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Abstract

Rare variant tests have been of great interest in testing genetic associations with diseases and

disease-related quantitative traits in recent years. Among these tests, the sequence kernel

association test (SKAT) is an omnibus test for effects of rare genetic variants, in a linear or

logistic regression framework. It is often described as a variance component test treating the

genotypic effects as random. When the linear kernel is used, its test statistic can be expressed as a

weighted sum of single-marker score test statistics. In this paper, we extend the test to survival

phenotypes in a Cox regression framework. Because of the anticonservative small-sample

performance of the score test in a Cox model, we substitute signed square-root likelihood ratio

statistics for the score statistics, and confirm that the small-sample control of type I error is greatly

improved. This test can also be applied in meta-analysis. We show in our simulation studies that

this test has superior statistical power except in a few specific scenarios, as compared to burden

tests in a Cox model. We also present results in an application to time-to-obesity using genotypes

from Framingham Heart Study SNP Health Association Resource.
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Introduction

Rare genetic variants may account for some of the unexplained heritability in previous

genome-wide association studies (GWAS) [Eichler et al., 2010]. Single-marker tests, which

are commonly used in GWAS, have very little power to detect association with rare genetic

variants with small-to-moderate effect sizes. In recent years, rare variant tests that aggregate

information from multiple genetic markers within prespecified gene regions have been

proposed. One class of rare variants tests is the burden test (BT), which collapses genotypes

from multiple rare variants into a summary genetic burden score and tests the association

between the trait of interest and the burden score [Li and Leal, 2008; Madsen and Browning,

2009; Morgenthaler and Thilly, 2007; Morris and Zeggini, 2010]. In practice, this test can be

performed as a Wald test, a score test, or a likelihood ratio test (LRT), with or without

weights. Morris and Zeggini suggested use of the LRT in BTs [Morris and Zeggini, 2010].

BTs are most powerful when the proportion of causal variants is high and all causal variants

have the same direction of effects in the prespecified gene region tested. They have very

little power when causal variants with both protective and detrimental effects are present in

the test region [Wu et al., 2011].

Alternatively, other tests are performed without collapsing genotypes from multiple rare

variants [Neale et al., 2011; Pan, 2009; Wu et al., 2011]. The sequence kernel association

test (SKAT) is one of these tests [Wu et al., 2011]. It was developed as a score test on the

variance component parameter for the genetic random effects in linear and logistic mixed

effects models. The test statistic can be written as a weighted sum of single-marker score

test statistics when using the linear kernel, which can be applied in meta-analyses [Lee et al.,

2013; Lumley et al., 2012]. SKAT has several advantages over competing rare variant tests:

it is powerful when both protective rare variants and detrimental rare variants are present;

the score test requires fitting the null regression model only once; P-values are computed

analytically.

However, most rare variant tests to date were developed for binary or quantitative outcomes,

and little attention has been paid to rare variant tests for time-to-event outcomes. Cai et al.

[2011] developed a kernel machine approach to test the pathway effect on survival

outcomes, and Lin et al. [2011] extended this approach to test single nucleotide

polymorphism (SNP) sets of common genetic variants. These approaches may also be

applied as a rare variant test. However, the necessity of resampling to calculate P-values

increases the computational burden and prevents the popular use of these approaches in

genome-wide analyses.

In this article, we derive an SKAT score statistic for survival outcomes in a Cox

proportional hazard model framework. Assuming linear kernels, we rewrite this SKAT score

statistic as a weighted sum of single-marker score test statistics, which can be easily

obtained in standard statistical packages. However, it is well known that the score test in the

Cox model may be anticonservative when the effective sample size is small [Fleming et al.,

1987]. Thus, we propose replacing single-marker score test statistics by corresponding LRT

statistics. We illustrate in details how this approach can be applied in meta-analysis, without

having access to individual level data.
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In our simulation studies, we compare the SKAT approaches with BTs from the Cox model.

We demonstrate that our SKAT approach has higher power than BTs from the Cox model

when causal variants with both protective and detrimental effects are present in the test

region, or when the association signal is sparse. Finally, we illustrate our approach by

analyzing a time-to-obesity phenotype measured in the Original and Offspring Cohorts from

the Framingham Heart Study (FHS), using genotypes from SNP Health Association

Resource (SHARe).

Methods

SKAT in the Cox Proportional Hazard Model

We first define notations used throughout this section. Let yi = (ti, δi), i = 1, 2,…, n be

independent time-to-event observations with time ti and event/censoring indicator δi, Xi, and

Gi be row vectors of p covariates and q genotypes for individual i, then the Cox proportional

hazard model is

where β is p fixed effects for the covariates, and γ is q random effects for the genotypes,

with mean 0 and variance σ2Iq. W is a diagonal weight matrix. We are interested in testing

H0: σ2 = 0 vs. H1: σ2 > 0.

Let X be an n × p matrix with rows Xi, G be an n × q matrix with rows Gi, r be a vector of

martingale residuals estimated from the null model

then the SKAT statistic is

Let Σ be the covariance matrix of the vector WGTr under the null hypothesis, then

where λj are the eigenvalues of Σ, and  are independent chi-square distributions with 1

degree of freedom. Please see Appendix A for the derivation.

We also show in Appendix A that if zj are single-marker score test statistics (which follow a

standard normal distribution under the null hypothesis), the SKAT statistic can be written as
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where Σjj are the diagonal elements of the matrix Σ. In this formulation, we can replace

score test statistics zj by the square root of corresponding single-marker LRT statistics.

These two approaches are asymptotically equivalent, but may have different performance in

small samples.

Meta-Analysis

One advantage of writing the SKAT statistic as the weighted sum of single-marker test

statistics is the straightforward extension to meta-analysis, when individual level data are not

available. Assuming there are K cohorts in the meta-analysis, we only need covariance

matrices Σ(k) from each cohort, and single-marker test statistics zj(k) for each genetic variant

from each cohort. Then the summary SKAT statistic is

We note that single-marker test statistics zj(k) should be signed square root of LRT statistics

to reflect the directions of effects in different cohorts. Assuming the cohorts are

independent, then under the null hypothesis, Q follows a weighted sum of independent chi-

square distributions with 1 degree of freedom, with weights equal to the eigenvalues of

BTs in the Cox Proportional Hazard Model

In the Cox proportional hazard model

if γ is a vector with all elements γ0, then testing the genotypic effects is H0: γ0 = 0 vs. H1: γ0

= ≠ 0. This is a BT with the collapsed genetic burden score (weighted sum of genetic

variants) , where Gij is the j th element of vector Gi for individual i, and Wjj is

the j th diagonal element of the weight matrix W. The test can be performed as a Wald test, a

LRT, or a score test.
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Simulation Studies

We performed simulation studies to evaluate the empirical type I error rates and empirical

power for four statistical tests: 1. SKAT in the Cox proportional hazard model, using LRT

statistics from single-marker tests (Cox SKAT LRT); 2. SKAT in the Cox proportional

hazard model, using score test statistics from single-marker tests (Cox SKAT Score); 3. BT

in the Cox proportional hazard model, using LRT (Cox BT LRT); 4. BT in the Cox

proportional hazard model, using score test (Cox BT Score). In all simulation studies we

used Wu weights [Wu et al., 2011], which are the beta distribution density function with

parameters 1 and 25, evaluated at the minor allele frequency (MAF).

Type I Error—For each parameter setting, we simulated 4,000 genotype datasets with a

sample size of 2000 and 20 biallelic genetic markers with MAF randomly sampled from

Unif (0.005, 0.05). The linkage disequilibrium (LD) correlation between adjacent markers

was fixed at r = 0.5, and decays as an autoregressive model with order 1 for farther markers.

For each genotype dataset, 10,000 phenotype datasets including covariates: age ~ N (50, 52),

and sex ~ Bernoulli (0.5) were simulated.

The baseline (age = 50, sex = 0) survival time was simulated from a Weibull (2, 2) [Bender

et al., 2005]. Assuming proportional hazards, the survival time for an individual with

covariates age and sex was simulated from

where U was randomly sampled from Unif (0, 1).

We simulated four censoring schemes for the censoring time C: 1. C = ∞, no censoring; 2.

C ~ Unif (0, 10); 3. C ~ Unif (0, 5); 4. C ~ Unif (0, 2). Then we calculated the event time ti =

min(Ti, Ci) and event/censoring indicator δi = I(Ti ≤ Ci).

Power—For each parameter setting, we simulated 100 genotype datasets, and 10,000

phenotype datasets for each genotype dataset. We followed the same procedure as in type I

error simulations to simulate genotype datasets and covariates. The baseline (age = 50, sex =

0) survival time was also simulated from a Weibull (2, 2). Assuming proportional hazards,

the survival time for an individual with covariates age and sex, and genotypes gj(j = 1, 2, …,

q) was simulated from

We varied the proportion of causal markers from 20% to 50% and 80%, and we simulated

both same and opposite directions of effects. Causal markers were randomly selected for
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each phenotype replicate, and γj = 0 for neutral markers. For causal markers, the effect size

is

where MAFj is the MAF of marker j, D is the genotype correlation matrix for the 20

markers, and v is a vector indicating the directions of causal markers in each replicate. The

constant c was fixed at 0.01 in all scenarios. The censoring scheme was the same as in type I

error simulations. Empirical power was calculated at the significance level of 0.001.

We also performed two additional simulation studies to compare the methods in scenarios

when the association signal is sparse. We simulated 20 biallelic genetic markers as in

previous simulation studies, with only two of them causal in the same direction. We also

simulated four biallelic genetic markers with correlation between adjacent markers fixed at r

= 0.5, and decays as an autoregressive model with order 1 for farther markers, with two

causal markers with the same direction of effect.

Results

Type I Error Simulations

Empirical type I error rates of four methods at significance levels 0.05, 10−3, 10−4, and 2.5 ×

10−6 from simulation studies are presented in Table 1. The Cox SKAT Score is conservative

at low alpha levels when there is no censoring or when the proportion of censoring is low or

modest, but anticonservative when the proportion of censoring is high. This is also evident

in supplementary Figure S1, where points corresponding to Cox SKAT Score P-values are

below the reference line of uniform distribution, and more apparently in Figure 1, where

points corresponding to Cox SKAT Score P-values are above the reference line. The Cox

BT Score is generally anticonservative at low alpha levels in all censoring scenarios, as also

seen in supplementary Figures S1–S3 and Figure 1.

In all censoring scenarios, Cox SKAT LRT and Cox BT LRT have empirical type I error

rates close to corresponding significance levels, at all four alpha levels. Score tests have

inflated type I error rates in certain scenarios. In subsequent power simulation studies, we

only compared Cox SKAT LRT and Cox BT LRT.

Power Simulations

We present empirical power results from 1 million simulation replicates in the scenario

where 50% of total genetic variants are causal in Figures 2 and 3. Figure 2 indicates that

Cox BT LRT is more powerful than Cox SKAT LRT when all causal variants have the same

direction of effects, and Figure 3 suggests that Cox BT LRT has almost no power when 50%

of causal variants have positive effects and the other 50% have negative effects.
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We also present in supplementary Figures S4 and S5 empirical power results from 1 million

simulation replicates in the scenario where 80% of total genetic variants are causal, and in

supplementary Figures S6 and S7 empirical power results from the scenario where 20% of

total genetic variants are causal. The conclusions are the same as in Figures 2 and 3: Cox

SKAT LRT is most powerful when causal variants have different directions of effects, but

slightly less powerful than Cox BT LRT when all causal variants have positive effects.

When only 2 of 20 (10%) genetic variants included in the test are causal, Cox SKAT LRT

outperforms Cox BT LRT, even when causal variants have the same direction of effects

(supplementary Figure S8), although the difference is small. Cox SKAT LRT has similar

power with Cox BT LRT when 2 of 4 genetic variants included in the test are causal with

the same direction of effects (supplementary Figure S9).

Application to Framingham Heart Study Data

The Original Cohort from the FHS was initiated in 1948 and included 5,209 participants

from the town of Framingham, MA, with roughly equal numbers of men and women. These

Original Cohort participants have undergone physical evaluations for cardiovascular disease

and related risk factors roughly every 2 years. In 1971, the Offspring Cohort, consisting of

5,124 offspring from Original cohort members and their spouses, were recruited in the

study. The Offspring Cohort participants have attended physical exams approximately every

four years. We performed a genome-wide sliding window analysis in unrelated individuals

from the FHS Original and Offspring Cohorts to illustrate our method and investigate its

performance on real data. We have collected age and body mass index (BMI) data from 27

physical examinations for the Original Cohort and from eight physical examinations for the

Offspring Cohort. We excluded individuals with BMI >30 at baseline and calculated time-

to-obesity as the phenotype, where obesity was defined as having BMI >30. We selected

1,629 unrelated individuals with genotypes available in SHARe (955 cases and 674

controls), and performed the analysis using Cox SKAT LRT and Cox BT LRT, adjusting for

sex, baseline age, cohort and first 10 principal components [Price et al., 2006]. We used a

sliding window method to define the region to be analyzed. For each window of width 100

kb, with 50 kb each overlapping with the previous and subsequent windows, we included all

SNPs regardless of MAF or annotation information. We used Wu weights [Wu et al., 2011]

in the analysis.

We obtained 55,616 windows in total. After removing 3,353 windows with 0 or 1 genetic

variant, we had results from 52,263 windows, with the number of genetic variants ranging

from 2 to 93 with median 17. We did not find any genome-wide significant associations at

the significance level of 1.0 × 10−6. In Figure 4, we present the P-values from this analysis,

and we can see that points are very close to the reference line of uniform distribution.

In addition to the genome-wide sliding window analysis, we performed a candidate gene

study to test the association between obesity risk and 8 genes previously reported [Speliotes

et al., 2010] to be associated with BMI and biologically meaningful: MC4R, BDNF, SH2B1,

POMC, GIPR, HMGCR, TUB, and HMGA1. We used the same individuals as in the

genome-wide sliding window analysis, and performed Cox SKAT LRT and Cox BT LRT

adjusting for the same covariates. We restricted our analysis to SNPs within 50 kb of each
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gene and used Wu weights [Wu et al., 2011]. We present the candidate gene study results for

the eight genes in Table 2. After correcting for multiple testing using a Bonferroni

procedure, we failed to detect any association at the family-wise significance level of 0.05

(experiment-wise significance level of 0.05/8 = 0.00625). The lowest P-value from Cox

SKAT LRT was 0.0084 (compared to 0.049 from Cox BT LRT) from HMGA1, which had

11 SNPs in our sample.

Discussion

In this paper, we propose an extension of SKAT to rare genetic variant analysis using a Cox

proportional hazard model to analyze time-to-event outcomes. Such outcomes are common

in genetic association studies, and the extension of SKAT to Cox regression is important

because it provides an omnibus, flexible, and computationally easy way to test the

association between a survival outcome and a set of genetic markers in a gene or genomic

region. We show in our simulation studies that SKAT using score statistics has inflated type

I error in the Cox proportional hazard model, when analyzing rare genetic variants. We

propose an alternative, SKAT using likelihood ratio statistics from single-marker tests, to

substitute for the score statistics. Asymptotically, the LRT is equivalent to the score test, but

with a limited sample size and low minor allele frequencies, the LRT performs better than

the score test in attaining the correct type I error rates when using Cox SKAT. In practice,

the score test is expected to have the advantage of taking less time than the LRT, as the

model only needs to be fit once. In the sliding window analysis on chromosome 1 of our real

data example, Cox SKAT Score takes 504 sec CPU time on a single computing node on our

cluster, while Cox SKAT LRT takes 1,575 sec CPU time on the same node.

Our formulation of the SKAT statistic also facilitates rare variant analysis on time-to-event

outcomes in the context of large-scale multicohort meta-analysis. This is desired in meta-

analysis consortia where researchers can share analysis results but generally have no access

to individual level data from another cohort. Meta-analysis can be easily performed using

analysis results from multiple cohorts. The test statistic and null distribution are equivalent

to the single cohort test when there is only one cohort.

Although the kernel machine score test on survival outcomes proposed by Cai et al. [2011]

is a general and flexible approach which can take different kernels, statistical significance is

evaluated by resampling. Moreover, the performance of this test in rare genetic variant

analysis has not been investigated before. This general kernel machine score test takes

martingale residuals from the null model, and it is easy to show that the first term in their

test statistic is equivalent to Cox SKAT score test when a linear kernel is used. However, as

we show in this paper, when analyzing rare genetic variants, Cox SKAT score test suffers

from inflated type I error if P-values are computed analytically, although the resampling

procedure should still be valid. Alternatively, when using the LRT version of Cox SKAT,

we can still compute P-values analytically, and we have shown in this paper that it maintains

correct type I error rates in various scenarios. Recently, Lee et al. [2012] proposed a small

sample adjustment procedure for SKAT, based on a higher moments matching method. It

works well for unbalanced case-control designs. This method could potentially be adapted to

Cox SKAT when analytical P-values are conservative.
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For survival outcomes, SKAT is less powerful than BTs in our simulation studies when all

causal variants have the same direction of effects and the proportion of causal variants is not

small, but more powerful otherwise. This is in line with findings on continuous and

dichotomous outcomes by Wu et al. in the original SKAT paper [Wu et al., 2011], and also

by Chen et al. in SKAT for quantitative outcomes in related individuals [Chen et al., 2013].

We did not find any genome-wide significant associations with time-to-obesity in our

analysis of FHS Original and Offspring Cohorts. One reason might be that the genotypes we

used from SHARe were from SNP arrays that were originally designed for GWAS, and

genotyped genetic variants were very sparse. However, we were able to confirm from our

genome-wide sliding window analysis that Cox SKAT LRT does not have elevated type I

error rates in this real data example, as the P-values are very close to a uniform distribution.

We did not find significant associations in our candidate gene study of eight genes either.

We hope to revisit this example when whole-genome sequencing data become available in

FHS.

With recent technology advances in next-generation sequencing, rare genetic variants have

become of great interest in genetic association studies, and SKAT with the linear kernel has

proven to be a powerful and computationally efficient rare variant analysis approach in

analyzing quantitative and dichotomous outcomes. Our approach proposed in this paper is a

direct extension of SKAT with linear kernel. Compared with the general kernel machine

approach proposed by Cai et al. [2011] and Lin et al. [2011], it is easier in computation as it

calculates P-values analytically, although it loses the flexibility of using other kernels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Derivation of the SKAT Statistic in the Cox Proportional Hazard Model

The log partial likelihood with respect to β and γ (using Efron’s method for ties) is

where
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Let τ1 ≤ τ2 ≤ ··· ≤ τl be ordered failure times, for any failure time τj, let

be the index within ties at that failure time (0 ≤ mj ≤ nτj− 1). Let P be an n × l matrix with

elements

Then  is the cumulative hazard for individual i at time ti, and δi −

ei(β, γ) is the martingale residual for known β, γ. Let V = diag(e1, e2,…, en) − PPT, X be an n

× p matrix with rows Xi, G be an n × q matrix with rows Gi, δ and e be column vectors with

elements δi and ei. Some calculation shows

The log likelihood with respect to β and σ2 can be written as

Let

then
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Similar with the case in continuous and dichotomous outcomes, we take twice the first term

as the SKAT statistic

By the central limit theorem we have

let

then under the null hypothesis

where λj are the eigenvalues of Σ, and  are independent chi-square distributions with 1

degree of freedom.

Alternatively, for each single genetic marker gj (which are columns of the matrix G), the

score test statistic (scalar) is

The SKAT statistic can be written as a weighted sum of single-marker test statistics. This is

another way of expression.
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Figure 1.
Quantile–Quantile plot for type I error simulation results from high proportion of censoring

scenario. P-values from 40 million simulation replicates using four methods are plotted

against expected P-values (uniform distribution on (0, 1)). The censoring time was randomly

sampled from a uniform distribution on (0, 2), corresponding to 74.2% median censoring

proportion in 40 million replicates. We simulated 20 genetic variants and the total sample

size was 2000.
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Figure 2.
Power simulation results from 10 positively associated and 10 neutral genetic variants.

Empirical power evaluated at the significance level of 0.001. The total sample size was

2000.
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Figure 3.
Power simulation results from five positively associated, five negatively associated, and 10

neutral genetic variants. Empirical power evaluated at the significance level of 0.001. The

total sample size was 2000.
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Figure 4.
Quantile–Quantile plot for the sliding window analysis on time-to-obesity in Framingham

Heart Study. P-values from Cox SKAT LRT and Cox BT LRT are plotted against expected

P-values (uniform distribution on (0, 1)). Unrelated individuals were selected from the

original and offspring cohorts in Framingham Heart Study. Genotypes from SNP Health

Association Resource were used in the genome-wide sliding window analysis with width

100 kb.
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