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Abstract

A challenge for large-scale environmental health investigations such as the National Children’s

Study (NCS), is characterizing exposures to multiple, co-occurring chemical agents with varying

spatiotemporal concentrations and consequences modulated by biochemical, physiological,

behavioral, socioeconomic, and environmental factors. Such investigations can benefit from

systematic retrieval, analysis, and integration of diverse extant information on both contaminant

patterns and exposure-relevant factors. This requires development, evaluation, and deployment of

informatics methods that support flexible access and analysis of multiattribute data across multiple

spatiotemporal scales. A new “Tiered Exposure Ranking” (TiER) framework, developed to

support various aspects of risk-relevant exposure characterization, is described here, with

examples demonstrating its application to the NCS. TiER utilizes advances in informatics

computational methods, extant database content and availability, and integrative environmental/

exposure/biological modeling to support both “discovery-driven” and “hypothesis-driven”

analyses. “Tier 1” applications focus on “exposomic” pattern recognition for extracting

information from multidimensional data sets, whereas second and higher tier applications utilize

mechanistic models to develop risk-relevant exposure metrics for populations and individuals. In

this article, “tier 1” applications of TiER explore identification of potentially causative

associations among risk factors, for prioritizing further studies, by considering publicly available

demographic/socioeconomic, behavioral, and environmental data in relation to two health

endpoints (preterm birth and low birth weight). A “tier 2” application develops estimates of
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pollutant mixture inhalation exposure indices for NCS counties, formulated to support risk

characterization for these endpoints. Applications of TiER demonstrate the feasibility of

developing risk-relevant exposure characterizations for pollutants using extant environmental and

demographic/socioeconomic data.
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1. INTRODUCTION

One of the major challenges facing large-scale environmental health investigations, such as

the National Children’s Study (NCS), is adequate characterization of risk-relevant exposures

to chemical contaminants. In the case of the NCS, this characterization is required both for

mothers, before and during pregnancy, and for children. Further-more, such characterization

is complicated by the fact that chemical exposures always occur in relation to specific

activities and diverse microenvironments, and for complex mixtures composed of numerous

agents rather than for individual species. Finally, these exposures always occur in the

context of multiple dose- and risk-modifying genetic, physiological, biochemical,

socioeconomic, and behavioral factors that may enhance or mitigate the effects of

contaminants in a dynamic fashion across the intervals of exposure. Characterization of

environmental exposures requires the systematic retrieval, analysis, and integration of

diverse types of information from a wide variety of sources. A novel, flexible, “multitier”

framework designed to accomplish these objectives by employing extant data available at

the federal, regional, state and local levels, is presented here. This tiered exposure ranking

(TiER) framework allows sequential and complementary implementation of both discovery-

driven exploratory data analysis methods (also called “agnostic,” “hypothesis-free,” and

“exposomic” methods(1–4)) and hypothesis-driven approaches. The discovery-driven

approaches constitute “tier 1” of this framework and employ high-throughput computational

tools, similar to those used in bioinformatics (genomics, transcriptomics, proteomics, etc.) to

conduct multivariate exploratory analyses of large data sets for identification of plausible

patterns and associations. The outcomes of the exploratory analyses, combined with

available mechanistic knowledge relevant to the particular phenomena that are studied, can

then be used to formulate focused hypotheses regarding these phenomena.

Higher-tier analyses of exposures within the TiER framework can be implemented in

various ways: tier 2 characterization involves the use of extant data (as discussed below) in

conjunction with simplified mechanistic modeling and allows rankings of risk-relevant

exposures associated with particular “locations” (at county, census unit, study segment, or

even individual residence levels). This is accomplished through development of

distributional estimates of exposure for various relevant population subsets (or individuals)

“assigned” to each particular location: distributions of risk-relevant exposures are calculated

for multiple co-occurring agents associated with a common “adverse outcome pathway”
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(AOP) or “biological mode of action” (BMOA) for each exposure route (inhalation,

ingestion, and dermal absorption). Due to the complexity of most exposures to mixtures, tier

2 calculations offer options to summarize and “condense” the information contained in the

exposure distributions by calculating various exposure indices (EIs). These EIs provide

screening rankings of risk-relevant cumulative and aggregate exposures and intakes

associated with selected locations or subpopulations through a set of numerical values, or

value ranges. The formulations of the EIs follow concepts and approaches similar to those

used in previous studies of health risks from contaminant mixtures(5–10) and can be

customized to support or complement the testing of alternative environmental and biological

hypotheses. As stated above, exposure agents incorporated in the formulation of particular

EIs are selected on the basis of risk-relevant hypotheses involving common mechanisms

and/or endpoints. When such hypotheses are not available, alternatively, exposure agents

associated with a particular class of pollution sources, e.g., contaminants related to traffic

emissions, can be selected to formulate an appropriate EI for exploratory analysis. This new

framework addresses the need for an approach that can “mine,” analyze, and condense

information from the vast amount of disparate extant data collected by federal, state, and

local agencies.(11,12) Added value to the extant data is provided by the fact that their

databases are routinely updated and adhere to a variety of quality assurance practices.(11)

This ensures a stable, consistent, and cost-effective source of “renewable” exposure-relevant

information. In the case of the NCS, its multidisciplinary nature and complexity require

generation of accessible and easily expandable and updatable sets of quality information that

will support testing of a wide spectrum of hypotheses. The TiER framework has been

employed with extant data to rank risk-relevant exposures associated with selected health

endpoints for each county in the NCS (Fig. 1). Furthermore, in addition to the current

“national-level” NCS results presented here, a tier 2 application of this framework was

tested in a separate study for the Queens County Vanguard Center segments.(13)

2. APPROACH AND METHODS

The TiER framework, schematically summarized in Fig. 2, employs computational

components of the modular modeling systems Prioritization and Ranking of Toxic

Exposures with GIS Extension (PRoTEGE)(14,15) and Modeling Environment for Total Risk

studies (MENTOR).(16–20) Although MENTOR is a comprehensive simulation platform that

has been evolving over the past 15 years, PRoTEGE is a new system that utilizes simplified

versions of MENTOR components to provide screening-level analyses. State-of-the-art

comprehensive uncertainty/variability and sensitivity analysis methods(21–24) have been

incorporated in both systems. Furthermore, a national-level multi-scale and multiattribute

exposure information system (EXIS)(11,25) has been constructed employing GIS and

relational database platforms, and regularly updated over the past 15 years, to support

applications of MENTOR; EXIS can also provide data sets usable by other modeling

systems. A customized implementation of EXIS is used here to support characterization and

ranking of exposures within the TiER framework (Fig. 3). More than 300 environmental and

demographic data sets are currently incorporated in EXIS; the Electronic Appendix provides

references and web links to a representative subset of the data utilized in the tier 1 and tier 2

analyses presented in Section 3.
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For tier 1 analyses, PRoTEGE links with ebTrack,(26) a component of MENTOR that

expands upon USFDA’s ArrayTrack(27) by incorporating tools for the multivariate analysis

of environmental and demographic variables in addition to the analysis of “bionomic” (i.e.,

genomic, proteomic, metabalomic, etc.) data. An extensive set of exploratory data analysis

routines implemented in Mat-lab and R complements these two systems.

Tier 1 exposure analyses via PRoTEGE and ebTrack consider a variety of attributes and

metrics relevant to population exposures. The metrics can be based on data on contaminant

releases and concentrations in relevant media for a location of concern, combined with

information on plausible exposure and AOPs. The combined application of PRoTEGE and

ebTrack on relevant environmental, demographic, behavioral, and biological data sets allows

the exploratory identification of patterns and associations that can “sharpen” the focus of

data collection efforts for the NCS and other environmental health studies.

In the following, the focus is limited to tier 2 characterization. Key outcomes of tier 2

characterization, as mentioned earlier, are EIs that attempt to capture available risk-relevant

information for exposure ranking in a “minimal set” of numerical values. The following

general equation is used to develop an exposure index (EI) for risks associated with a

specific BMOA (or health endpoint) of interest, j:

Each element of  is denoted by Eij, where subscript i refers in general to a “location”

(such as a county, a “segment” consisting of selected census tracts, or an actual “point”

address) or the subpopulations/individuals associated with that location.

The variables appearing in the above equation are:

• Concentration fields  are measured or estimated spatiotemporal fields of

co-occurring contaminant concentrations in various microenvironments (e.g.,

ambient air, indoor air, drinking water, residential water, food, dust, soil, etc.). For

example, inhalation exposures, a focus of the initial TiER application, are

calculated via a combination of the following methods: (i) spatiotemporal

interpolation of ambient air quality monitoring data, (ii) prognostic air quality

modeling, and (iii) Bayesian fusion of model outputs and monitor data.

Subsequently, these terms are corrected for local neighborhood scale effects.(28)

For cases of multi-route exposures to multimedia pollutants (e.g., pesticides and

metals), additional characterization is required: the concentration fields in these

cases must be developed for multiple media and pathways (food, drinking water,

surface dust, and ambient air) using predictive models, as well as estimates from

statistical models and analyses of available data.

• Microenvironmental attribute fields  are computed from study-specific

data and supporting databases on population demographics, land use, topography,

housing types and ages, etc.
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• Exposure-activity pattern fields  are calculated (depending on the “tier”)

from data relevant to the populations of concern retrieved from current extant

databases such as CHAD(29) or from study-specific data and/or aggregation of

representative time-activity diary information, commuting patterns, patterns of

usage of consumer products, etc.

• Biological factors  are estimated from study-specific or representative

population distributions of physiological and biochemical properties, with explicit

consideration of pregnant women and their children. They include factors such as

age and gender-specific distributions of inhalation and water intake rates, etc.

• Variables s and t denote the location and time vectors.

• A generalized weighting function gj, k is typically contaminant-specific and can

reflect the hypothesized relevance of the contaminant to the BMOA considered.

Note: Individual elements of each vector above themselves may represent either a

continuous or discrete set of factors (concentration fields, housing characteristic attributes,

etc.).

Formulation of a specific EI may consider information on the plausible health endpoint and

consequently on the (hypothesized) relevant contaminants and exposure pathways. The

pollutants and exposure pathways considered in defining an endpoint-specific EI can be

selected based upon (i) literature reviews of proposed hypotheses regarding the particular

health endpoint, (ii) literature reviews of related (epidemiological and clinical) studies, and

(iii) exploratory multivariate analyses involving available data on the health outcome and

exposure factors and contaminant levels. Since the scope of EIs is to provide a “screening”

type of risk-relevant exposure ranking, the associated health outcome is selected (based on

plausible hypotheses from the scientific literature) in relation to general BMOAs that are

potentially relevant to the environmental agents of concern. The weighting functions in

Equation (1) are thus developed by considering available reference concentrations (RfCs) or

doses associated with these BMOAs. In the examples presented in Section 3 as applications

of the TiER framework, inflammation is hypothesized as a plausible BMOA (Fig. 4)

associated with the preterm birth (PB) and low birth weight (LBW) health endpoints. This

hypothesis was used to select contaminants for tier 2 analysis (i.e., for the EI formulation

and calculation).

The models and data sets (see Fig. 3) available for estimating EIs within the TiER

framework are peer-reviewed formulations for which standardized procedures and quality

criteria exist for developing appropriate inputs. In cases where simplifying assumptions are

made for the “original” peer-reviewed model so as to allow application in a “screening” or

“range finding” mode, these assumptions and the associated uncertainty-related implications

are explicitly documented. Special consideration is given to assessing appropriate spatial

and temporal resolution limits that are reasonably allowed by extant data: for example,

available national-level databases from food surveys do not allow direct characterization of

subcounty variability for development of metrics differentiating individual segments, while

ambient monitoring data combined with modeling estimates from national-level air quality
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databases typically allow this finer level of characterization. The “frequency” of the inputs

available for tier 2 calculations, in general, depends upon standard collection practices for

public databases as well as upon the intended application of an EI (e.g., ranking locations in

general versus ranking in relation to a specific time window). As a rule, critical

environmental and demographic databases are updated regularly within EXIS and made

available for analysis within the TiER frame-work. In some cases, updating involves

incorporating “continuously” new data from primary sources (e.g., air quality concentrations

from various monitoring networks). In other cases, the primary sources update data less

frequently (e.g., National Emissions Inventory(30) data are available every few years and

modeling is required to estimate values for years in-between).

TiER calculations can allow consideration of different exposure windows, consistent with

hypotheses involving the particular BMOA or health endpoint considered (with limitations,

of course, potentially posed by data availability). For example, characterizing exposures

associated with each month of pregnancy can be performed with data collected for the

individuals and populations within a specific study; however, the screening calculations,

discussed in Section 3, have focused on ranking “locations” (at the county level) for risk-

relevant exposures to environmental agents plausibly associated with the selected health

endpoints, utilizing average values of the attributes considered.

It should be noted that the metrics calculated for tier 2 characterization with extant data, and

used in the corresponding development of EI values, are typically “intakes,” i.e., they

incorporate distributions of intake rates for the subpopulations of concern within the county

(or segment) considered. (Since some authors define intake as “externally applied dose” and

uptake as dose, appropriate attention should be given to terminology when interpreting such

results.)

Uncertainty in TiER “level 2” calculations is propagated along the modeling “sequence” that

derives population-based distributions of exposure. “Probabilistic variability” incorporating

both inherent (i.e., epistemic) uncertainty and natural (un-resolved) variability is captured

through statistical distributions of environmental concentrations, demographic

characteristics, etc. Though distributions are “collapsed” to a single value in order to provide

“point estimates” of the EI for a county or a segment, these point estimates are reported

along with a (high/low quantile) range indicating “spread” (combining variability and

uncertainty) around this value. Absence of contaminant concentration data can be addressed

in the TiER framework by applying detailed mechanistic environmental and micro-

environmental models when sufficient supporting information (e.g., source, release, and

media characterization) is available to develop reliable modeled estimates of missing data.

Additionally, various model/data “fusion” techniques, including Bayesian maximum entropy

(BME) methods, are available within MENTOR(17) to support the combination of sparse

data with outcomes from mechanistic models, and can be used, as needed, in future

applications.
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3. RESULTS

Currently, EXIS contains geospatial data sets for over 300 environmental, demographic,

socioeconomic, and behavioral (EDB) attributes; these data sets cover the 3,109 contiguous

U.S. (CONUS) counties at a spatial resolution that is typically at the census-tract level (but,

depending on the attribute, may range from actual point locations to a county aggregate) and

temporal resolutions that vary from hourly to annual. At a minimum, county-level maps

(ArcGIS shapefiles) and summary statistics are provided for all these data sets in EXIS. In

addition to variables corresponding to EDB attributes, data on selected health outcomes,

potentially relevant to longitudinal birth cohort studies like the NCS, have also been

incorporated in EXIS. For the examples presented here, three types of birth outcomes have

been used for initial exploratory analysis: preterm birth (PB) rates (<37 weeks), low birth

weight (LBW) (<2.5 kg), and very low birth weight (VLBW) (<1.5 kg, VLBW). Annual

data for these outcomes are available for the period since 1996 from the Community Health

Status Indicators project(31) for 2,902 of the CONUS counties. Fig. 5 shows county-level

maps for percentage rates of PB (top panel) and LBW (bottom panel).

3.1. Tier 1 Analysis Examples

Objectives of the tier 1 exposure-relevant analyses within the TiER framework were to

identify data gaps in EDB variables potentially associated with health outcomes, and to

explore the representativeness of NCS attributes versus corresponding attributes of the U.S.

population as a whole.

Examples of variables currently in EXIS are shown in Fig. 6 for: (i) distribution of

individuals living below the poverty level (as percentage of county population) for 2008; (ii)

soft drinks purchased per capita (annual average for years 1998–2006); and (iii) annual

means of 24-hour ambient PM2.5 concentrations. The distributions of various exposure-

relevant EDB attributes for the 40 current NCS counties versus all contiguous U.S. counties

are compared via quantile-quantile (QQ) plots: the proximity of distribution quantile points

to the 45° line is a measure of the similarity of the two distributions (Figs. 6(a), (b), and (c)).

Variables are also visualized in scatterplots with linear (ordinary least squares) regression

and logistic regression versus the selected endpoints of PB, LBW, and VLBW (Figs. 6(a),

(b), and (c)).

Patterns of association for a representative set of EDB variables were explored in relation to

the three selected birth outcomes. The 2,902 CONUS counties for which data for all three

outcomes were available were classified into the six urban/rural categories defined by the

National Center for Health Statistics.(32) Then, the birth outcome data sets and the selected

EDB data for these 2,902 counties were analyzed using two variants of the biclustering

method: (i) the two-way hierarchical clustering analysis tool in ebTrack/ArrayTrack and (ii)

the clustergram function in Matlab. Both tools use hierarchical clustering with Euclidean

distance and average linkage options. The data were clustered sequentially by counties first

and then by EDB variables, resulting in the heatmap of Fig. 7(a). Many counties did not

have available measured values for the environmental quality variables. These gaps are

identifiable as a black area on the heatmap. The heatmap was then subdivided according to

the urban/rural classifications defined by the National Center for Health Statistics in order to
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compare the patterns of variables for these “generalized environments” (Figs. 7(b) and (c)).

The heatmap provides an approach for examining patterns of potentially NCS-relevant data

across all CONUS counties as well as separately for rural/urban counties: it depicts locations

where there are data gaps, as well as locations where strong associations among variables of

concern may exist.

In Figs. 7(b) and (c), the data were divided by county type into two groups: in Fig. 7(b), the

62 “central” metro area counties with population >1 million and in Fig. 7(c), the 1,216

“noncore” counties with urban population <49,999 not adjacent to a metro area or <19,999

adjacent to a metro area. The same clusters appear in the heatmaps split by urban/rural

designation as in the heatmap of all CONUS counties. The results suggest some national

similarities that can be examined further using extant data at the segment level for individual

counties.

Subsequently, a correlation matrix was generated to examine the linear dependence between

various pairs of exposure-relevant EDB variables in EXIS. Fig. 8 shows a correlation map

with variables that have been “ordered” by k-nearest neighbors clustering. Of the 2,415 pairs

of exposure-relevant variables 109 (4.5%) have a correlation coefficient greater than 0.6. As

expected, strong correlations exist between variables from the same data “categories”: e.g.,

two highly correlated environmental variables are the emissions of CO and VOCs (r = 0.97),

both typically linked to motor vehicle operation. Examples of demographic/socioeconomic

variables that have high correlation with the selected health endpoint of LBW are life

expectancy (r = −0.68) and the percentage of population that is non-Hispanic black (r =

0.77). Another interesting relationship occurs with obesity, which is correlated with life

expectancy (r = −0.70) and moderately correlated with gallons of soft drinks purchased per

capita (r = 0.55) and percentage of premature births (r = 0.53). These observations reinforce

the need to consider multiple variables or representative surrogates in environmental health

studies such as the NCS. Additionally, it would be useful to have periodic updates in

examining such correlation matrices, to help understand changes in values of selected

variables during child growth and development.

3.2. Tier 2 Demonstration Case Study: Inhalation EIs for Birth Outcomes

Tier 2 analyses within the TiER framework have focused primarily on the calculation of

risk-related EIs, both at the county level across the NCS, and at the segment level for

Queens County, NY (see Isukapalli et al.(13)). The first exposure route considered for the EI

analyses was inhalation, and the first health endpoints considered in relation to inhalation

exposure were PB and LBW. As mentioned above, inflammation was hypothesized as a

plausible BMOA for linking the endpoints with relevant variables in order to formulate the

appropriate risk-relevant EI (Fig. 4). The endpoints (PB and LBW rates) were selected in

consultation with the NCS Program Office; however, the consideration of the particular

BMOA is not restrictive, and it is used here to provide a reasonable example for EI

definition.

A total of 48 air pollutants, i.e., 4 criteria pollutants and 42 air toxics (listed in Table I) with

established (noncancer) respiratory effects were used in formulating the algorithm for the

calculation of PB and LBW risk-relevant inhalation EIs, employing a Monte Carlo
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approach. Of course, as stated earlier, these are not the only—or the most important—

factors associated with inflammation, but they are used to provide an example application of

the approach. Specifics of the formulation are outlined below.

A representation of the EI calculation algorithm specific to inhalation exposure is provided

in the following equation:

where:

Einhalation, i, p inhalation EI for area i in relation to endpoint p

i geographic area of concern (e.g., segment or county)

p endpoint of concern (e.g., respiratory and inflammation effects)

average concentration of the air toxic j in area i

Ci, k(t) concentration of criteria pollutant k in area i at time t

τ1 and τ2 start and end of averaging period for concentrations of criteria pollutant k in area i

ωtoxics, p relative weight of air toxics in relation to health endpoint p

ωcrit, p relative weight of criteria pollutants considered in relation to endpoint p

ωpop, i, p target population weight of area i in relation to endpoint p (e.g., fraction of female population of child-
bearing age)

Ntoxics, p number of air toxics considered in relation to endpoint p

Ncrit, p number of criteria pollutants considered in relation to endpoint p

RfCj, p reference concentration for air toxic j in relation to endpoint p

RpCk, p(τ1, τ2) a reference concentration for criteria pollutant k in relation to endpoint p for averaging period between
τ 1 and τ 2

In general, each area of interest (“NCS location”) will have subareas with varying pollutant

levels; for example, if the area of study is a county, substantial variability in air pollutant

levels is expected to exist within the county. Even in the case of individual NCS segments,

such variability occurs because each segment may include blocks from multiple census

tracts, each with varying environmental quality and demographics.

The computational implementation of the EI formulation utilizes Monte Carlo methods to

incorporate this variability, via the following steps:

1. Generation of a set of samples for each population group within each subarea of a

study area (e.g., 100 samples for each person in the target population subgroup). By

aggregating these samples, spatial variations in population distributions are taken

into consideration.
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2. For each sampled individual, assignment of inhalation rate based on representative

distributions of inhalation rates for the specific age-gender combination and the

inhalation and aggregate potential intakes.

3. Normalizing these estimates through a reference inhalation rate (e.g., average

inhalation rate for the population subgroup) and reference concentration.

These estimates provide distributions of EI estimates at the resolution of the study area

(segments or counties).

Calculated estimates of county-level inhalation EI ranges are shown as box plots in Fig. 9

for each of the 40 “active” NCS counties. The box plots illustrate the presence of gradients

in the EI within each county. The edges of the box plots in the graphs show the 25th (q1)

and 75th (q3) percentiles. The whiskers are 1.5 times the interquartile range (q3 − q1)

corresponding to approximately +/− 2.7σ and 99.3% coverage when the data are normally

distributed. The whisker is extended to the most extreme data point that is not an outlier;

outliers are plotted as plus signs (assuming a normal distribution). The results show the

range and variability of EI values across current NCS counties: the two counties with the

highest means and ranges of estimated EI values are Queens, NY, and Los Angeles, CA.

4. DISCUSSION AND CONCLUSIONS

Characterization of maternal, prenatal, and early childhood exposures to environmental

pollutants across all routes and pathways, including diet and consumer product usage, are

important components of the NCS. Collecting data on many environmental variables for the

assessments will, of necessity, require a combination of measurements taken in the home

and possibly the neighborhood of participants, and of measurements taken routinely by a

variety of agencies and organizations. The 40 “active” NCS counties were the subject of this

study-wide application of the TiER framework: the results suggest that these NCS counties

are generally representative of the nation for the variables studied, and that there are many

associations of exposure factors, not only environmental, but also—and often primarily—

socioeconomic and behavioral, that should be explored in the future in relation to the health

end-points considered.

Development of risk-relevant EIs for the inhalation exposure route was proven feasible with

extant data at the national level for each NCS county, but presents various challenges. For

example, data can be very heterogeneous (in quality, technical specifications, etc.) and data

variability can be significant within a demographic unit or with regard to seasonal, weekly,

or diurnal patterns. However, at least at the county level, such data are sufficient to support

“lower-tier” characterization and rankings of exposures across the NCS.

Ongoing work is focusing on the systematic study of the relationships between predicted EIs

that were estimated for diverse locations and the relevant health outcomes for these

locations.

Other ongoing and planned environmental health modeling applications of the TiER

framework also consider explicitly exposures at the individual level, using specific home

and personal data. These applications incorporate “reverse modeling”(19) to take advantage
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of biomonitoring data, “personalized” behavioral and activity information, and individual-

specific microenvironmental dynamics. TiER, in conjunction with EXIS, offers a systematic

approach for addressing the challenges associated with this effort by allowing integration of

diverse-relevant information (from genetic to physiological to behavioral, etc.) for

performing individual-and population-based modeling in a manner that takes explicitly into

account intra- and inter-individual variability.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Maps showing active National Children’s Study (NCS) locations.
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Fig. 2.
Schematic representation of the tiered exposure ranking (TiER) framework for risk-relevant

ranking of exposures to chemicals, incorporating (a) life cycle analysis (LCA) of

environmental and microenvironmental dynamics of chemicals; (b) life stage analysis (LSA)

of individual and population biology and behavior relevant to exposure; (c) qualitative/

quantitative information on biological effects of chemicals for the selection and weighting/

normalization of exposure agent attributes; and (d) multicriteria simulation algorithms

combining information on chemical agents and individuals/populations for EI calculation.
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Fig. 3.
A national-level multiscale exposure information system (EXIS) framework was constructed

and is updated continually (over the past 15 years) to support applications of the MENTOR

system; an implementation of this framework is used to support characterization and ranking

of exposures within the TiER framework. (Table I lists the acronyms of databases and

models appearing in this chart.)
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Fig. 4.
Common biological pathways associated with preterm birth (chart adapted from Behrman

and Butler(33)); the demonstration study presented here uses inflammation as a plausible

biological mode of action to select airborne agents for the formulation of an inhalation

exposure index relating to preterm birth.
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Fig. 5.
Preterm birth rates and low birth weights were selected as representative health endpoints

for the tier 1 and tier 2 exposure analyses presented in this work.

Georgopoulos et al. Page 18

Risk Anal. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Georgopoulos et al. Page 19

Risk Anal. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Georgopoulos et al. Page 20

Risk Anal. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6.
Examples of exposure-relevant factors included in EXIS: (a) County-level map showing

percentage of individuals living below the poverty level for 2008 in the CONUS.(31,34) (b)

County-level map showing soft drinks purchased per capita in the CONUS.(31,35) (c) Annual

average of ambient PM2.5 levels observed in the CONUS in 2008.(31,36) To the right of each

map is a QQ plot: the proximity of distribution quantile points to the 45°; line as a measure

of the similarity of the two distributions. Under each map are scatterplots showing linear

(ordinary least squares) regression and logistic regression versus the selected endpoints of

preterm birth (PB), low birth weight (LBW), and very low birth weight (VLBW).
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Fig. 7.
Biclustered heatmaps showing similarities between selected exposure-relevant attributes for

(a) the 2,902 CONUS counties for which data are available for all three birth outcomes (PB,

LBW, and VLBW) considered in this analysis; (b) for 62 “central” counties containing a

metropolitan area with population >1 million; and (c) for 1,216 “noncore” counties (i.e.,

counties that are neither micropolitan nor metropolitan, with urban population of up to

19,999 adjacent to a metropolitan area or with urban population of up to 49,999 not adjacent

to a metropolitan area).

Georgopoulos et al. Page 22

Risk Anal. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 8.
Exploratory multivariate analysis of exposure-relevant factors (included in EXIS) with

respect to selected birth outcomes: the correlation map is a visual representation of the linear

dependence between pairs of variables (which are grouped here by similarity). The analysis

has been performed with county-level data for the CONUS.

Georgopoulos et al. Page 23

Risk Anal. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 9.
Estimates of “county-level” ambient inhalation exposure index formulated in relation to

birth outcomes (such as preterm birth and low birth weight) for the 40 active NCS locations.
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Table I

Airborne Contaminants Used in Formulating the Inhalation Exposure Index for Premature Birth (PB) and Low

Birth Weight (LBW) Risks Along with the (Noncancer) Toxicity Reference Concentrations (from USEPA(7))

Chemical Name of Air Pollutant CAS Number

Reference Concentrations
(RfCs)(mg/m3 Unless
Indicated Otherwise)

Criteria pollutants

  Ozone (O3) 10028-15-6 30 ppm (summer season average)

  Nitrogen dioxide (NO2) 10102-44-0 0.015

  Sulfur dioxide (SO2) 94336-28-4 53 ppb

  Fine particulate matter (PM2.5) NA 30 ppb

Air toxics

  Acetaldehyde 75070 0.009

  Acrolein 107028 0.00002

  Acrylic acid 79107 0.001

  Acrylonitrile 107131 0.002

  Antimony compounds 7440360 0.0002

  Beryllium compounds 7440417 0.00002

  Bis(2-ethylhexyl)phthalate 117817 0.01

  Chlorine 7782505 0.00015

  2-Chloroacetophenone 532274 0.00003

  Chloroprene 126998 0.007

  Chromium compounds 18540299 0.0001

  Cobalt compounds 7440484 0.0001

  1,3-Dichloropropene 542756 0.02

  Diesel particulate matter N/A 5

  Diethanolamine 111422 0.003

  Epichlorohydrin 106898 0.001

  1,2-Epoxybutane 106887 0.02

  Ethylene dibromide (Dibromomethane) 106934 0.009

  Ethylene glycol 107211 0.4

  Formaldehyde 50000 0.0098

  Hexachlorocyclopentadiene 77474 0.0002

  Hexamethylene-1,6-diisocyanate 822060 0.00001

  Hydrochloric acid 7647010 0.02

  Maleic anhydride 108316 0.0007

  Methyl bromide (bromomethane) 74839 0.005

  Methyl isocyanate 624839 0.001

  Methyl methacrylate 80626 0.7

  4,4′-Methylene diphenyl diisocyanate (MDI) 101688 0.0006

  Naphthalene 91203 0.003

  Nickel compounds 7440020 0.00009

  Nitrobenzene 98953 0.009
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Chemical Name of Air Pollutant CAS Number

Reference Concentrations
(RfCs)(mg/m3 Unless
Indicated Otherwise)

  Phosgene 75445 0.0003

  Phthalic anhydride 85449 0.02

  Propionaldehyde 123386 0.008

  Propylene dichloride 78875 0.004

  Propylene oxide 75569 0.03

  Styrene oxide 96093 0.02

  Titanium tetrachloride 7550450 0.0001

  Toluene 108883 5

  2,4-Toluene diisocyanate 584849 0.00007

  Triethylamine 121448 0.007

  Vinyl acetate 108054 0.2

Risk Anal. Author manuscript; available in PMC 2015 July 01.


