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Abstract

The cochlea possesses specialized features to receive sound signals and to resolve and convert the

frequency and intensity components within each signal for auditory perception. This review It

consists of precisely patterned and polarized sensory cells adorned with a highly specialized

mechanotransduction apparatus for sensitivity and adaptation, and discrete nonsensory cellular

networks for biochemical and mechanical support to drive an integrated cellular response and

mechanotransduction. summarizes recent discoveries about the roles of FGF, Notch, and

Hedgehog signaling and transcriptional factors in the differentiation and patterning of the auditory

sensory organ, the Usher complex, and the planar cell polarity pathway in the formation and

polarization of mechanotransduction component hair bundles, and the contribution of nonsensory

cell networks in the stria vascularis and the sensory region toward the maturation of the

mammalian cochlea.

Introduction

The cochlea is a fluid-filled compartment in the inner ear with a fluid partition that is critical

for its mechanotransduction. It is divided into three chambers (scalae) through most of its

length by a membrane-bound endolymph-filled column (scala media or cochlear duct)

(Figure 1). The cochlear duct is flanked by the stria vascularis on the lateral side, and

separated from the perilymphatic fluid of the scala vestibuli and the scala tympani by the

Reissner’s membrane and the flexible basilar membrane, respectively [1].

The mammalian auditory sensory organ, the organ of Corti, resides on the basilar membrane

and typically comprises one row of inner hair cells (IHCs) and three rows of outer hair cells

(OHCs) interdigitated with several types of morphologically distinct nonsensory supporting

cells (Figure 1). Each hair cell has on its apical surface a set of stereocilia arranged into a

‘V’-shaped bundle that accommodates the mechanotransduction channels and regulates their

activity by directional bending. All the sensory hair cell bundles show precise and identical

orientations with their vertices aligned, producing an ordered array of sensors endowed with

directional sensitivity to mechanical stimulation [2]. The mechanical properties of the

transduction apparatus in hair cells are graded along the longitudinal axis of the cochlea,

tuning to a tonotopic movement of the basilar membrane for frequency resolution [3].
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The hair cells and supporting cells of the organ of Corti, along with other epithelial cells of

the cochlear duct, form tight junctions and distinct networks of gap junctions, leading to

complete partition of the endolymph from the perilymph and formation of cellular syncytia.

In contrast to the normal extracellular fluid composition of the perilymph, the endolymph

has an unusually high K+ concentration and generates an endocochlear potential of +80 mV

across the epithelia lining the scala media that contributes to a large potential gradient of 140

mV in the sensory hair cells to drive currents across the mechanotransduction channels

localized at the apical surface of hair cells, in response to the displacement of the basilar

membrane and the deflection of stereocilia [4,5]. Cellular syncytia within the cochlear duct

couple transfer of signaling, ion, and nutrient molecules for homeostasis and

mechanoelectrical responses [6].

These structural features represent some of the most extraordinary examples of cellular

patterning, polarity, and organization that contribute to the exquisite sensitivity of the

mammalian cochlea. The development of these structural features is the subject of this

review.

Specification of the sensory lineage and cellular patterning in the cochlea

The cochlea develops from a tubular outpocketing at the ventral-medial region of the otic

vesicle, which originates from the otic placode, a patch of ectodermal cells near the

hindbrain. The formation of the complex structure of the cochlea from this relatively simple

epithelium is orchestrated by a regulatory network that controls successive cell

differentiation and division events in a coordinated manner (Figure 2) [7,8].

The specification of the sensory lineage, or the prosensory domain, in the cochlea involves

converging pathways of fibroblast growth factor (FGF) and Notch signaling, and a cascade

of transcriptional factors [8,9]. A transcriptional factor, Sox2, is necessary for the

development of the prosensory domain. The Notch pathway component Jagged1 appears to

be important for inducing the expression of Sox2 and endowing cells with the competence to

become sensory cells [10•]. The mammalian FGF signaling pathway acts through a large

number of FGF ligands and four FGF receptors (FGFR), of which many are involved in key

developmental decisions for the formation of the cochlea [8]. In particular, FGF20 signaling

through the FGF receptor 1 (FGFR1) is important for making the prosensory region

competent and loss of either of these components leads to a severe reduction in the number

of sensory cells [11••]. Conversely, the Hedgehog and Lmx1a pathways appear to act to

restrict the expression of Sox2 and define the boundaries of the prosensory domain [12,13•].

The specification of the prosensory domain is coupled to a synchronized cell cycle

withdrawal. In addition to cyclindependent kinase (CDK) inhibitors p27/Kip1 and p19/Ink4d

and the pocket protein pRb [14], CDK inhibitors p21/Cip1 and p57/Kip2 have been shown

to be important in carrying out the termination of mitosis and maintaining of their

postmitotic state [14,15]. The processes of differentiation and patterning occur subsequently

within the postmitotic prosensory domain to create the final array of cell types and are

regulated by some of the pathways mentioned earlier. It is known that the Notch pathway

specifies hair cell versus supporting cell fate in the organ of Corti, and a transcriptional
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factor, Math1, is required for hair cell differentiation [8]. Further progress is being made in

understanding the induction of hair cell differentiation and specification of individual

supporting cell types. Sox2 and Prox1, which are expressed early and act to specify the

prosensory domain, play roles later in inhibiting Math1 and its downstream targets such as

Gfi1 for the differentiation of supporting cells [10•,16]. Furthermore, FGF signaling acts in a

primarily Notch-independent manner to determine the differentiation of the pillar cells, a

specific type of supporting cells, that reside between the row of IHCs and the first row of

OHC and among the first row of OHCs [17•]. FGF8 from developing IHCs induces the

neighboring FGF receptor 3+ (FGFR3) cells to differentiate into pillar cells, under the

surveillance of FGF signaling inhibitor Sprouty 2 that restricts the adaptation of pillar cell

fate by additional cells (Figure 2) [18,19••,20].

Within the cochlea, hair cells along the longitudinal axis of the cochlea have graded

mechanoelectrical properties that allow them to be tuned to respond maximally to a

progression of frequencies depending on their location along the length of the cochlea. In

addition, IHCs differ biologically and functionally from OHCs [5,21•]. It is known that the

acquisition and maturation of mechanoelectric transduction in hair cells occur in a gradient

from the base to the apex of the cochlea [3,22], and that IHCs differentiate prior to OHCs

[7]. However, the mechanisms regulating the formation of hair cells with differential

functional and mechanoelectric properties remain unknown.

Formation of uniformly oriented hair bundles in the cochlea

Cell type specification leads to terminal morphogenesis of hair cells and supporting cells.

One conspicuous morphogenetic event is the formation of a polarized stereociliary bundle,

or hair bundle, on the apical surface of each hair cell. During terminal differentiation,

microvilli-derived and actin-filled stereocilia achieve graded height and are arranged into a

‘V’-shaped staircase composed of several rows of stereocilia with taller stereocilia at the

outmost row and the tallest stereocilium at the vertex of the ‘V’- shaped bundle. All of the

intrinsically polarized hair cells are uniformly oriented with the vertices of the ‘V’-shaped

hair bundles aligned in the central-to-peripheral, or the medial-to-lateral, direction of the

cochlea, showcasing a type of tissue polarity that is parallel to the plane of the epithelial

sheet and known as planar cell polarity (PCP) [2]. The PCP of the organ of Corti is

integrally related to mechanotransduction as hair bundle deflection toward or away from the

vertex of the hair bundle along the axis of planar polarity opens and closes, respectively,

cation channels that are mechanically gated by the interstereocilia links between rows of the

stereocilia and are localized at the sites of attachment to shorter stereocilia [23••].

The precise and coordinated polarity of hair bundles in the cochlea is a morphogenetic

readout of a complex genetic pathway that regulates PCP in many tissues. The vertebrate

PCP pathway includes a core set of proteins such as Vang-like (Vangl), Prickle (Pk),

Frizzled (Fzd), Dishevelled (Dvl), Protocadherin Celsr1, Scribbled 1 (Scrb1), and protein

tyrosine kinase 7 (PTK7) or colon carcinoma kinase-4 (CCK-4) [24]. Some of these proteins

are asymmetrically localized to one edge of the apical cortex of the cells and display

polarized membrane association along the axis of PCP, which presumably coordinates the

polarization of cytoskeletal elements in cells across the entire organ of Corti [2,25•,26,27••].
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The molecular mechanisms underlying the asymmetric partitioning of core PCP proteins

appear to involve both selective targeting of core proteins directly [28,29,30] and protein

degradation machineries, such as ubiquitin ligase Smurf2, for proteasome-mediated protein

degradation to restrict the retention of PCP proteins to a specific edge of the apical cellular

cortex [27••].

The coordinated orientation of all of the cells across the organ of Corti requires global

directional cues that direct asymmetric partitioning of core PCP proteins. Among the best

candidates are members of the Wnt family morphogens, because the Wnt receptor Fzd and

Wnt coreceptors [31] have essential roles in PCP signaling. One member of the Wnt family,

Wnt5a, is important for PCP regulation of the cochlea [32]. An additional gradient

mechanism, comprising two atypical cadherins, Dachsous (Ds) and Fat (Ft), and a type II

Golgi-localized membrane protein, Four-joined (Fj), has also been proposed to set up an

activity gradient of the Ds/Ft/Fj module across the tissue that biases Fzd activity within

individual cells [33]. Indeed, mouse Fat4 functions in PCP regulation in the cochlea [34].

However, the exact role of the Ds/Ft/Fj module in the cochlea awaits further investigation.

Genetic studies have also identified an essential component of the machinery that builds the

polarized structure of the hair bundle. Usher syndrome (USH) is the most frequent cause of

hereditary deaf-blindness in humans [35]. Genetic, cellular, and molecular studies of USH

genes have illustrated the requirement for USH complex in the making of key elements of

the hair bundle that are crucial for mechanotransduction. Individual stereocilia within a hair

bundle are held together by multiple extracellular linkages and serve a mechanosensory

function by pivoting at their bases in response to the movement of fluid across them, and the

hair bundle in each hair cell moves as one constrained unit ensuring concerted gating of

transduction channels [36]. Several USH proteins regulate the length of stereocilia and make

up the links within the hair bundle. MyoVIIa (USH1B) regulates stereocilia length by

inhibiting the length promoting activity of MyoXV and whirlin (USH2D) [37]. Vlgr1

(USH2C) is an important director of the interstereocilia ankle-link near the tapered base of

stereocilia [38,39]. Cadherin 23 (Cdh23) (USH1D) and Protocadherin 15 (Pcdh15) (USH1F)

form the tip-links that connect neighboring stereocilia at their tips [40••]. Harmonin

(USH1C) as well as MAGI-1 may relay the interstereocilia links to the cytoskeletal network

as intracellular binding partners of Cdh23 [41•].

The PCP pathway is obligated to provide direction to the machinery that builds the polarized

structure of the hair bundle. A candidate molecular link between PCP signaling and the

building machinery for hair bundles was recently identified [42,43••,44]. The cochlear hair

bundle contains transiently a single microtubule-rich primary cilium, the kinocilium, that is

eccentrically positioned at the vertex of the ‘V’-shaped bundle. In the absence of kinociliary

genes, hair bundles become circular without affecting the asymmetric partitioning of core

PCP proteins, indicating a role for kinociliary genes downstream of core PCP proteins in

providing direction for hair bundle morphogenesis [43••]. However, a direct interaction

between kinociliary genes and the USH complex has yet to be demonstrated.
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Networks of nonsensory cells support functional maturation of the cochlea

The functional maturation of the cochlea relies not only on the differentiation of hair cells

and the formation of coordinately polarized hair bundles, but also on the formation of

distinct networks of nonsensory cells that line the cochlear duct. In particular, the

differentiation and proper organization of nonsensory cells on the lateral wall of the cochlea

and within the organ of Corti are essential for, respectively, the endocochlear potential and

the mechanical properties of the organ of Corti that are key to the sensitivity of the cochlea.

The stria vascularis adjacent to the spiral ligament on the lateral wall of the cochlea (Figure

1B) contributes to the distinct composition of the endolymphatic fluid that is high in K+ and

low in Na+ and the generation of endocochlear potential to drive mechanotransduction [6].

K+ secretion and transport through the stria vascularis requires differential expressions of

several K+ channels in various compartments of the stria vascularis and ClCKa/ClC-Kb Cl−

channels [45]. The differentiation of individual stria vascularis epithelial cell types involves

estrogen-related receptor b/NR3B2 [46••], and the development of the full complement of

cells in the stria vascularis and spiral ligament is critical for the generation of endocochlear

potential [47]. Furthermore, proper cellular connections among the constituent cells are

essential for stria vascularis function. The transport of K+ through the stria vascularis into

the endolymph depends critically on the separation of individual domains of the stria

vascularis and the syncytium formed within each domain through tight junctions and gap

junctions, respectively [48]. Hearing loss in tight junction protein Claudin11 or gap junction

subunits Connexin 26 and Connexin 30 mutants coincides with the decrease or

disappearance of endocochlear potential [49,50].

The differentiation of nonsensory cells in the organ of Corti is also required for the

functional maturation of the cochlea. The nonsensory supporting cells have long cellular

processes and form tight and adherens junctions among each other and with hair cells at the

apical surfaces, forming a tightly sealed barrier between the endolymphatic fluid in the

lumen and the perilymph in the basolateral domain. The maturation of supporting cells also

helps to define the mechanical property of the organ of Corti, which is intimately related to

interpretations of the movement of the basilar membrane. Furthermore, supporting cells

during maturation form a syncytium through gap junctions that mediate biochemical

coupling of signaling and ion molecules [51,52], and transfer of nutrients across the sensory

epithelium for the maturation, survival, and function of the organ of Corti [53•].

Conclusions

Recent advances have identified the genetic pathways regulating the differentiation of

individual cell types within the sensory and the stria vascularis regions of the cochlea; the

formation and coordinated polarization of hair bundles; and the establishment of distinct

cellular networks for endocochlear potential generation and for coupling electrical and

biochemical activities and nutrient transfer. Future studies aiming to further illustrate the

molecular details of these regulations will not only reveal the complex pathways that

coordinate to allow the generation and maturation of a functional cochlea, but also provide
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valuable insights into fundamental questions in developmental biology, cell biology, and

physiology.
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Figure 1.
The cochlea. (A) The inner ear consists of the cochlea (CO) and the vestibule. The cochlea

has one sensory organ, the organ of Corti, which is marked by green fluorescent protein

(green). The vestibule has five sensory organs: the maculae of the saccule (SA), the utricle

(UT), and three cristae (AC, PC, and LC) that are also marked by green fluorescent protein

(green). (B) A diagram of the cross-section of the cochlea, illustrating its three chambers and

partitioning of the endolymphatic and perilymphatic fluids. The scala vestibule and scala

tympani are filled with the perilymph while the scala media is filled with the endolymph.

The stria vascularis contributes significantly to the unusual ion content of the endolymph.

TM: tectorial membrane. The sensory hair cells are shown in red. (C) A schematic diagram

of the whole-mount organ of Corti. In the organ of Corti, the inner (IHCs) and outer hair

cells (OHCs) are interdigitated with several types of distinct nonsensory supporting cells:

the inner phalangeal cells (IPHs), inner pillar cells (IPCs), outer pillar cells (OPCs), and

three rows of Deiters’ cells (DC1–DC3s). A single kinocilium (blue) and numerous

stereocilia (purple) constitute a ‘V’-shaped hair bundle on the apical surface of each nascent

hair cell. All of the ‘V’-shaped hair bundles are uniformly aligned, showing a distinctive

PCP.
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Figure 2.
The development of the auditory sense organ. (A) The cochlear duct begins as an expansion

of the ventral-most portion of the otocyst. Initial specifications of prosensory domain most

likely begin as soon as the cochlear duct is recognizable. The prosensory domain is further

restricted to a group of cells on the floor of the cochlea duct (shown with bracket) by the

action of Sox2, Notch and Hedgehog (HH) signaling, and Lmx1a. Diagrams for the whole-

mount cochlea (top) and the cross-section of the cochlea at this stage highlight the

expression of Sox2 (yellow) in the prosensory domain. (B) The sensory precursor cells

become postmitotic under the control of several cyclin-dependent kinase inhibitors,

including p27. Cell cycle exit is initiated in the cells in the apical region and progresses

toward the basal region, coinciding with the gradient of p27 onset in the cochlea. The arrow

indicates the direction of onset of p27 and the gradient of cell cycle withdrawal along the

longitudinal axis of the cochlear duct. (C) The first sign of differentiation within the

postmitotic prosensory domain is the expression of the transcription factor Math1, which

starts in the midbasal region and progresses toward both the apex and the base of the

cochlea. There is also a second gradient along the medial-lateral axis of the cochlea from the

inner to outer hair cells. The arrow indicates the longitudinal gradient of Math1 onset and

hair cell differentiation. (D) Inductive and inhibitory signaling creates the correct cellular

patterning of the organ of Corti. Much of this appears to be mediated by Notch signaling,

which inhibits hair cell neighbors from adopting the same fate. Furthermore, the initial

differentiation of the inner hair cells appears to direct the differentiation of other cells types,

such as the Pillar cells (blue) through FGF8 and Hey2 in a Notch-independent manner.

Sprouty 2 (SPY2) further restricts the differentiation of pillar cells. (E) During terminal

differentiation and maturation, all cells in the organ of Corti coordinate their cellular

morphologies under the regulation of the planar cell polarity (PCP) signaling pathway,

which, in part, involves the asymmetric distribution of a core set of proteins (some examples

are shown). The result of PCP signaling in the ear can be most clearly observed by the

uniform orientation of the ‘V’-shaped hair bundles on the apical surfaces of hair cells. In

mice, late embryonic and early postnatal hair cell and supporting cell types all undergo
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morphological and maturational changes that ultimately result in a highly sensitive sensory

structure that is functional by two weeks after birth.
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