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Abstract

A challenge for large-scale environmental health investigations such as the National Children’s
Study (NCS), is characterizing exposures to multiple, co-occurring chemical agents with varying
spatiotemporal concentrations and consequences modulated by biochemical, physiological,
behavioral, socioeconomic, and environmental factors. Such investigations can benefit from
systematic retrieval, analysis, and integration of diverse extant information on both contaminant
patterns and exposure-relevant factors. This requires development, evaluation, and deployment of
informatics methods that support flexible access and analysis of multiattribute data across multiple
spatiotemporal scales. A new “Tiered Exposure Ranking” (TiER) framework, developed to
support various aspects of risk-relevant exposure characterization, is described here, with
examples demonstrating its application to the NCS. TiER utilizes advances in informatics
computational methods, extant database content and availability, and integrative environmental/
exposure/biological modeling to support both “discovery-driven” and “hypothesis-driven”
analyses. “Tier 1" applications focus on “exposomic” pattern recognition for extracting
information from multidimensional data sets, whereas second and higher tier applications utilize
mechanistic models to develop risk-relevant exposure metrics for populations and individuals. In
this article, “tier 1” applications of TiER explore identification of potentially causative
associations among risk factors, for prioritizing further studies, by considering publicly available
demographic/socioeconomic, behavioral, and environmental data in relation to two health
endpoints (preterm birth and low birth weight). A “tier 2” application develops estimates of
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pollutant mixture inhalation exposure indices for NCS counties, formulated to support risk
characterization for these endpoints. Applications of TIER demonstrate the feasibility of
developing risk-relevant exposure characterizations for pollutants using extant environmental and
demographic/socioeconomic data.
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1. INTRODUCTION

One of the major challenges facing large-scale environmental health investigations, such as
the National Children’s Study (NCS), is adequate characterization of risk-relevant exposures
to chemical contaminants. In the case of the NCS, this characterization is required both for
mothers, before and during pregnancy, and for children. Further-more, such characterization
is complicated by the fact that chemical exposures always occur in relation to specific
activities and diverse microenvironments, and for complex mixtures composed of numerous
agents rather than for individual species. Finally, these exposures always occur in the
context of multiple dose- and risk-modifying genetic, physiological, biochemical,
socioeconomic, and behavioral factors that may enhance or mitigate the effects of
contaminants in a dynamic fashion across the intervals of exposure. Characterization of
environmental exposures requires the systematic retrieval, analysis, and integration of
diverse types of information from a wide variety of sources. A novel, flexible, “multitier”
framework designed to accomplish these objectives by employing extant data available at
the federal, regional, state and local levels, is presented here. This tiered exposure ranking
(TIER) framework allows sequential and complementary implementation of both discovery-
driven exploratory data analysis methods (also called “agnostic,” “hypothesis-free,” and
“exposomic” methods(!~4)) and hypothesis-driven approaches. The discovery-driven
approaches constitute “tier 1 of this framework and employ high-throughput computational
tools, similar to those used in bioinformatics (genomics, transcriptomics, proteomics, etc.) to
conduct multivariate exploratory analyses of large data sets for identification of plausible
patterns and associations. The outcomes of the exploratory analyses, combined with
available mechanistic knowledge relevant to the particular phenomena that are studied, can
then be used to formulate focused hypotheses regarding these phenomena.

Higher-tier analyses of exposures within the TiER framework can be implemented in
various ways: tier 2 characterization involves the use of extant data (as discussed below) in
conjunction with simplified mechanistic modeling and allows rankings of risk-relevant
exposures associated with particular “locations” (at county, census unit, study segment, or
even individual residence levels). This is accomplished through development of
distributional estimates of exposure for various relevant population subsets (or individuals)
“assigned” to each particular location: distributions of risk-relevant exposures are calculated
for multiple co-occurring agents associated with a common “adverse outcome pathway”
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(AOP) or “biological mode of action” (BMOA) for each exposure route (inhalation,
ingestion, and dermal absorption). Due to the complexity of most exposures to mixtures, tier
2 calculations offer options to summarize and “condense” the information contained in the
exposure distributions by calculating various exposure indices (EIs). These Els provide
screening rankings of risk-relevant cumulative and aggregate exposures and intakes
associated with selected locations or subpopulations through a set of numerical values, or
value ranges. The formulations of the Els follow concepts and approaches similar to those
used in previous studies of health risks from contaminant mixtures®>-19) and can be
customized to support or complement the testing of alternative environmental and biological
hypotheses. As stated above, exposure agents incorporated in the formulation of particular
Els are selected on the basis of risk-relevant hypotheses involving common mechanisms
and/or endpoints. When such hypotheses are not available, alternatively, exposure agents
associated with a particular class of pollution sources, e.g., contaminants related to traffic
emissions, can be selected to formulate an appropriate El for exploratory analysis. This new
framework addresses the need for an approach that can “mine,” analyze, and condense
information from the vast amount of disparate extant data collected by federal, state, and
local agencies.(1112) Added value to the extant data is provided by the fact that their
databases are routinely updated and adhere to a variety of quality assurance practices.(1)
This ensures a stable, consistent, and cost-effective source of “renewable” exposure-relevant
information. In the case of the NCS, its multidisciplinary nature and complexity require
generation of accessible and easily expandable and updatable sets of quality information that
will support testing of a wide spectrum of hypotheses. The TiER framework has been
employed with extant data to rank risk-relevant exposures associated with selected health
endpoints for each county in the NCS (Fig. 1). Furthermore, in addition to the current
“national-level” NCS results presented here, a tier 2 application of this framework was
tested in a separate study for the Queens County Vanguard Center segments.(13)

2. APPROACH AND METHODS

The TIiER framework, schematically summarized in Fig. 2, employs computational
components of the modular modeling systems Prioritization and Ranking of Toxic
Exposures with GIS Extension (PROTEGE)(14.15) and Modeling Environment for Total Risk
studies (MENTOR).(16-20) Although MENTOR is a comprehensive simulation platform that
has been evolving over the past 15 years, PROTEGE is a new system that utilizes simplified
versions of MENTOR components to provide screening-level analyses. State-of-the-art
comprehensive uncertainty/variability and sensitivity analysis methods(21-24) have been
incorporated in both systems. Furthermore, a national-level multi-scale and multiattribute
exposure information system (EXIS)(11.25) has been constructed employing GIS and
relational database platforms, and regularly updated over the past 15 years, to support
applications of MENTOR; EXIS can also provide data sets usable by other modeling
systems. A customized implementation of EXIS is used here to support characterization and
ranking of exposures within the TiER framework (Fig. 3). More than 300 environmental and
demographic data sets are currently incorporated in EXIS; the Electronic Appendix provides
references and web links to a representative subset of the data utilized in the tier 1 and tier 2
analyses presented in Section 3.
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For tier 1 analyses, PROTEGE links with ebTrack, @8 a component of MENTOR that
expands upon USFDA’s ArrayTrack(2”) by incorporating tools for the multivariate analysis
of environmental and demographic variables in addition to the analysis of “bionomic” (i.e.,
genomic, proteomic, metabalomic, etc.) data. An extensive set of exploratory data analysis
routines implemented in Mat-lab and R complements these two systems.

Tier 1 exposure analyses via PROTEGE and ebTrack consider a variety of attributes and
metrics relevant to population exposures. The metrics can be based on data on contaminant
releases and concentrations in relevant media for a location of concern, combined with
information on plausible exposure and AOPs. The combined application of PROTEGE and
ebTrack on relevant environmental, demographic, behavioral, and biological data sets allows
the exploratory identification of patterns and associations that can “sharpen” the focus of
data collection efforts for the NCS and other environmental health studies.

In the following, the focus is limited to tier 2 characterization. Key outcomes of tier 2
characterization, as mentioned earlier, are Els that attempt to capture available risk-relevant
information for exposure ranking in a “minimal set” of numerical values. The following
general equation is used to develop an exposure index (EI) for risks associated with a
specific BMOA (or health endpoint) of interest, j:

— _— — — —
E_]:Zg],k (Canlb,j,k(sat)a wj(s,t), (I)]‘(S,t), Q](S)) .
k

Each element of E)j is denoted by Ejj, where subscript i refers in general to a “location”
(such as a county, a “segment” consisting of selected census tracts, or an actual “point”
address) or the subpopulations/individuals associated with that location.

The variables appearing in the above equation are:

Concentration fields C,,,,;, ; , are measured or estimated spatiotemporal fields of
co-occurring contaminant concentrations in various microenvironments (e.g.,
ambient air, indoor air, drinking water, residential water, food, dust, soil, etc.). For
example, inhalation exposures, a focus of the initial TIER application, are
calculated via a combination of the following methods: (i) spatiotemporal
interpolation of ambient air quality monitoring data, (ii) prognostic air quality
modeling, and (iii) Bayesian fusion of model outputs and monitor data.
Subsequently, these terms are corrected for local neighborhood scale effects.(28)
For cases of multi-route exposures to multimedia pollutants (e.g., pesticides and
metals), additional characterization is required: the concentration fields in these
cases must be developed for multiple media and pathways (food, drinking water,
surface dust, and ambient air) using predictive models, as well as estimates from
statistical models and analyses of available data.

Microenvironmental attribute fields 3_7(3, t) are computed from study-specific
data and supporting databases on population demographics, land use, topography,
housing types and ages, etc.
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Exposure-activity pattern fields aj(s, t)are calculated (depending on the “tier”)
from data relevant to the populations of concern retrieved from current extant
databases such as CHAD(29) or from study-specific data and/or aggregation of
representative time-activity diary information, commuting patterns, patterns of
usage of consumer products, etc.

Biological factors ﬁ)j (s) are estimated from study-specific or representative
population distributions of physiological and biochemical properties, with explicit
consideration of pregnant women and their children. They include factors such as
age and gender-specific distributions of inhalation and water intake rates, etc.

» Variables sand t denote the location and time vectors.

» Ageneralized weighting function gj,  is typically contaminant-specific and can
reflect the hypothesized relevance of the contaminant to the BMOA considered.

Note: Individual elements of each vector above themselves may represent either a
continuous or discrete set of factors (concentration fields, housing characteristic attributes,
etc.).

Formulation of a specific EI may consider information on the plausible health endpoint and
consequently on the (hypothesized) relevant contaminants and exposure pathways. The
pollutants and exposure pathways considered in defining an endpoint-specific El can be
selected based upon (i) literature reviews of proposed hypotheses regarding the particular
health endpoint, (ii) literature reviews of related (epidemiological and clinical) studies, and
(iii) exploratory multivariate analyses involving available data on the health outcome and
exposure factors and contaminant levels. Since the scope of Els is to provide a “screening”
type of risk-relevant exposure ranking, the associated health outcome is selected (based on
plausible hypotheses from the scientific literature) in relation to general BMOAs that are
potentially relevant to the environmental agents of concern. The weighting functions in
Equation (1) are thus developed by considering available reference concentrations (RfCs) or
doses associated with these BMOAES. In the examples presented in Section 3 as applications
of the TiER framework, inflammation is hypothesized as a plausible BMOA (Fig. 4)
associated with the preterm birth (PB) and low birth weight (LBW) health endpoints. This
hypothesis was used to select contaminants for tier 2 analysis (i.e., for the EI formulation
and calculation).

The models and data sets (see Fig. 3) available for estimating Els within the TIER
framework are peer-reviewed formulations for which standardized procedures and quality
criteria exist for developing appropriate inputs. In cases where simplifying assumptions are
made for the “original” peer-reviewed model so as to allow application in a “screening” or
“range finding” mode, these assumptions and the associated uncertainty-related implications
are explicitly documented. Special consideration is given to assessing appropriate spatial
and temporal resolution limits that are reasonably allowed by extant data: for example,
available national-level databases from food surveys do not allow direct characterization of
subcounty variability for development of metrics differentiating individual segments, while
ambient monitoring data combined with modeling estimates from national-level air quality
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databases typically allow this finer level of characterization. The “frequency” of the inputs
available for tier 2 calculations, in general, depends upon standard collection practices for
public databases as well as upon the intended application of an El (e.g., ranking locations in
general versus ranking in relation to a specific time window). As a rule, critical
environmental and demographic databases are updated regularly within EXIS and made
available for analysis within the TiER frame-work. In some cases, updating involves
incorporating “continuously” new data from primary sources (e.g., air quality concentrations
from various monitoring networks). In other cases, the primary sources update data less
frequently (e.g., National Emissions Inventory(9 data are available every few years and
modeling is required to estimate values for years in-between).

TIiER calculations can allow consideration of different exposure windows, consistent with
hypotheses involving the particular BMOA or health endpoint considered (with limitations,
of course, potentially posed by data availability). For example, characterizing exposures
associated with each month of pregnancy can be performed with data collected for the
individuals and populations within a specific study; however, the screening calculations,
discussed in Section 3, have focused on ranking “locations” (at the county level) for risk-
relevant exposures to environmental agents plausibly associated with the selected health
endpoints, utilizing average values of the attributes considered.

It should be noted that the metrics calculated for tier 2 characterization with extant data, and
used in the corresponding development of El values, are typically “intakes,” i.e., they
incorporate distributions of intake rates for the subpopulations of concern within the county
(or segment) considered. (Since some authors define intake as “externally applied dose” and
uptake as dose, appropriate attention should be given to terminology when interpreting such
results.)

Uncertainty in TiER “level 2” calculations is propagated along the modeling “sequence” that
derives population-based distributions of exposure. “Probabilistic variability” incorporating
both inherent (i.e., epistemic) uncertainty and natural (un-resolved) variability is captured
through statistical distributions of environmental concentrations, demographic
characteristics, etc. Though distributions are “collapsed” to a single value in order to provide
“point estimates” of the El for a county or a segment, these point estimates are reported
along with a (high/low quantile) range indicating “spread” (combining variability and
uncertainty) around this value. Absence of contaminant concentration data can be addressed
in the TiER framework by applying detailed mechanistic environmental and micro-
environmental models when sufficient supporting information (e.g., source, release, and
media characterization) is available to develop reliable modeled estimates of missing data.
Additionally, various model/data “fusion” techniques, including Bayesian maximum entropy
(BME) methods, are available within MENTOR({7) to support the combination of sparse
data with outcomes from mechanistic models, and can be used, as needed, in future
applications.
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3. RESULTS

Currently, EXIS contains geospatial data sets for over 300 environmental, demographic,
socioeconomic, and behavioral (EDB) attributes; these data sets cover the 3,109 contiguous
U.S. (CONUS) counties at a spatial resolution that is typically at the census-tract level (but,
depending on the attribute, may range from actual point locations to a county aggregate) and
temporal resolutions that vary from hourly to annual. At a minimum, county-level maps
(ArcGIS shapefiles) and summary statistics are provided for all these data sets in EXIS. In
addition to variables corresponding to EDB attributes, data on selected health outcomes,
potentially relevant to longitudinal birth cohort studies like the NCS, have also been
incorporated in EXIS. For the examples presented here, three types of birth outcomes have
been used for initial exploratory analysis: preterm birth (PB) rates (<37 weeks), low birth
weight (LBW) (<2.5 kg), and very low birth weight (VLBW) (<1.5 kg, VLBW). Annual
data for these outcomes are available for the period since 1996 from the Community Health
Status Indicators project(3D) for 2,902 of the CONUS counties. Fig. 5 shows county-level
maps for percentage rates of PB (top panel) and LBW (bottom panel).

3.1. Tier 1 Analysis Examples

Objectives of the tier 1 exposure-relevant analyses within the TiER framework were to
identify data gaps in EDB variables potentially associated with health outcomes, and to
explore the representativeness of NCS attributes versus corresponding attributes of the U.S.
population as a whole.

Examples of variables currently in EXIS are shown in Fig. 6 for: (i) distribution of
individuals living below the poverty level (as percentage of county population) for 2008; (ii)
soft drinks purchased per capita (annual average for years 1998-2006); and (iii) annual
means of 24-hour ambient PM2.5 concentrations. The distributions of various exposure-
relevant EDB attributes for the 40 current NCS counties versus all contiguous U.S. counties
are compared via quantile-quantile (QQ) plots: the proximity of distribution quantile points
to the 45° line is a measure of the similarity of the two distributions (Figs. 6(a), (b), and (c)).
Variables are also visualized in scatterplots with linear (ordinary least squares) regression
and logistic regression versus the selected endpoints of PB, LBW, and VLBW (Figs. 6(a),
(b), and (c)).

Patterns of association for a representative set of EDB variables were explored in relation to
the three selected birth outcomes. The 2,902 CONUS counties for which data for all three
outcomes were available were classified into the six urban/rural categories defined by the
National Center for Health Statistics.(32) Then, the birth outcome data sets and the selected
EDB data for these 2,902 counties were analyzed using two variants of the biclustering
method: (i) the two-way hierarchical clustering analysis tool in ebTrack/ArrayTrack and (ii)
the clustergram function in Matlab. Both tools use hierarchical clustering with Euclidean
distance and average linkage options. The data were clustered sequentially by counties first
and then by EDB variables, resulting in the heatmap of Fig. 7(a). Many counties did not
have available measured values for the environmental quality variables. These gaps are
identifiable as a black area on the heatmap. The heatmap was then subdivided according to
the urban/rural classifications defined by the National Center for Health Statistics in order to
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compare the patterns of variables for these “generalized environments” (Figs. 7(b) and (c)).
The heatmap provides an approach for examining patterns of potentially NCS-relevant data
across all CONUS counties as well as separately for rural/urban counties: it depicts locations
where there are data gaps, as well as locations where strong associations among variables of
concern may exist.

In Figs. 7(b) and (c), the data were divided by county type into two groups: in Fig. 7(b), the
62 “central” metro area counties with population >1 million and in Fig. 7(c), the 1,216
“noncore” counties with urban population <49,999 not adjacent to a metro area or <19,999
adjacent to a metro area. The same clusters appear in the heatmaps split by urban/rural
designation as in the heatmap of all CONUS counties. The results suggest some national
similarities that can be examined further using extant data at the segment level for individual
counties.

Subsequently, a correlation matrix was generated to examine the linear dependence between
various pairs of exposure-relevant EDB variables in EXIS. Fig. 8 shows a correlation map
with variables that have been “ordered” by k-nearest neighbors clustering. Of the 2,415 pairs
of exposure-relevant variables 109 (4.5%) have a correlation coefficient greater than 0.6. As
expected, strong correlations exist between variables from the same data “categories”: e.g.,
two highly correlated environmental variables are the emissions of CO and VOCs (r = 0.97),
both typically linked to motor vehicle operation. Examples of demographic/socioeconomic
variables that have high correlation with the selected health endpoint of LBW are life
expectancy (r = —0.68) and the percentage of population that is non-Hispanic black (r =
0.77). Another interesting relationship occurs with obesity, which is correlated with life
expectancy (r = —0.70) and moderately correlated with gallons of soft drinks purchased per
capita (r = 0.55) and percentage of premature births (r = 0.53). These observations reinforce
the need to consider multiple variables or representative surrogates in environmental health
studies such as the NCS. Additionally, it would be useful to have periodic updates in
examining such correlation matrices, to help understand changes in values of selected
variables during child growth and development.

3.2. Tier 2 Demonstration Case Study: Inhalation Els for Birth Outcomes

Tier 2 analyses within the TiER framework have focused primarily on the calculation of
risk-related Els, both at the county level across the NCS, and at the segment level for
Queens County, NY (see Isukapalli et al.(13)). The first exposure route considered for the EI
analyses was inhalation, and the first health endpoints considered in relation to inhalation
exposure were PB and LBW. As mentioned above, inflammation was hypothesized as a
plausible BMOA for linking the endpoints with relevant variables in order to formulate the
appropriate risk-relevant El (Fig. 4). The endpoints (PB and LBW rates) were selected in
consultation with the NCS Program Office; however, the consideration of the particular
BMOA is not restrictive, and it is used here to provide a reasonable example for EI
definition.

A total of 48 air pollutants, i.e., 4 criteria pollutants and 42 air toxics (listed in Table 1) with
established (honcancer) respiratory effects were used in formulating the algorithm for the
calculation of PB and LBW risk-relevant inhalation Els, employing a Monte Carlo
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approach. Of course, as stated earlier, these are not the only—or the most important—
factors associated with inflammation, but they are used to provide an example application of
the approach. Specifics of the formulation are outlined below.

A representation of the El calculation algorithm specific to inhalation exposure is provided
in the following equation:

Ntoxics,p -~ Nc,r'it,p T2 .
Einh'alation i,p— | Wtoxics,p Z i"‘wcrit p Z le Cl)k (t)dt X L XWpop,i,ps
v T RfCh - (2 — 1) RpCy, (72, 71) ”
Jj=1 k=1
where:
Einhalation, i, p inhalation E| for area i in relation to endpoint p

i geographic area of concern (e.g., segment or county)

p endpoint of concern (e.g., respiratory and inflammation effects)
average concentration of the air toxic j in area i

Cij

Ci (1) concentration of criteria pollutant k in area i at time t

nand n start and end of averaging period for concentrations of criteria pollutant k in area i

@oxics, p relative weight of air toxics in relation to health endpoint p

@crit, p relative weight of criteria pollutants considered in relation to endpoint p

Dpop, i, p target population weight of area i in relation to endpoint p (e.g., fraction of female population of child-
bearing age)

Nioxics, p number of air toxics considered in relation to endpoint p

Nerit, p number of criteria pollutants considered in relation to endpoint p

RG; reference concentration for air toxic j in relation to endpoint p

RpCy (7, )  areference concentration for criteria pollutant k in relation to endpoint p for averaging period between
7iand 7,

In general, each area of interest (“NCS location™) will have subareas with varying pollutant
levels; for example, if the area of study is a county, substantial variability in air pollutant
levels is expected to exist within the county. Even in the case of individual NCS segments,
such variability occurs because each segment may include blocks from multiple census
tracts, each with varying environmental quality and demographics.

The computational implementation of the EI formulation utilizes Monte Carlo methods to
incorporate this variability, via the following steps:

1. Generation of a set of samples for each population group within each subarea of a
study area (e.g., 100 samples for each person in the target population subgroup). By
aggregating these samples, spatial variations in population distributions are taken
into consideration.
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2. For each sampled individual, assignment of inhalation rate based on representative
distributions of inhalation rates for the specific age-gender combination and the
inhalation and aggregate potential intakes.

3. Normalizing these estimates through a reference inhalation rate (e.g., average
inhalation rate for the population subgroup) and reference concentration.

These estimates provide distributions of El estimates at the resolution of the study area
(segments or counties).

Calculated estimates of county-level inhalation EI ranges are shown as box plots in Fig. 9
for each of the 40 “active” NCS counties. The box plots illustrate the presence of gradients
in the El within each county. The edges of the box plots in the graphs show the 25th (q1)
and 75th (g3) percentiles. The whiskers are 1.5 times the interquartile range (g3 - 1)
corresponding to approximately +/- 2.7¢ and 99.3% coverage when the data are normally
distributed. The whisker is extended to the most extreme data point that is not an outlier;
outliers are plotted as plus signs (assuming a normal distribution). The results show the
range and variability of EI values across current NCS counties: the two counties with the
highest means and ranges of estimated El values are Queens, NY, and Los Angeles, CA.

4. DISCUSSION AND CONCLUSIONS

Characterization of maternal, prenatal, and early childhood exposures to environmental
pollutants across all routes and pathways, including diet and consumer product usage, are
important components of the NCS. Collecting data on many environmental variables for the
assessments will, of necessity, require a combination of measurements taken in the home
and possibly the neighborhood of participants, and of measurements taken routinely by a
variety of agencies and organizations. The 40 “active” NCS counties were the subject of this
study-wide application of the TiER framework: the results suggest that these NCS counties
are generally representative of the nation for the variables studied, and that there are many
associations of exposure factors, not only environmental, but also—and often primarily—
socioeconomic and behavioral, that should be explored in the future in relation to the health
end-points considered.

Development of risk-relevant Els for the inhalation exposure route was proven feasible with
extant data at the national level for each NCS county, but presents various challenges. For
example, data can be very heterogeneous (in quality, technical specifications, etc.) and data
variability can be significant within a demographic unit or with regard to seasonal, weekly,
or diurnal patterns. However, at least at the county level, such data are sufficient to support
“lower-tier” characterization and rankings of exposures across the NCS.

Ongoing work is focusing on the systematic study of the relationships between predicted Els
that were estimated for diverse locations and the relevant health outcomes for these
locations.

Other ongoing and planned environmental health modeling applications of the TiER
framework also consider explicitly exposures at the individual level, using specific home
and personal data. These applications incorporate “reverse modeling”(19) to take advantage
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of biomonitoring data, “personalized” behavioral and activity information, and individual-
specific microenvironmental dynamics. TIiER, in conjunction with EXIS, offers a systematic
approach for addressing the challenges associated with this effort by allowing integration of
diverse-relevant information (from genetic to physiological to behavioral, etc.) for
performing individual-and population-based modeling in a manner that takes explicitly into
account intra- and inter-individual variability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Maps showing active National Children’s Study (NCS) locations.
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The TiER Framework for Risk-Relevant Ranking of Exposures to Chemicals
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Schematic representation of the tiered exposure ranking (TiER) framework for risk-relevant
ranking of exposures to chemicals, incorporating (a) life cycle analysis (LCA) of
environmental and microenvironmental dynamics of chemicals; (b) life stage analysis (LSA)
of individual and population biology and behavior relevant to exposure; (¢) qualitative/
guantitative information on biological effects of chemicals for the selection and weighting/
normalization of exposure agent attributes; and (d) multicriteria simulation algorithms
combining information on chemical agents and individuals/populations for El calculation.
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Fig. 3.

A national-level multiscale exposure information system (EXIS) framework was constructed
and is updated continually (over the past 15 years) to support applications of the MENTOR
system; an implementation of this framework is used to support characterization and ranking
of exposures within the TIER framework. (Table I lists the acronyms of databases and
models appearing in this chart.)
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Common biological pathways associated with preterm birth (chart adapted from Behrman
and Butler3)); the demonstration study presented here uses inflammation as a plausible
biological mode of action to select airborne agents for the formulation of an inhalation
exposure index relating to preterm birth.
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Percentage of all births that are premature (<37 wks)
in all CONUS counties for years 1996-2005
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in all CONUS counties for years 1996-2005
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Fig. 5.
Preterm birth rates and low birth weights were selected as representative health endpoints

for the tier 1 and tier 2 exposure analyses presented in this work.
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(a)

Percentage of individuals living below the poverty level
in all CONUS counties for year 2008
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(b)
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I 60.01 - 65.00

Soft drinks purchased per capita (gal/yr)
in all CONUS counties for years 1998-2006
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(c)
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PM, s annual mean of 24-hour average concentrations (pg/m3) in air
)

(national ambient air quality standard = 15 pg/m
in all CONUS counties for year 2008

PM2.5 annual mean of 24-hr average concentration ug/m? in air

Fig. 6.
Examples of exposure-relevant factors included in EXIS: (a) County-level map showing

percentage of individuals living below the poverty level for 2008 in the CONUS.(31:34) (b)

County-level map showing soft drinks purchased per capita in the CONUS.(313%) (c) Annual
average of ambient PM, 5 levels observed in the CONUS in 2008.(31:36) To the right of each
map is a QQ plot: the proximity of distribution quantile points to the 45°; line as a measure

of the similarity of the two distributions. Under each map are scatterplots showing linear

(ordinary least squares) regression and logistic regression versus the selected endpoints of

preterm birth (PB), low birth weight (LBW), and very low birth weight (VLBW).
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Ward’s (Minimum variance) + (Nonnormalized data)

Ward’s (Minimum variance) + (Nonnormalized data)

Ward’s (Minimum variance) + (Nonnormalized data)

Fig. 7.
Biclustered heatmaps showing similarities between selected exposure-relevant attributes for

(a) the 2,902 CONUS counties for which data are available for all three birth outcomes (PB,
LBW, and VLBW) considered in this analysis; (b) for 62 “central” counties containing a
metropolitan area with population >1 million; and (c) for 1,216 “noncore” counties (i.e.,
counties that are neither micropolitan nor metropolitan, with urban population of up to
19,999 adjacent to a metropolitan area or with urban population of up to 49,999 not adjacent
to a metropolitan area).

Risk Anal. Author manuscript; available in PMC 2015 July 01.



1dussnuein Joyny vd-HIiN 1dussnueln Joyny vd-HIN

1duosnuey Joyiny vd-HIN

Georgopoulos et al. Page 23

Correlation Map, Variables Grouped by Similarity
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Fig. 8.
Exploratory multivariate analysis of exposure-relevant factors (included in EXIS) with

respect to selected birth outcomes: the correlation map is a visual representation of the linear
dependence between pairs of variables (which are grouped here by similarity). The analysis
has been performed with county-level data for the CONUS.
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birth outcomes (such as preterm birth and low birth weight) for the 40 active NCS locations.
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Estimates of “county-level” ambient inhalation exposure index formulated in relation to

Fig. 9.
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Table |

Airborne Contaminants Used in Formulating the Inhalation Exposure Index for Premature Birth (PB) and Low
Birth Weight (LBW) Risks Along with the (Noncancer) Toxicity Reference Concentrations (from USEPA(")

Reference Concentrations
(RfCs)(mg/m? Unless
Chemical Name of Air Pollutant CAS Number Indicated Otherwise)

Criteria pollutants

Ozone (0O3) 10028-15-6 30 ppm (summer season average)
Nitrogen dioxide (NO,) 10102-44-0 0.015
Sulfur dioxide (SO,) 94336-28-4 53 ppb
Fine particulate matter (PM5) NA 30 ppb
Air toxics
Acetaldehyde 75070 0.009
Acrolein 107028 0.00002
Acrylic acid 79107 0.001
Acrylonitrile 107131 0.002
Antimony compounds 7440360 0.0002
Beryllium compounds 7440417 0.00002
Bis(2-ethylhexyl)phthalate 117817 0.01
Chlorine 7782505 0.00015
2-Chloroacetophenone 532274 0.00003
Chloroprene 126998 0.007
Chromium compounds 18540299 0.0001
Cobalt compounds 7440484 0.0001
1,3-Dichloropropene 542756 0.02
Diesel particulate matter N/A 5
Diethanolamine 111422 0.003
Epichlorohydrin 106898 0.001
1,2-Epoxybutane 106887 0.02
Ethylene dibromide (Dibromomethane) 106934 0.009
Ethylene glycol 107211 0.4
Formaldehyde 50000 0.0098
Hexachlorocyclopentadiene 77474 0.0002
Hexamethylene-1,6-diisocyanate 822060 0.00001
Hydrochloric acid 7647010 0.02
Maleic anhydride 108316 0.0007
Methy! bromide (bromomethane) 74839 0.005
Methyl isocyanate 624839 0.001
Methyl methacrylate 80626 0.7
4,4'-Methylene diphenyl diisocyanate (MDI) 101688 0.0006
Naphthalene 91203 0.003
Nickel compounds 7440020 0.00009
Nitrobenzene 98953 0.009
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Reference Concentrations
(RfCs)(mg/m? Unless
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Chemical Name of Air Pollutant CAS Number Indicated Otherwise)
Phosgene 75445 0.0003
Phthalic anhydride 85449 0.02
Propionaldehyde 123386 0.008
Propylene dichloride 78875 0.004
Propylene oxide 75569 0.03
Styrene oxide 96093 0.02
Titanium tetrachloride 7550450 0.0001
Toluene 108883 5
2,4-Toluene diisocyanate 584849 0.00007
Triethylamine 121448 0.007
Vinyl acetate 108054 0.2
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