
STRUCTURAL AND CONNECTOMIC NEUROIMAGING FOR THE
PERSONALIZED STUDY OF LONGITUDINAL ALTERATIONS IN
CORTICAL SHAPE, THICKNESS AND CONNECTIVITY AFTER
TRAUMATIC BRAIN INJURY

A. Irimia1, S.-Y. M. Goh1, C. M. Torgerson1, P. M. Vespa2, and J. D. Van Horn1

1Institute for Neuroimaging and Informatics, Department of Neurology, Keck School of Medicine,
University of Southern California, Los Angeles, USA

2Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine,
University of California, Los Angeles, USA

Abstract

The integration of longitudinal brain structure analysis with neurointensive care strategies

continues to be a substantial difficulty facing the traumatic brain injury (TBI) research

community. For patient-tailored case analysis, it remains challenging to establish how lesion

profile modulates longitudinal changes in cortical structure and connectivity, as well as how these

changes lead to behavioral, cognitive and neural dysfunction. Additionally, despite the clinical

potential of morphometric and connectomic studies, few analytic tools are available for their study

in TBI. Here we review the state of the art in structural and connectomic neuroimaging for the

study of TBI and illustrate a set of recently-developed, patient-tailored approaches for the study of

TBI-related brain atrophy and alterations in morphometry as well as inter-regional connectivity.

The ability of such techniques to quantify how injury modulates longitudinal changes in cortical

shape, structure and circuitry is highlighted. Quantitative approaches such as these can be used to

assess and monitor the clinical condition and evolution of TBI victims, and can have substantial

translational impact, especially when used in conjunction with measures of neuropsychological

function.
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1. Introduction

An important challenge to the neuroimaging of traumatic brain injury (TBI) involves

elucidating how the lesion profile of a TBI subject modulates longitudinal changes in
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volumetrics, morphometrics and connectomics, and how these changes lead to behavioral,

cognitive and neural dysfunction. Although considerable efforts have been devoted to task

of clarifying the relationship between acute TBI lesion load and patient case evolution, it

remains challenging to improve TBI clinical outcome by incorporating information about

the specific deficits and injury profiles of patients into their treatment and rehabilitation

routines. This is primarily because current neurological, neurosurgical and

neuropsychological treatment protocols for TBI must too often rely upon exceedingly

general knowledge of lesion type, location and degree of severity. Thus, the heterogeneity of

brain injuries remains a barrier to the design and implementation of patient-tailored

treatment and to the formulation of rehabilitation protocols which take advantage of

individualized neuroimaging analyses. Although computed tomography (CT) and magnetic

resonance imaging (MRI) have become standard in TBI care, few image processing

techniques are tailored for TBI brains and the detailed lesion analysis TBI remains

challenging.

The purpose of this review is three-fold. Firstly, it aims to discuss and highlight prior

advances in structural and connectomic neuroimaging for the study of TBI. Its second

purpose is to illustrate a set of newly-developed, patient-tailored approaches to the analysis

of TBI neuroimaging volumes, including methods for segmenting gross TBI lesions semi-

automatically and for quantifying the effects of TBI-related white matter (WM) atrophy1.

Thirdly, it aims to illustrate how magnetic resonance imaging (MRI), diffusion tensor

imaging (DTI) and advanced image processing methods can be integrated to study the

longitudinal effects of severe TBI. Specifically, in three representative cases, the combined

use of structural, morphometric and connectomic analysis to perform patient-tailored

profiling of TBI-related changes in cortical curvature, area and thickness is demonstrated. In

these three subjects with progressive lesion loads, the presence of brain atrophy is identified

broadly over the cortex, including over cortical regions which appear to be healthy in both

acute and chronic multimodal MRI/DTI scans. Widespread changes in cortical curvature and

surface area over six months following brain trauma are described and quantified, pointing

to the complex evolution of brain shape as a result of TBI. The techniques reviewed here can

be used to test research hypotheses about brain atrophy and shape changes in TBI and to

clarify how this phenomenon differentially affects brain regions depending on injury

location. Because the use of quantitative approaches is typically preferable to that of

qualitative ones when monitoring the clinical condition and evolution of TBI victims, such

methods can have useful translational impact by aiding in the process of patient-tailored TBI

profiling and rehabilitation.

2. Image acquisition protocols

The field of non-invasive human TBI neuroimaging has witnessed spectacular progress in

the past 40 years, beginning with the use of early computed tomography (CT) systems in the

early to mid-1970s2 and ending with today’s sophisticated multimodal neuroimaging

methods3. By the mid-1980s, many neuroimaging experts and clinicians had acknowledged

that CT suffered from substantial drawbacks compared to the emerging technique of

magnetic resonance imaging (MRI), particularly because CT can underestimate cerebral

injury severity, misevaluate cortical contusion extent and fail to identify diffuse axonal
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injury (DAI). By contrast, MRI is highly sensitive for detecting both hemorrhagic and non-

hemorrhagic lesions, which allows one accurately to classify various types of traumatic

lesions. Around the same time, the related though distinct technique of magnetic resonance

spectroscopy (MRS) was becoming increasingly useful for the study of metabolic changes

prompted by TBI, especially by highlighting the role of increased excitatory

neurotransmitter signaling after brain injury4. Such a technique, when complemented by

positron emission tomography (PET), allowed researchers for the first time to investigate

physiological changes in TBI patients by assessing regional cerebral blood flow (rCBF),

which can reflect neural system utilization as well as attempts by the brain to compensate for

compromised function in lesion-affected areas5.

The subsequent advent and popularization of diffusion weighted imaging (DWI) and

diffusion tensor imaging (DTI) in the early 1990s allowed researchers to characterize

ischemic lesions as hyperintense areas with decreased apparent diffusion coefficient (ADC)

values, thereby making the acute lesions adjacent to chronic infarcts readily apparent6.

Additional information provided by MRI sequences developed around the same time, such

as fluid-attenuated inversion-recovery (FLAIR), provided the welcome opportunity to

visualize and quantify non-hemorrhaging edematous brain regions perfused by cerebrospinal

fluid (CSF), particularly in the ischemic penumbra7. Because FLAIR is an inversion-

recovery sequence designed to reduce CSF signal substantially, this technique enables very

heavy T2 weighting without high signal and potential artifact from CSF and thereby makes

cortical contusions and subdural hematomas much easier to detect than in conventional T1-

and T2-weighted MRI8. With the introduction of T2*-weighted gradient recalled echo (GRE)

MRI9, the ability to identify and map intracranial hemorrhage increased substantially, which

also led to improved understanding of why hemorrhagic regions are likely to exhibit

appreciable DAI10. Specifically, because the mechanical elasticity of vasculature is typically

higher than that of axons, the presence of hemorrhages as obviated by GRE imaging is an

excellent local indicator of DAI. Later on, the development of susceptibility weighted

imaging (SWI) by Haake and colleagues improved the ability to detect micro-hemorrhages

by exploiting the paramagnetic property of intravenous deoxyhemoglobin11.

One significant current challenge in the field of TBI neuroimaging relates to addressing the

presence of motion artifacts by TBI patients in the MR scanner. This is particularly

problematic during acute TBI scans, where it is difficult for awake patients to lie still or to

follow the instructions of clinical staff. This challenge is aggravated by the typical need to

acquire a variety of MRI scans involving different acquisition sequences in order to

highlight distinct types of pathology. Though the advent of multiplexed turbo sequences can

appreciably diminish the amount of time required for the acquisition of T1- and T2-weighted

MRI, other scan types such as SWI and DTI can substantially increase the time length of

MRI sessions, particularly when DTI acquisition involves a large number of gradient

directions. For these reasons, the accuracy and validity of TBI neuroimaging analyses often

depend upon the availability and effectiveness of robust motion correction algorithms for

MR images. Given the current trend toward including novel and increasingly sophisticated

MR sequences in TBI image acquisition protocols, it is to be expected that this need will

only increase in the future.
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Throughout the 1990s, as the number of MR sequences for TBI imaging increased, the need

for standardization of image acquisition protocols became obvious. To address this

necessity, the Defense Centers of Excellence within the US Defense and Veterans Brain

Injury Center issued a clinical recommendation in 2013 pertaining to the US military’s

preferred TBI MRI protocol for neuroimaging following mild TBI12. This protocol included,

besides MPRAGE T1 and T2 imaging, structural sequences such as FLAIR and GRE T2, as

well as diffusion imaging (DWI and DTI). In addition, a detailed list of sequence parameters

was provided for both 1.5 T and 3.0 T MRI scanners. Despite such attempts at

standardization, one significant challenge facing the TBI neuroimaging community today is

the heterogeneity of imaging protocols across clinical sites, which continues to pose a

substantial impediment to multi-center collaborations. One neuroinformatics effort aimed at

responding to this problem is the Federal Interagency Traumatic Brain Injury Research

(FITBIR) Informatics System (fitbir.nih.gov), which was created with the express purpose

of sharing TBI neuroimaging data and of facilitating collaboration between TBI research

laboratories. Because FITBIR is a recent effort, however, the need for protocol

standardization and streamlined data sharing remains one of the most substantial current

drawbacks to the implementation of large-cohort TBI studies and more effort should be

dedicated by the TBI community to the task of joining such current efforts toward

standardization and sharing.

To illustrate the current state of the art regarding TBI image acquisition protocols, we here

illustrate the combined use of MRI, DTI and advanced image processing methods for the

longitudinal study of severe TBI. For three representative TBI patients, MRI data were

acquired using a protocol approved by the Institutional Review Board at the University of

California, Los Angeles. Signed informed consent was obtained from each patient or from

their legally authorized representative before the performance of any procedure. The first

selected patient is a 17 year-old male pedestrian who suffered a TBI as a consequence of

being hit by a moving vehicle. The patient was admitted to the Neurointensive Care Unit

(NICU) of the Ronald Reagan UCLA Medical Center with a Glasgow Coma Score (GCS) of

3, and transferred from the unit with a Glasgow Outcome Scale-Extended (GOS-E) score of

2 (vegetative state). The GOS-E score at 6-month follow-up (GOS-6) was 4 (upper severe

disability). For this patient, the acute and chronic scans were acquired 2 and 181 days after

injury, respectively. The second patient is a 62 year-old female who was involved in a

bicycle fall and who was admitted to the NICU with a GCS of 7. The GOS-E score upon

discharge from the NICU was 2, and the GOS-6 score was 3 (lower severe disability). The

acute and chronic scans were acquired 5 and 194 days after injury, respectively. The third

patient selected is a 60 year-old male who acquired a TBI as a result of a fall. Whereas the

GCS upon admission was 14, the GOS-E score at discharge from the NICU was 2

(vegetative state), and the GOS-6 score was 4. The acute and chronic scans were acquired 3

and 194 days after injury, respectively.

Our data acquisition protocol was previously described in detail13. Briefly, MR volumes

were acquired at 3 T from each subject using a Siemens Trio TIM scanner (Siemens AG,

Erlangen, Germany). MRI acquisition sessions were held both several days (acute baseline)

as well as about 6 months (chronic follow-up) after the traumatic injury event and every
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subject was scanned using the same scanner for both acute and chronic time points. MR

sequences included MP-RAGE T1-weighted imaging14, fluid-attenuated inversion recovery

(FLAIR15), T2-weighted turbo spin echo (TSE, also known as fast spin echo, FSE16),

gradient-recalled echo (GRE) T2-weighted images, susceptibility weighted imaging (SWI17)

and DTI.

Sample MR images from each patient are displayed in Figure 1. For the first patient,

inspection of these images reveals hemorrhages in the deep WM of the right hemisphere

(RH), with peri-ventricular hemorrhages and edema in both hemispheres. Temporal lobe

hemorrhage is observed in the RH, with contre-coup hemorrhagic lesions to the left

hemisphere (LH) as well. Minor bleeding is observed in the medial aspect of both temporal

lobes, although a larger number of micro-hemorrhages are seen in the RH. Patient 2 presents

with extensive fronto-temporal edema and hemorrhage, especially in the LH, although

trauma is also present contralaterally to a significant extent. MRI scans also reveal some

hemorrhage throughout the posterior portion of the brain. Finally, whereas Patients 1 and 2

have comparatively light lesion loads, Patient 3 presents with the most severe amounts of

hemorrhage and cerebral injury. For this patient, extensive bleeding exists in the frontal and

temporal lobes of both hemispheres, both in the GM as well as in the WM. Modest peri-

hemorrhagic edema is also noted.

3. Tissue classification, volumetrics and morphometry

The task of performing automatic tissue classification in T1- and T2-weighted MRI volumes

acquired from TBI patients is recognized as an exceptionally challenging problem in image

processing. Whereas the accurate, automatic segmentation of healthy brains has become

routine with the introduction and implementation of atlas-based probabilistic labeling and

classification, such methods are highly prone to failure in the MRI volumes of patients with

gross anatomic lesions31, 32. This is because gross pathology can introduce large differences

in brain appearance between healthy MR volumes and lesion-impacted volumes, which

make traditional atlas-based, probabilistic labeling algorithms prone to misclassification in

conditions such as TBI.

Attempts to address the problem of lesion segmentation date as far back as the early 1990s,

when techniques such as k-nearest neighbor18 and fuzzy C-means19 multispectral algorithms

were first applied to MRI volumes exhibiting TBI or tumor lesions, subject to manual

tracing for the removal of extracranial tissues from the segmentation. In fact, user

supervision followed by manual corrections has been the norm for the TBI segmentation

until only very recently3. Unsurprisingly, many of the earliest methods for user-assisted

WM/GM tissue classification in the presence of TBI lesions were inspired by algorithms

dedicated to the segmentation of images exhibiting lesions due to brain tumors20, 21,

stroke22–24 or to multiple sclerosis25, 26. More recently, unified segmentation-normalization

and fuzzy clustering algorithms have been combined with increased reliability in detecting

and classifying injury-affected brain areas27. A multi-resolution binary level set method

based on the Song-Chan algorithm has also been introduced for segmenting intracranial

hematomas with results comparable to those obtained by human experts28. More advanced

segmentation methods such as the SIENAX algorithm have been used to evaluate cortical
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thickness in TBI patient cohorts of small to moderate size, though many of these methods do

not specifically account for non-diffeomorphic changes in TBI appearance across time29.

Despite the fact that automated algorithms for the detection and quantification of TBI

lesions have been proposed30, their use remains restricted to only a few neuroimaging

centers and their robustness has not been validated extensively based on scans from large

TBI populations.

Many of the earliest methods for TBI volumetric analysis relied almost exclusively on

interactive, manual image editing and on time-consuming pixel counting in regions of

interest18. Based on such methods, the assessment of simple quantitative metrics such as the

total brain volume (TBV) and the ventricle-to-brain ratio (VBR) – which had been

introduced in the 1970s – was marginally improved by using MRI instead of CT, for which

such metrics had initially been developed. Simultaneously, the advent of novel MR

sequences for TBI imaging such as FLAIR, SWI and T2-weighted GRE brought about the

need for multimodal image processing algorithms which could provide richer quantitative

descriptions of pathology and which could handle the ever-increasing number of volume

types being routinely acquired in clinical settings. Following this line of research, Gerig and

colleagues have proposed methods for automatic TBI volume segmentation based on

subject-specific modification of atlas priors as well as based on outlier detection31, 32. One

method developed by Niethammer et al.33 handles the complexities of longitudinal TBI

lesion changes by introducing a geometric pathology shape model where lesion-related

deformations are captured simultaneously with respect to deformations in the underlying

image, thereby allowing one to visualize and to quantify hemorrhagic recession accurately.

For at least 10 years subsequent to the introduction of routine brain MRI scans, the ability to

perform longitudinal analyses of TBI volumetrics and morphometrics was extremely

rudimentary, being restricted mostly to the calculation of changes in brain volume, ventricle

size, and lesion load 18. As previously stated, the application of automatic segmentation

methods to TBI volumes has been and remains problematic, if only because time-consuming

manual corrections must often be performed in the presence of gross pathology.

Nevertheless, throughout the past 5 years, longitudinal studies of cortical atrophy due to TBI

have become more common34, 35. Investigations of morphometric brain changes prompted

by TBI have also been conducted using approaches such as tensor-based morphometry,

which has highlighted localized volumetric losses in WM regions and in subcortical nuclei

as well as ventricular volume increases across TBI cohorts of moderate size36. Template

matching techniques have also been applied to visualize the spatial distribution of

contusions in TBI patients, which can yield maps of brain locations which are most likely to

suffer from atrophy in the event of a traumatic event37.

The typical absence of neuroimaging volumes acquired prior to the traumatic event

constitutes a substantial and highly problematic challenge in the field of TBI imaging

research. If available, such volumes could be highly beneficial for the purpose of

longitudinal comparison by means of volumetric, morphometric and connectomic analyses.

To date, however, very few case studies are available in which both pre- as well as post-TBI

neuroimaging data were acquired. In one interesting study involving both MRI and PET,

physiological changes were investigated in a TBI patient relative to those of his uninjured
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monozygotic (MZ) twin and against normal variability between co-twins in 10 comparably-

aged, uninjured MZ twin pairs5. Such cases, however, remain exceptionally rare in the field

of TBI research and the goal of reconstructing brain shape and connectivity patterns before

TBI in the absence of imaging before injury remains extremely desirable though very

problematic.

In the three sample subjects described in the previous section, non-hemorrhagic lesions

adjacent to cerebrospinal fluid (CSF) were identified as hyper-intensities on FLAIR images,

and segmentation quality was confirmed using GRE and TSE T2-weighted imaging. Non-

hemorrhagic shearing lesions were defined as hyper-intense lesions that were visible

primarily on T2-weighted or FLAIR images. SWI volumes were used to identify micro-

hemorrhages which were poorly detectable or undetectable using other sequences.

Segmentation and regional parcellation were performed using FreeSurfer38–40 following

methodology described by Destrieux et al.41 As these methods were developed for the

analysis of healthy-appearing brain volumes, additional computationally intensive steps

were required, including user-supervised pathology identification and multiple iterative

segmentation attempts. Because the cortical surface topology changes from the acute to the

chronic time point, the cortical mesh for every subject at each time point was registered to

an atlas generated over a large number of adult normal subjects as a function of the unit

sphere39, 40, 42. Each mesh was non-rigidly morphed to the atlas by aligning sulcal-gyral

patterns while minimizing shear and areal distortion. Parcellation of gyri and sulci was

performed automatically using probabilistic labeling on the statistical atlas43. To visually

represent morphometric changes in brain structure occurring between time points, three

quantitative measures (cortical surface area, Gaussian curvature and cortical thickness) were

extracted for each cortical location using freely-available methodologies38–40.

To investigate the longitudinal effects of TBI neuropathology within each patient, the

structural profile of each subject was reconstructed in three dimensions and displayed using

3D Slicer software (www.slicer.org) to illustrate changes in each cortical structure. Once the

value of each metric (cortical thickness, cortical area, Gaussian curvature) had been

computed for each time point, the longitudinal difference between acute and chronic scans

was plotted on the cortical surface. Because TBI pathology can alter WM/GM tissue

contrast properties, the boundary between these two tissue types cannot always be extracted

from T1-weighted imaging. For this reason, morphometrics associated with parcels which

could not be segmented appropriately due to TBI-related loss of image contrast at the

WM/GM boundary were discarded from the analysis.

Figures 2–4 show three-dimensional (3D) models of both healthy-appearing GM as well as

pathology (either hemorrhagic or non-hemorrhagic) in the three patients. These models

reveal progressively larger lesion loads in each case, with Patient 1 presenting moderate

amounts of bleeding in both hemispheres and Patient 3 suffering from extensive hemorrhage

in both frontal lobes. Among the three cases presented, Patient 3 features the most profound

amount of TBI pathology, with profuse bleeding and swelling in the frontal and temporal

lobes of both hemispheres.
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4. Brain connectivity and connectomics

Whereas the structural neuroimaging, tissue classification and morphometry of the TBI

brain have been the focus of research for at least two decades, the effort dedicated to the

study of TBI-related alterations in WM connectivity and connectomics has been more

recent. Not long after the introduction of clinical MRI scanners, many researchers became

aware that structural MR can only reveal DAI to a very limited extent and that more

powerful imaging methods would be required to quantitate this important aspect of brain

injury in humans44. In fact, it was not until the mid- to late-1990s that the use of DWI and

DTI became common, and connectomics itself did not become a distinct area of scientific

interest until around 200545. Although the spatial resolution of noninvasive neuroimaging

continues to be far below that of hystopathological autopsy methods by many factors of

magnitude, considerable advances have been made toward imaging and visualizating WM

connections and their disruption after DAI.

Subsequent to the introduction of DWI and DTI, a number of early studies involving the

application of these techniques to TBI analysis aimed to quantify changes in mean

diffusivity (MD), apparent diffusion coefficient (ADC) and fractional anisotropy (FA)

prompted by primary and secondary injuries46–50. Such studies highlighted the long-term

effects of TBI upon brain connectivity, suggesting that all severities of TBI can result in

axonal damage, whereas irreversible myelin damage is primarily apparent in moderate to

severe TBI46. Importantly, DTI analysis has been found to provide objective means for

explaining cognitive deficit patterns in TBI even in cases where the traumatic event had

been sustained many years before the imaging evaluation51. In recent years, DWI and DTI

have received increasing recognition as excellent noninvasive techniques for the purpose of

evaluating injury in brain regions which are otherwise healthy appearing on conventional

MRI scans52.

Although systematic analyses of brain connectivity alterations related to TBI have gained in

prominence only throughout the past ~5 years, cross-sectional comparisons of DTI measures

appear to converge upon the finding that TBI patients have decreased FA and increased MD

compared to healthy control subjects over large portions of the brain53. Connectivity studies

have also highlighted that WM degeneration plays a prominent role in the process of brain

volume loss throughout the months following brain injury, and that connectomic studies are

required to understand the relationship between degeneration patterns, on the one hand, and

individual neural and cognitive deficit profiles, on the other hand3. In addition to WM

atrophy and demyelination, DTI has also been used to quantify changes in neural tissue

during recovery, with FA being observed to reach normal levels one year after trauma in

patients with favorable outcome54.

The application of network theoretic approaches to the study of TBI connectivity is

relatively recent. One fairly novel technique dubbed tract-based spatial statistics (TBSS) has

been used to explore whether damage to specific white matter tracts is associated with

particular patterns of cognitive impairment involving the commonly affected domains of

memory, executive function and information processing speed55. This method revealed that

the impact of WM changes upon cognitive function is likely to depend on damage to key
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pathways which link nodes in the distributed brain networks supporting high-level

cognition. Another study by Achard et al.56 involving comatose TBI patients found evidence

for radical reorganization of high degree hub nodes in the injured human brain, with global

topological properties of complex brain networks being homeostatically conserved. These

authors proposed that cortical regions which had been the hubs of healthy brain networks

had lost their status as hubs as a consequence of injury, and that consciousness is likely

dependent upon the anatomical location of hub nodes in human brain networks.

For the three sample TBI patients already described, processing workflows to compute inter-

regional connectivity matrices were created using purpose-built software described

elsewhere57. For each subject, the calculation of connectivity between regions involved

identifying the location of each fiber tract extremity within the brain, followed by the

delineation of the GM volume associated with each parcel. For each fiber connection

between any two distinct parcels, the corresponding entry in the connectivity matrix of the

brain was appropriately updated to reflect an increment in fiber count58, 59. By means of

this, the connectivity matrix of the brain was generated for each subject, with entries which

specified the total count of fibers between every pair of regions. Fibers whose lengths were

shorter than 1.5 cm were excluded from the analysis to minimize the effect of fibers which

had been artifactually generated by the tractography algorithm. Each connectivity matrix

was normalized over the total number of fibers within that subject, and the percentage

change in connectivity density between time points was then computed as the difference

between connectivity matrix entries at each time point divided by the connectivity matrix

entry at the acute (reference) time point.

Connectomic information was represented in a circular format60. Brain parcels denoting gyri

or sulci were displayed within a circle of radially aligned elements called a connectogram,

which contained information representing the two hemispheres symmetrically on the

corresponding side of the vertical axis. Parcellated regions were assigned unique RGB

colors listed exhaustively elsewhere61. Parcels were arranged within each connectogram

lobe in the order of their locations along the antero-posterior axis of the cortical surface

associated with the published FS normal population atlas41. An unambiguous abbreviation

scheme was created to label each parcellation, as detailed elsewhere61. Within the outer

circle which is associated with cortical parcels, five heat maps were created to encode one of

five structural measures associated with each corresponding parcel. Proceeding towards the

center of the connectogram, these measures are total GM volume, total area of the surface

associated with the parcel, its mean cortical thickness, mean curvature and its brain

connectivity per unit volume. The latter measure was computed as the density of fibers with

endings within that parcel divided by the parcel’s total GM volume. The value of each

structural measure was encoded using a color mapping which ranged from the minimum to

the maximum of the data set. Specifically, the cortical thickness t with values in the interval

[tmin, tmax] was normalized as t1 = (t − tmin)/(tmax − tmin). The value of t1 was associated

with a single color; for example, hues at the extremities of the color map correspond to tmin

and tmax, as needed. For the brain stem, cerebellum and subcortical structures, values for

area, thickness and curvature were unavailable from FS and their appropriate heat map

entries were drawn in white. Links were drawn between connectogram regions to illustrate

Irimia et al. Page 9

J Neurosurg Sci. Author manuscript; available in PMC 2014 September 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



connectivity density decreases whose values were more than two standard deviations below

their mean (thus indicating appreciable decreases in connectivity between time points).

Connections between regions whose connectivity could not be accurately computed due to

the presence of TBI-related isotropy were discarded from the analysis, and heat map entries

for structures which had been affected by pathology were drawn in gray. Further details on

the methodology for generating connectograms and guidelines for their interpretation are

available elsewhere61.

Figures 5–7 display the results of our structural, morphometric and connectomic analysis for

each patient. These figures show changes in each measure (cortical thickness, connectivity

density, local cortical area and Gaussian curvature) between the acute and chronic time

points. Regions whose quantitative metrics could not be computed accurately due to TBI

lesion-related loss of MR image contrast at the WM/GM boundary are grayed out. In Patient

1, widespread decreases in cortical thickness are observed in the right temporal lobe as well

as bilaterally in the supramarginal gyri. The ventral aspects of both occipital lobes also

appear to have been affected, as does the medial part of the left superior frontal gyrus. Areas

affected by appreciable connectivity density changes include the orbitofrontal areas of both

hemispheres, the postcentral sulcus of the LH, and the paracentral lobule of the RH, though

the entire cortex appears to have been diffusely affected. Extreme changes in Gaussian

curvature are observed for Jensen’s sulcus in the LH (adjacent to the left supramarginal

gyrus), bilaterally in the parahippocampal gyri, as well as in the left inferior occipital gyrus.

For Patient 2, decreases in cortical thickness are noteworthy in both hemispheres, the areas

most affected being the lateral aspect of the right temporal lobe (particularly the superior

temporal sulcus), where some extreme changes in Gaussian curvature are also observed. The

supramarginal gyrus is also affected by atrophy in the RH, whereas the superior parietal

lobule appears to have been affected bilaterally, though to a larger extent in the LH. Large

connectivity density changes are observed in the lateral aspect of the right temporal lobe.

The occipital lobes of both hemispheres have also experienced decreases in cortical

thickness, though more appreciably in the RH where extreme changes in cortical surface

area are also recorded. As in Patient 1, connectivity density losses are found to be diffuse—

though not uniform—over the cortex. In Patient 3, the supramarginal gyri of both

hemispheres have been notably affected by atrophy, as have the lateral and ventral aspects of

the left temporal lobe, especially within the inferior temporal sulcus of the LH. Additionally,

the supramarginal gyri exhibit large changes in Gaussian curvature and the left

supramarginal gyrus is found to have suffered from a large decrease in surface area. By

contrast, appreciable increases in surface area are seen in Jensen’s sulcus and in the

postcentral sulcus (LH only). As in Patients 1 and 2, connectivity losses are diffusely present

over the cortical surface.

Table 1 summarizes the results of the volumetric analysis performed on the non-cerebral

structures, in addition to the ventricular system (lateral, third and fourth ventricles). All

subcortical structures are found to exhibit appreciable decreases in volume, whereas the

ventricular system is found to exhibit a large volumetric increase in all three subjects, as

typically encountered in TBI62, 63. Cerebellar atrophy is additionally identified in each

subject, as documented by other studies as well64–67.
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Figures 8–10 display the connectograms which illustrate the atrophy experienced by each

patient 6 months after injury. In all cases, both intra- and inter-hemispheric connections

appear to have been affected by substantial atrophy. In the case of Patient 1 (Figure 8), only

7 parcels were affected by gross pathology at the acute time point, and the extent of atrophy

between regions was thus easier to calculate because the increase in isotropy associated with

the presence of pathology was not as extensive in this patient compared to the other two.

Generally speaking, Figure 8 reveals the presence of a WM atrophy pattern which is fairly

symmetric with respect to the longitudinal fissure, with pronounced loss of connectivity

between the frontal and temporal lobes, as well as between parietal and occipital cortices

bilaterally. In Figure 9 corresponding to Patient 2, WM atrophy could not be computed for

as many pairs of regions as in Patient 1 (Figure 8) because the left insula, left temporal lobe

and many portions of the left and right frontal lobes were damaged by the primary TBI.

Nevertheless, inspection of Figure 9 still reveals the presence of WM atrophy for

connections between the limbic and parietal lobes (bilaterally) and between frontal and

occipital regions. Finally, Figure 10 depicts the atrophy pattern experienced by Patient 3,

where extensive portions of the frontal lobes, insulae, limbic and temporal lobes were

affected by gross lesions at the acute time point. In this subject, appreciable atrophy is found

primarily among WM fibers connecting the left parietal and occipital lobes.

5. Discussion

Brain injury confronts translational neuroimaging researchers with daunting methodological

complexities, many of which remain unaddressed by the current state of the art. In many

paradigms for the study of brain plasticity after injury, one is often interested in how specific

damage to target locations in the nervous system affects brain structure and function68. Such

changes in brain organization can share numerous features across subjects in controlled

experiments where specific effects upon brain structure and function are sought in response

to specific lesions whose nature and location in the peripheral nervous system is well

defined (as, for example, in de-afferentation experiments). Hypothesis formulation in the

context of such experiments is facilitated by the fact that brain areas dedicated to basic

functions such as vision, olfaction and movement have been well studied in animal models

as well as in man. By contrast, TBI poses significant investigative difficulties because (1)

damage is often inflicted upon more than a single structural or functional area, (2) injuries

can affect brain regions and structures whose detailed functions have not been studied and

quantified rigorously, (3) inflicted injuries are heterogeneous across the TBI population, and

(4) diffuse axonal injury (DAI) prompted by TBI affects the structure and function of

various brain regions in ways which can be challenging to quantify reliably. For these

reasons, TBI is considerably more challenging to study than other conditions of the diseased

brain, both methodologically and conceptually. Partly for these reasons, there has been

insufficient progress towards combining personalized case description and characterization

with surgical and neuro-intensive care methods.

In many types of dementia, appreciable pathology-related commonalities in anatomic

alterations are shared across diseased populations, and standardized methodologies can be

formulated to situate patients within their cohorts for the purpose of statistical description

and inference. In TBI, however, damaged gray matter (GM) areas differ across the TBI
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population, and WM connections are also affected differently depending upon the direction

and force of impact as well as upon differences in cortical anatomy among subjects. The

availability of methodologies for generating personalized TBI atrophy profiles can therefore

be beneficial to the field of TBI clinical care.

The ability to generate longitudinal cortical atrophy profiles has become increasingly

important in TBI research for the purpose of predicting long-term functional deficits and

outcome. A study by MacKenzie et al.69 found that loss of consciousness is directly

associated with the extent of brain atrophy 11 months after injury, and highlighted the

importance of understanding the relationship between acute injury load, chronic atrophy

profiles and functional deficits. Blatter et al.62, on the other hand, found appreciable

correlation between brain atrophy and cognitive outcome, whereas Strangman et al.70

concluded that regional brain morphometry can predict memory rehabilitation outcome after

TBIs of all severities. The latter study also found that the volumetrics of prefrontal and

cingulate cortices could allow one to make accurate predictions of memory function

outcome, and that the magnitude of the prediction range provided by regional brain volumes

was in some cases almost equal to that provided by functional pretest scores on the outcome

variable. In a sample of 20 children with TBI, Wilde et al.71 noted decreased cortical

thickness in both frontal lobes at 3 months following injury, and additionally in the fusiform

and lingual areas at 18 months post-injury, with some regional atrophy measures having the

ability to predict behavioral regulation as quantified using neuropsychological testing.

The longitudinal effects of TBI upon brain structure are a topic which has received a

considerable amount of attention throughout the past few decades62, 69, 72, 73. This interest

has partly been motivated by the desire to understand how primary and secondary brain

injuries modulate long-term loss and/or recovery of function, and how acute neurosurgical

and neuropharmacological interventions can best be tailored to improve longitudinal

trajectories in TBI patients. On the one hand, the ability to quantify the relative vulnerability

of distinct brain regions may allow clinicians to classify case severity with a view towards

long-term outcome prognosis and towards evaluating each patient’s potential for recovery.

On the other hand, improved understanding of how WM integrity is affected by TBI could

one day allow one to understand the details of TBI-related functional deficits and the

mechanisms whereby information processing between different regions is affected by

longitudinal atrophy.

To date, the clinical significance of injury-related changes in brain shape has not been

explored comprehensively, and this review is the first to illustrate the calculation and

analysis of longitudinal changes in local brain curvature and surface area. Cortical maps of

these metrics may be of clinical interest because they can provide an appreciable amount of

insight regarding local patterns of change. One possibility is that positive changes in

Gaussian curvature suggest that the cortex locally exhibits sharper outward curving

chronically compared to the acute stage. A plausible scenario for this involves the situation

where GM at some location has been subjected to less atrophy compared to neighboring

points, such that the point of interest ‘stands out’ of the surface compared to surrounding

areas. Conversely, a negative change in curvature at some location can imply that the cortex

has become flatter compared to surrounding areas. Such a situation could be due to
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increased atrophy at the location of interest compared to neighboring points, which would

cause the surface to ‘sink in’. In the first case above, the increase in curvature may be due to

greater neuronal loss surrounding the location of interest, whereas in the second case there is

greater neuronal loss at the location of interest. Thus, cortical curvature analysis can reveal

how TBI differentially affects brain shape across adjacent cortical locations. Because this

type of insight cannot be obtained solely from knowledge of cortical thickness changes,

curvature analysis can provide structural information which is complementary to cortical

atrophy analysis. Changes in curvature may thus provide additional useful ways to

conceptualize and quantify detailed changes in cortical shape, and could provide useful

insight into TBI-related morphometry changes.

The availability of multiple longitudinal scans in a condition as temporally and spatially

dynamic as TBI can lead to improvement in the accuracy of morphometric and volumetric

calculations. In the three clinical examples presented, cortical morphometrics were

computed from MRI data acquired at two time points (~3 days and ~6 months after injury).

Additional intermediate longitudinal scans, however, can be incorporated into statistical

models designed to estimate how clinical care in the acute phase can decrease the rate of

atrophy in the long run. Such information would likely be beneficial for quantifying how

atrophy modulates patient outcome, as well as for improving clinical decision-making.

6. Conclusion

In conclusion, we here reviewed the current state of the art in TBI neuroimaging and

presented an approach for the quantification and visualization of cortical atrophy in the

human brain by means of MRI/DTI image analysis. An important advantage of the methods

presented is that they can provide timely information which may be useful for the

formulation of patient-tailored rehabilitation protocols. When applied in conjunction with

neuropsychological and neurophysiological measures, such an analysis could provide novel

insights into how each TBI patient responds to injury and treatment, and may benefit the

neuro-intensive care community by providing new ways to extract meaningful and clinically

useful information from dynamic measurements of brain structure in TBI.
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Figure 1.
Sample MR images displayed in radiological convention for three TBI cases. The sequence

types shown include T1, FLAIR and GRE. Red, yellow and blue arrows identify the

locations of three different insults which are visible using all three sequences.
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Figure 2.
Three-dimensional model of TBI anatomy for Patient 1 (acute baseline time point), as

generated in 3D Slicer. Non-hemorrhagic and hemorrhagic lesions are displayed in cyan and

red, respectively. The GM is shown using a transparent model.
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Figure 3.
As in Figure 2, for Patient 2.
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Figure 4.
As in Figure 2, for Patient 3.
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Figure 5.
Morphometric analysis for Patient 1. Shown are longitudinal changes (Δ) in cortical

thickness (A), connectivity density (B), cortical surface area (C) and Gaussian curvature (D)

from the acute to the chronic time point. Regions whose metrics could not be computed

accurately due to lesion-related loss of MR image contrast at the WM/GM boundary are

grayed out.
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Figure 6.
As in Figure 5, for Patient 2.
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Figure 7.
As in Figure 5, for Patient 3.
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Figure 8.
Connectogram representation of WM atrophy in Patient 1. The outermost ring shows the

various brain regions arranged by lobe (FR – frontal; INS – insula; LIM – limbic; TEM –

temporal; PAR –parietal; OCC – occipital; NC – non-cortical; BS – brain stem; CeB -

cerebellum) and further ordered anterior-to-posterior. The set of five rings (from the outside

going inward) use colors to encode the percentage change in the following five measures

over 6 months (from the acute to the chronic time point): GM volume, parcel area, mean

GM thickness, mean curvature, and degree of connectivity. A link is drawn between two

regions if the connectivity density of the connection represented by that link has experienced

a longitudinal decrease D which satisfies the inequality |D| ≥ μ (D) + 2σ (D), where μ (D)

and σ (D) denote the mean and standard deviation of D over all reconstructed WM

connections. Link transparency encodes |D| from its lowest value (faintest hue) to its highest

one (darkest hue). Heat map entries for structures which had been affected by gross

pathology are drawn in gray. For further details, see the Methods section.

Irimia et al. Page 25

J Neurosurg Sci. Author manuscript; available in PMC 2014 September 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 9.
As in Figure 8, for Patient 2.
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Figure 10.
As in Figure 8, for Patient 3.
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Table 1

Longitudinal volumetric changes for the ventricular system and non-cerebral structures.

patient

volume [cm3]

Δ [%]acute chronic

cerebellar WM 1 25.55 25.17 −1.5

2 28.17 23.36 −17.1

3 12.95 11.37 −12.2

cerebellar GM 1 100.80 87.40 −13.29

2 91.29 90.21 −1.18

3 53.03 52.72 −0.58

ventricular system 1 13.68 29.40 114.9

2 20.37 69.61 241.7

3 14.13 46.81 231.4

thalamus 1 15.59 12.33 −20.9

2 13.31 11.43 −14.1

3 6.91 6.49 −6.2

caudate nucleus 1 8.94 7.51 −16.0

2 6.46 5.19 −19.7

3 3.66 3.51 −4.1

putamen 1 13.40 10.94 −18.3

2 10.19 8.07 −20.7

3 5.68 4.77 −16.0

pallidum 1 4.18 3.66 −12.5

2 3.01 2.19 −27.3

3 1.26 1.10 −12.7

hippocampus 1 8.70 7.29 −16.2

2 7.15 6.12 −14.4

3 3.98 3.71 −6.7

amygdala 1 3.54 2.83 −20.0

2 2.54 2.00 −21.1

3 1.53 1.31 −14.2

J Neurosurg Sci. Author manuscript; available in PMC 2014 September 09.


