels in response to microbiota across multiple experimental
studies in the colon. Relative expression levels are indicated, where white represents no data. TFs are annotated with their predicted DNA binding domain
family. Highlighted with blue or red circles are TFs with motif (C ) or binding support (E). (C ) Transcription factor binding site (TFBS) prediction in DHSs
within the regulatory domain of genes consistently differentially regulated by microbiota in the colon (see Supplemental Tables S12, S13). Fold en-
richments were calculated relative to a GC matched background. Motifs are colored based on fold enrichment ratios between down and up gene sets.
(Teal) Enriched in DHSs near down genes; (brown) enriched in DHSs near up genes. Highlighted with blue or red circles are motifs matching TFs with
differential expression (B) or binding support (E). (D) Scatter plot showing P-values for IPA upstream regulator analysis for the colon up and colon down
gene lists identifies TFs and other factors that have previously been shown to influence expression of genes within these lists. (E) Plot showing the overlap of
ChIP-seq peaks from multiple TFs (measured in various tissues) (see Supplemental Table S14) with DHSs within the regulatory domain of genes either
consistently up-regulated (y-axis) or down-regulated (x-axis) by microbiota in the colon. Fold enrichments were calculated relative to a uniformly dis-
tributed null model. Highlighted are the TFs where the up/down fold ratio is at least one standard deviation away from the mean of all fold ratios.
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(performed by the UNC High Throughput Sequencing Core) for
mRNA Illumina sequencing using 2 3 50-bp paired-end reads.

Bioinformatic analysis of RNA-seq data sets

RNA-seq reads were aligned to the mouse genome (NCBI37/mm9)
using TopHat v2.0.8b (Trapnell et al. 2012; Kim et al. 2013),
allowing for up to twomismatches with UCSC gene transcriptome-
guided mapping but permitting nonreference mapping. Normal-
ized fragments per kilobase of transcript per million mapped reads
(FPKM) expression values were obtained for reference and novel
transcripts via Cufflinks, and pairwise differential gene expression
tests were carried out with Cuffdiff v2.0.2 (Trapnell et al. 2012). The
default significance threshold of FDR < 5% was used for each com-
parison. Principle components analysis for RNA-seq was performed
with R package cummeRbund v2.0.0. Hierarchical clusterings of
RNA-seq data (Fig. 1F; Supplemental Fig. S2A) were performed using
heatmap.2 from the gplots package (http://CRAN.R-project.org/
package=gplots). A two-sided Kolmogorov-Smirnov test was used to
assess the global association of differential DHS and nearby gene
expression differences between ileum and colon and in the pres-
ence or absence of microbiota. GO enrichments were performed
using DAVID v6.7 (Huang et al. 2009a,b). For additional in-
formation, see the Supplemental Material.

Bioinformatic analysis of DNase-seq data sets

The top 100,000 DHS peaks in each DNase-seq biological replicate
were merged and windowed to 250 bp (with 50bp overlaps) to
establish a liberal search space for differential DNase hypersensi-
tivity (signal). Raw base-pair resolution DH signal was summed for
each sample in each window as input for the R package DESeq
v1.8.3 (Anders andHuber 2010). Sequencing depth normalization,
variance fitting, and pairwise differential analyses were performed
via DESeq v1.8.3. Overlapping windows with significantly differ-
ential DHS signal at the desired FDR threshold (<0.01% for tissue
comparisons and <5% for GF vs. CR comparisons) were sub-
sequently merged to reconstitute differential DHS peaks for enu-
meration. Feature counts were obtained by an in-house script to
annotate DHSs with mm9 UCSC gene elements. In all analyses,
2 kb upstream of reference or RNA-seq-derived TSS were considered
proximal promoter regions. In the relatively rare caseswhere aDHS
fell within 2 kb of a TSS at two different genes, we selected the gene
with the nearest TSS to the midpoint of the DHS. Conservation of
DHSs was assessed using the Cistrome conservation plots tool by
computing the base-wise phastCons score in the 1000 bp sur-
rounding the DHS peak center. Functional enrichments for sets of
DHSs were computed using default parameters with GREAT v2.0.2
(McLean et al. 2010). Refer to http://bejerano.stanford.edu/great for
a description of statistical outputs for each set of functional enrich-
ments. For additional information, see the Supplemental Material.

Data access
DNase-seq and RNA-seq data sets have been submitted to the NCBI
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo/) under accession number GSE57919 and as a trackHub
viewable at the UCSC Genome Browser (see http://rawlslab.duhs.
duke.edu/data).

Acknowledgments
The authors are grateful to Chris Packey and Maureen Bower for
assistance with gnotobiotic mice, Lingyun Song, Yoichiro Shibata,
Alexias Safi, and Jeremy Simon for technical assistance with

accessible chromatin data set generation and analysis, and Adam
Gracz for help with IEC isolation. This work was supported by
grants from theNational Institutes of Health (P30-DK034987, P40-
OD010995, R01-DK081426, R01-HD059862, P01-DK094779), the
National Science Foundation (DGE-1147470), the PhRMA Foun-
dation, and the Pew Scholars in the Biomedical Sciences Program.

Author contributions: The study was designed by J.G.C., J.F.R.,
C.L.F., andG.E.C. Experimentswere performed by J.G.C. andC.L.F.
DNase and RNA-seq analyses were conducted by C.L.F. and J.G.C.,
and integration of transcriptome data sets was performed by C.R.L.
Motif prediction was performed by C.R.L., J.G.C., C.L.F., and H.G.
Overlap enrichment analysis was conducted by T.R., H.G., and G.B.
ChIP data sets were curated by A.M.W., J.C., and G.B. The manu-
script was written by J.G.C., C.L.F., J.F.R., G.E.C., and C.R.L. with
input from all authors.

References

Alenghat T, Osborne LC, Saenz SA, Kobuley D, Ziegler CGK, Mullican SE,
Choi I, Grunberg S, Sinha R, Wynosky-Dolfi M, et al. 2013. Histone
deacetylase 3 coordinates commensal-bacteria-dependent intestinal
homeostasis. Nature 504: 153–157.

Anders S, Huber W. 2010. Differential expression analysis for sequence
count data. Genome Biol 11: R106.

B€ackhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF,
Gordon JI. 2004. The gut microbiota as an environmental factor that
regulates fat storage. Proc Natl Acad Sci 101: 15718–15723.

Bjerknes M, Cheng H. 1981. Methods for the isolation of intact epithelium
from the mouse intestine. Anat Rec 199: 565–574.

Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS,
Crawford GE. 2008. High-resolution mapping and characterization of
open chromatin across the genome. Cell 132: 311–322.

Bulger M, Groudine M. 2011. Functional andmechanistic diversity of distal
transcription enhancers. Cell 144: 327–339.

Camp JG, Kanther M, Semova I, Rawls JF. 2009. Patterns and scales in
gastrointestinal microbial ecology. Gastroenterology 136: 1989–2002.

Camp JG, Jazwa AL, Trent CM, Rawls JF. 2012. Intronic cis-regulatory
modules mediate tissue-specific and microbial control of angptl4/fiaf
transcription. PLoS Genet 8: e1002585.

Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK,
Bultman SJ. 2011. The microbiome and butyrate regulate energy
metabolism and autophagy in the mammalian colon. Cell Metab 13:
517–526.

El Aidy S, van Baarlen P, Derrien M, Lindenbergh-Kortleve DJ, Hooiveld G,
Levenez F, Dor�e J, Dekker J, Samsom JN, Nieuwenhuis EES, et al. 2012.
Temporal and spatial interplay of microbiota and intestinal mucosa
drive establishment of immune homeostasis in conventionalized mice.
Mucosal Immunol 5: 567–579.

El Aidy S, Merrifield CA, Derrien M, van Baarlen P, Hooiveld G, Levenez F,
Dor�e J, Dekker J, Holmes E, Claus SP, et al. 2013. The gut microbiota
elicits a profound metabolic reorientation in the mouse jejunal mucosa
during conventionalisation. Gut 62: 1306–1314.

Falk PG, Hooper LV, Midtvedt T, Gordon JI. 1998. Creating andmaintaining
the gastrointestinal ecosystem: what we know and need to know from
gnotobiology. Microbiol Mol Biol Rev 62: 1157–1170.

Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C,
Lienenklaus S, Weiss S, Staeheli P, Aichele P, et al. 2012. Priming of
natural killer cells by nonmucosal mononuclear phagocytes requires
instructive signals from commensal microbiota. Immunity 37: 171–186.

Gracz AD, Puthoff BJ, Magness ST. 2012. Identification, isolation, and
culture of intestinal epithelial stem cells frommurine intestine.Methods
Mol Biol 879: 89–107.

Guturu H, Doxey AC, Wenger AM, Bejerano G. 2013. Structure-aided
prediction of mammalian transcription factor complexes in conserved
non-coding elements. Philos Trans R Soc Lond B Biol Sci 368: 20130029.

Hasselblatt P, Gresh L, KudoH, Guinea-Viniegra J,Wagner EF. 2008. The role
of the transcription factor AP-1 in colitis-associated and b-catenin-
dependent intestinal tumorigenesis in mice. Oncogene 27: 6102–6109.

Hooper LV. 2004. Bacterial contributions to mammalian gut development.
Trends Microbiol 12: 129–134.

Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. 2003. Angiogenins: a new
class of microbicidal proteins involved in innate immunity. Nat
Immunol 4: 269–273.

Huang DW, Sherman BT, Lempicki RA. 2009a. Bioinformatics enrichment
tools: paths toward the comprehensive functional analysis of large gene
lists. Nucleic Acids Res 37: 1–13.

Transcriptional responses to intestinal microbiota

Genome Research 1515
www.genome.org

http://CRAN.R-project.org/package=gplots
http://CRAN.R-project.org/package=gplots
http://CRAN.R-project.org/package=gplots
http://bejerano.stanford.edu/great
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://rawlslab.duhs.duke.edu/data
http://rawlslab.duhs.duke.edu/data


Huang DW, Sherman BT, Lempicki RA. 2009b. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat
Protoc 4: 44–57.

Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA. 2009.
Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in
the Drosophila midgut. Cell 137: 1343–1355.

John S, Sabo PJ, Thurman RE, Sung M-H, Biddie SC, Johnson TA, Hager GL,
Stamatoyannopoulos JA. 2011. Chromatin accessibility pre-determines
glucocorticoid receptor binding patterns. Nat Genet 43: 264–268.

Kandori H, Hirayama K, Takeda M, Doi K. 1996. Histochemical, lectin-
histochemical and morphometrical characteristics of intestinal goblet
cells of germfree and conventional mice. Exp Anim 45: 155–160.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013.
TopHat2: accurate alignment of transcriptomes in the presence of
insertions, deletions and gene fusions. Genome Biol 14: R36.

Kim T-H, Li F, Ferreiro-Neira I, Ho L-L, Luyten A, Nalapareddy K, Long H,
Verzi M, Shivdasani RA. 2014. Broadly permissive intestinal chromatin
underlies lateral inhibition and cell plasticity. Nature 506: 511–515.

Lacks SA. 1981. Deoxyribonuclease I in mammalian tissues. Specificity of
inhibition by actin. J Biol Chem 256: 2644–2648.

Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A, Nielsen J, Ley
RE, B€ackhed F. 2012. Analysis of gut microbial regulation of host gene
expression along the length of the gut and regulation of gut microbial
ecology through MyD88. Gut 61: 1124–1131.

Lee B, Fast AM, Zhu J, Cheng J-X, Buhman KK. 2010. Intestine-specific
expression of acyl CoA:diacylglycerol acyltransferase 1 reverses
resistance to diet-induced hepatic steatosis and obesity in Dgat1�/�

mice. J Lipid Res 51: 1770–1780.
Madison BB. 2002. Cis elements of the villin gene control expression in

restricted domains of the vertical (crypt) and horizontal (duodenum,
cecum) axes of the intestine. J Biol Chem 277: 33275–33283.

Markov GV, Laudet V. 2011. Origin and evolution of the ligand-binding
ability of nuclear receptors. Mol Cell Endocrinol 334: 21–30.

McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM,
Bejerano G. 2010. GREAT improves functional interpretation of cis-
regulatory regions. Nat Biotechnol 28: 495–501.

MokryM,Middendorp S,WiegerinckCL,WitteM, TeunissenH,MeddensCA,
Cuppen E, Clevers H, Nieuwenhuis EES. 2014.Many inflammatory bowel
disease risk loci include regions that regulate gene expression in immune
cells and the intestinal epithelium. Gastroenterology 146: 1040–1047.

Moon Y, YangH, KimYB. 2007. Up-regulation of early growth response gene
1 (EGR-1) via ERK1/2 signals attenuates sulindac sulfide-mediated
cytotoxicity in the human intestinal epithelial cells. Toxicol Appl
Pharmacol 223: 155–163.

Mukherji A, Kobiita A, Ye T, Chambon P. 2013. Homeostasis in intestinal
epithelium is orchestrated by the circadian clock and microbiota cues
transduced by TLRs. Cell 153: 812–827.

Pott J, Hornef M. 2012. Innate immune signalling at the intestinal
epithelium in homeostasis and disease. EMBO Rep 13: 684–698.

Pott J, Stockinger S, Torow N, Smoczek A, Lindner C, McInerney G, B€ackhed
F, Baumann U, Pabst O, Bleich A, et al. 2012. Age-dependent TLR3
expression of the intestinal epithelium contributes to rotavirus
susceptibility. PLoS Pathog 8: e1002670.

Rawls JF, MahowaldMA, Ley RE, Gordon JI. 2006. Reciprocal gut microbiota
transplants from zebrafish and mice to germ-free recipients reveal host
habitat selection. Cell 127: 423–433.

Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A, Sandstrom R,
Neph S, Sabo P, Kim JM, LiaoW, et al. 2012. Foxp3 exploits a pre-existent
enhancer landscape for regulatory T cell lineage specification. Cell 151:
153–166.

Sayin SI, Wahlstr€om A, Felin J, J€antti S, Marschall H-U, Bamberg K, Angelin
B, Hy€otyl€ainen T, Ore�si�c M, B€ackhed F. 2013. Gut microbiota regulates
bile acid metabolism by reducing the levels of tauro-b-muricholic acid,
a naturally occurring FXR antagonist. Cell Metab 17: 225–235.

Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S,Wagner U, Dixon J, Lee L,
Lobanenkov VV, et al. 2012. Amap of the cis-regulatory sequences in the
mouse genome. Nature 488: 116–120.

Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O, Orandle
M,Mayer L,Macpherson AJ,McCoy KD, et al. 2011. Crosstalk between B
lymphocytes, microbiota and the intestinal epithelium governs
immunity versus metabolism in the gut. Nat Med 17: 1585–1593.

Sommer F, B€ackhed F. 2013. The gut microbiota—masters of host
development and physiology. Nat Rev Microbiol 11: 227–238.

Song L, Crawford GE. 2010. DNase-seq: a high-resolution technique for
mapping active gene regulatory elements across the genome from
mammalian cells. Cold Spring Harbor Protocols 2010 doi:10.1101/pdb.
prot5384.

Stevens CE. 1977. Comparative physiology of the digestive system. InDuke’s
physiology of domestic animals, 9th ed. (ed. Swenson MJ), pp. 216–232.
Cornell University Press, Ithaca, NY.

Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E,
Sheffield NC, Stergachis AB,Wang H, Vernot B, et al. 2012. The accessible
chromatin landscape of the human genome. Nature 489: 75–82.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H,
Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript
expression analysis of RNA-seq experiments with TopHat and Cufflinks.
Nat Protoc 7: 562–578.

Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R,
Wakeland EK, Hooper LV. 2011. The antibacterial lectin RegIIIg
promotes the spatial segregation ofmicrobiota and host in the intestine.
Science 334: 255–258.

van der Flier LG, Clevers H. 2009. Stem cells, self-renewal, and
differentiation in the intestinal epithelium. Annu Rev Physiol 71: 241–
260.

von Furstenberg RJ, Gulati AS, Baxi A, Doherty JM, Stappenbeck TS, Gracz
AD,Magness ST, Henning SJ. 2011. Sortingmouse jejunal epithelial cells
with CD24 yields a population with characteristics of intestinal stem
cells. Am J Physiol Gastrointest Liver Physiol 300: G409–G417.

Wang Q, Zhou Y, Jackson LN, Johnson SM, Chow C-W, Evers BM. 2011.
Nuclear factor of activated T cells (NFAT) signaling regulates PTEN
expression and intestinal cell differentiation. Mol Biol Cell 22: 412–
420.

Wang Q, Zhou Y, Rychahou P, Liu C, Weiss HL, Evers BM. 2013. NFAT5
represses canonical Wnt signaling via inhibition of b-catenin
acetylation and participates in regulating intestinal cell differentiation.
Cell Death Dis 4: e671.

Yang B, Song Y, Zhao D, Verkman AS. 2005. Phenotype analysis of
aquaporin-8 null mice. Am J Physiol Cell Physiol 288: C1161–C1170.

Received August 29, 2013; accepted in revised form June 6, 2014.

Camp et al.

1516 Genome Research
www.genome.org


