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Abstract

Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the

public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large

part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies

have investigateddeepopsinevolutionusingalternativedata setsandreachedcontradictory results.Here,we integratedthedataand

methods of three, key, recent studies to further clarify opsin evolution.We show that the opsin relationships are sensitive to outgroup

choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all

comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in

Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a

traditional animal phylogeny where Ctenophora are not the sister group of all the other animals.
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Incongruences in Opsin and Animal
Evolution

As G-protein-coupled receptors that mediate light detection

across most animal lineages (Feuda et al. 2012; Rivera et al.

2012) opsins are key to understanding the origins and evolu-

tion of light sensitivity, eyes, and vision. Based on studies in

bilaterian animals, opsins have been classified into three sub-

families: The ciliary (C–), rhabdomeric (R–), and Go-opsins

(Terakita 2005). Opsins of these three subfamilies couple

with different G-proteins allowing for the simultaneous exis-

tence of multiple light-dependent signaling pathways. Where

known, C-opsins couple with G-proteins of the Ga (i/t)-type,

Go-opsins usually couple with Ga (o) or Ga (s), and R-opsins

with Ga (q) (Terakita 2005; Koyanagi et al. 2008). Many

hypotheses of opsin evolution have been proposed, but

consensus has remained elusive (e.g., Terakita 2005;

Plachetzki et al. 2007; Suga et al. 2008; Porter et al. 2011;

Feuda et al. 2012; Schnitzler et al. 2012). In particular, two

recent studies analyzed complementary data sets, reaching

very dissimilar conclusions with conflicting implications

for opsin origins, and our understanding of early animal

evolution

The first study by Feuda et al. (2012) found sequences from

Placozoa (that they called “placopsins”) to be the sister of all

known animal opsins, and consistent with other studies, they

found melatonin receptors (MLTs, Fredriksson et al. 2003;

Srivastava et al. 2010; Feuda et al. 2012) to be the closest

outgroup to opsins + placopsins. Placopsins remain function-

ally uncharacterized, and because they lack the retinal-binding

lysine, they might not function in light reception (Feuda et al.

2012). By using “Placopsins" and the MLTs (as outgroups to

opsins), Feuda et al. found that known cnidarian opsins

belong to one of the three known bilaterian opsin subfamilies

(the C–, R–, or Go-opsins). R-opsins were previously unknown

in Cnidaria, and no cnidarian opsin was yet known to couple

with Ga (q), leaving some doubts about the nature of the

sequences that Feuda et al. (2012) identified as R-opsins.

However, a cnidarian opsin from the staghorn coral

(Acropora palmata) has recently been shown to have an in

vitro functional association with a putative Ga (q) (Mason et al.
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2012). This suggests that this sequence (Acropsin3) might be a

functional R-opsin, but its phylogenetic relationships remain

uncertain. The scenario proposed by Feuda et al. (2012) to

explain their results suggests that visual opsins evolved after

Placozoa separated from Cnidaria and Bilateria but before the

latter separated from each other. Feuda et al. (2012) did not

have data for Ctenophora (i.e., the comb jellies). However,

given previous phylogenomic results (Philippe et al. 2009,

2011; Dohrmann and Wörheide 2013; Nosenko et al. 2013)

suggesting that Ctenophora, Cnidaria, and Bilateria are more

closely related with each other than they are with the sponges

and the Placozoa, they concluded that their results were com-

patible with a traditional view of animal evolution (an hypoth-

esis we refer to as “Neuralia”). Differently from Nielsen

(2012), Neuralia is here to be interpreted as simply stating

that Bilateria, Cnidaria, and Ctenophora shared a common

ancestor to the exclusion of the Placozoa and the sponges,

irrespective of whether, within Neuralia, Cnidaria and

Ctenophora form monophyletic Coelenterata (Philippe et al.

2009, 2011; Nosenko et al. 2013) or a paraphyletic group

where Ctenophora is closer to Bilatera than it is to Cnidaria

(Nielsen 2012).

The second recent study, by Schnitzler et al. (2012), ana-

lyzed a data set including three opsins from the genome of the

ctenophore Mnemiopsis leydi (Ryan et al. 2013) and found

one of these opsins (Mnemiopsis3) to emerge as the sister

of all remaining animal opsins. These results can be considered

to be consistent with analyses suggesting that Ctenophora are

the sister group of all the other animals, rather than neura-

lians. A hypothesis we refer to as “Ctenophora-early” (Dunn

et al. 2008; Hejnol et al. 2009; Ryan et al. 2013; Moroz et al.

2014). The results of Schnitzler et al. (2012), if correct, imply

that opsins emerged in the stem animal lineage, that sponges

have secondarily lost their opsins, and that the placopsins have

secondarily lost their retinal-binding lysine.

Understanding Opsin Evolution
through Data and Methods Integration

We synthesized the studies of Feuda et al. (2012), Mason et al.

(2012), and Schnitzler et al. (2012). These studies were pub-

lished nearly contemporaneously and will benefit from the

complementary nature of the data (see supplementary table

S1, Supplementary Material online, for a list of all considered

sequences and taxa) and analyses they presented. For exam-

ple, a primary conclusion of Feuda et al. (2012)—that cnidar-

ians possess all three subfamilies of known bilaterian opsins

rests on the inclusion of two sequences from the cnidarian

Nematostella vectensis (13116 and 33918) for which there is

no clear evidence of expression and that seem to lack (at the

least) a canonical start codon. Although functional cnidarian

orthologs to Nematostella 13116 and 33918 were not avail-

able to Feuda et al. (2012), Acropsin3 (from the staghorn coral

A. palmata) is now available. Importantly, its in vitro functional

association with a putative Ga (q) is consistent with this gene

being a functional R-opsin and including Acropsin3 in phylo-

genetic analyses will provide a key test of the hypothesis that

cnidarians possess R-opsin orthologs. If Acropsin3 will be

found to cluster together with the putative R-opsins identified

by Feuda et al. (2012), and if this group is found to represent

the sister group of the bilaterian R-opsin, the confidence in the

R-opsin nature of these cnidarian sequences will substantially

increase. On the contrary, if Acropsin3 is not found to cluster

with the putative cnidarian R-opsins identified by Feuda et al.

(2012), our confidence on the existence of R-opsins in cnidar-

ians will substantially decrease. Similarly, a primary conclusion

of Schnitzler et al. (2012), that Mnemiopsis3 is the sister group

of all animal opsins, rests on the assumption that their opsin

topology is not affected by tree-reconstruction artifacts. Yet, it

has been argued in a number of studies that ctenophorans

rather than representing the sister group of all the other an-

imals (Dunn et al. 2008; Hejnol et al. 2009; Ryan et al. 2013;

Moroz et al. 2014) might simply be a fast-evolving neuralian

lineage that emerges deeply in phylogenetic analyses when

tree reconstruction artifacts are not corrected (Pick et al. 2010;

Philippe et al. 2011; Dohrmann and Wörheide 2013; Nosenko

et al. 2013). To minimize the impacts of tree reconstruction

artifacts in data sets including fast-evolving sequences, the use

of well-fitting substitution models and close outgroups are key

(Rota-Stabelli and Telford 2008; Philippe et al. 2011; Feuda

et al. 2012). However, Schnitzler et al. (2012) used a set of

outgroups (the Muscarinic, acetylcholine, and somatostatin

receptors) that are distantly related to the opsins. This was

shown in previous analyses of the Rhodopsin-like GPCRs

(Fredriksson et al. 2003; Srivastava et al. 2010; Feuda et al.

2012), which pinpointed the MLTs as the most likely outgroup

of the opsin family. Further to that, Schnitzler et al. (2012)

used a substitution model (WAG + G), which was shown by

Feuda et al. (2012) not to fit opsin alignments well. Both these

factors, which were addressed by Feuda et al. (2012), might

have negatively influenced the analyses of Schnitzler et al.

(2012). Interchanging the original outgrup sequences used

by Schnitzler et al. (2012) with those of Feuda et al. (2012)

and analyzing the resulting data set under GTR + G (as in

Feuda et al. 2012) is key to test the claims of Schnitzler

et al. (2012). Overall, the integrative approach taken in our

study should allow a much better clarification of early opsin

evolution.

Outgroup Choice Is a Key Determinant
of Ingroup Opsin Relationships

We began from two published data sets that we refer to as

SEA Schnitzler et al. (2012) and FEA Feuda et al. (2012). We

added new data to each and refer to the modified data sets by

adding an “m” and a numerical index. We generated three

data sets: SEAm1, SEAm2, and FEAm1. In SEAm1, we

replaced the SEA’s original outgroups with the more closely

Comb Jelly Opsins and Animal Phototransduction GBE

Genome Biol. Evol. 6(8):1964–1971. doi:10.1093/gbe/evu154 Advance Access publication July 24, 2014 1965

,
s
,
-- 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu154/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu154/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu154/-/DC1
 --
While
cropora
-
,
,
receptors 
that
,
s
+
,
`
'


related MLTs (Fredriksson et al. 2003; Srivastava et al. 2010;

Feuda et al. 2012). In SEAm2, we added, as a second closely

related outgroup, the Placopsins of Feuda et al. (2012).

FEAm1 was generated adding to FEA all new ctenophoran

(Schnitzler et al. 2012) and acroporan (Mason et al. 2012)

opsins. Feuda et al. (2012) showed that GTR + G fits opsin

alignments significantly better than any other available

model including all empirical among-site heterogeneous

models of the CAT-family (Lartillot and Philippe 2004;

Quang et al. 2008). Here, we performed posterior predictive

analyses of saturation to further test the fit of the GTR + G

model to the data and evaluate whether this model

adequately (sensu Goldman 1993) fits the data. This test

showed that GTR + G quite faithfully predicts homoplasy in

the opsin data, that is, it adequately fits the data and fits

much better than the WAG + G model used by Schnitzler

et al. (2012) (table 1 and supplementary fig. S1,

Supplementary Material online).

We find that, despite differences in fit (see above), model

choice did not affect the opsin phylogeny (compare fig. 1b

and c with supplementary fig. S2a and b, Supplementary

Material online, and fig. 2 with supplementary fig. S3,

Supplementary Material online). Differently, outgroup choice

had an important effect on the position of the critical

a) b) c)

FIG. 1.—Results of the analyses of SEA, SEAm1, and SEAm2 under GTR+ G. (a) Results of SEA original data set under GTR + G showing Mnemiopsis3 as

the sister of all the other animal opsins. This is the same result that was obtained by Schnitzler et al. (2012) and indicates that model choice, GTR+ G here and

WAG + G in the study by Schnitzler et al. (2012), is not affecting tree reconstruction. (b) Results of the analysis of the SEA data set but using the MLTs as the

only outgroups. In this tree, Mnemiopsis3 is not the sister group of all the other opsins, indicating the importance of outgroup selection in opsin analyses. (c)

Results of the analysis of the SEA data set but using the MLTs and placozoans opsin-like sequences (Placopsins) as outgroups. Addition of the Placopsins does

not change the relationships of Mnemiopsis3 but allow the recovery of a monophyletic Go-opsin group. Supplementary figure S2, Supplementary Material

online, shows that the results of the data sets analyzed in figures 1b and c holds also under WAG + G.

Table 1

Posterior Predictive Analysis of Saturation

Models

WAG GTR

Observed Predicted P Observed Predicted P

Substitutions 65.4727�1.1915 63.8521� 1.5705 0.04 71.4523�1.41065 71.5064� 1.73156 0.51

Homoplasy 52.4011�1.13881 49.5447� 1.52248 0 58.443�1.37283 57.4735� 1.7008 0.15

NOTE.—The difference in fit between the WAG and the GTR matrix to the opsin data is presented. It can be seen that under WAG, both the number of substitutions and
the amount of homoplasy in the data are systematically underestimated and that the difference between observed and predicted homoplasy and substitutions are both
significant. This indicate a poor fit of the of WAG +G model to the data. Differently, under GTR+ G, both the observed substitutions and the homoplasy can be better
predicted, and the difference between these values is never significant. See the PhyloBayes manual (Lartillot et al. 2007) for details about the posterior predictive test here
performed, and see supplementary figure S1, Supplementary Material online, for a graphical representation of the results in this table.
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Mnemiopsis3 gene. Figure 1a presents the tree obtained an-

alyzing the original SEA data set under GTR + G. As pointed

out above, even though GTR + G fits the data better than

WAG + G (the model used by Schnitzler et al. 2012), the

GTR + G and the WAG + G tree are the same. In contrast,

our analyses of SEAm1 and SEAm2 show that outgroup

choice dramatically affected phylogenetic inferences. When

the MLTs are used as the outgroup (fig. 1b) the important

Mnemiopsis3 gene does not emerge as the sister of all the

other opsins. Instead, it emerges as the most divergent

member (posterior probability [PP] = 0.75) of a ctenophoran-

specific clade that includes all ctenophoran opsins.

This ctenophoran-specific opsin group in then nested within

the C-opsin subfamily (albeit with low support PP = 0.55). The

further addition of the “Placopsins" (SEAm2, fig. 1c) results in

the recovery of a monophyletic Go-opsin clade (PP = 0.66) and

increases the support for an association of the ctenophoran-

opsins with the C-opsins (P = 0.81). Figure 2 shows that also

using FEAm1, Mnemiopsis3 does not emerge as the sister of

all the other opsins. Instead, it appears as a divergent Go-opsin

(PP = 0.97). For this data set, that we deem more reliable (see

below the approximately unbiased [AU] test results), we also

implemented sh-like bootstrap support values (SHB) and their

Bayesian counterparts (aBayes support values [aBS]). Using

FIG. 2.—Results of the analyses of FEAm1 under GTR+ G. The tree indicates that Mnemiopsis3 is not the sister group of all the other opsins, that

Ctenophoran lost their R-opsins and most likely their C-opsins, and that Cnidarians possess R-opsins. Support values are from top to bottom PP (bold values),

Sh-like bootstrap, and aBayes bootstrap. Supplementary figures S3, Supplementary Material online, show that the results obtained from the analysis of

FEAm1 under GTR +G hold also under WAG + G.
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SBH and aBS, support for Mnemiopsis3 as a Go-opsin is highly

significant (0.88 and 0.99, respectively). All other ctenophoran

opsins form a monophyletic group with as yet functionally

uncharacterized cnidarian Go-opsins (PP = 0.51; SHB = 0.67;

aBS = 0.99). Also for these sequences, the association with

the Go-opsins is highly significant using the SHB and the

aBS (fig. 2). The AU test (table 2), when applied to FEAm1,

significantly rejected the possibility that Mnemiopsis3 could be

the sister group of the other animal opsins (P = 0.005). This

points out that FEAm1 is sufficiently informative to signifi-

cantly differentiate alternative hypotheses of ctenophoran-

opsins relationships. In contrast, when performed using SEA,

SEAm1, and SEAm2, the AU test (table 2) proved indecisive,

suggesting SAE does not convey a strong enough signal to

allow the significant discrimination of alternative opsin phy-

logenies. Given that SEA does not seem to convey sufficient

signal to discriminate between alternative hypotheses of cte-

nophoran-opsin relationships, we further focused on FEAm1

only and performed a posterior predictive analysis of compo-

sition, and a principal component analysis (PCA) of amino acid

frequencies, to evaluate whether our results might have been

affected by compositional biases. The posterior predictive

analysis (supplementary table S2, Supplementary Material

online) identified few compositionally heterogeneous se-

quences (P<0.05). PCA (supplementary fig. S4,

Supplementary Material online) shows that there is substantial

homogeneity of composition among outgroups and other

opsins, once the heterogeneous sequences in supplementary

table S2, Supplementary Material online, are excluded.

Outgroups sequences are well spread across the principal

axis, albeit few outgroups form a tail. Irrespective of that,

there is no clustering of outgroups and ingroup sequences,

indicating that attraction artifacts (see Rota-Stabelli et al.

2013) should not affect our analyses that exclude sequences

identified as heterogeneous by the posterior predictive analy-

sis (reported in supplementary fig. S5, Supplementary Material

online). Interestingly, this analysis (supplementary fig. S5,

Supplementary Material online) identifies all ctenophore and

cnidarian Go-opsins (including Mnemopsis3) as members of a

monophyletic group. The same result is obtained (supplemen-

tary fig. S6, Supplementary Material online) when an analysis

is performed that takes into account the covarion structure in

the data (even though this analysis could not be run to con-

vergence). This is what one would expect if Ctenophora were

neuralians belonging to the traditionally recognized

Coelenterata (i.e., Cnidaria plus Ctenophora—albeit the sup-

port for this group is not significant PP = 0.5). In addition,

analyses of FEAm1 (fig. 2) further suggest that cnidarians

have R-opsins, as the Ga (q)-binding Acropsin3 is found to

cluster with the putative cnidarian R-opsins (PP = 0.94) of

Feuda et al. (2012), and this result is invariant to the exclusion

of compositionally heterogeneous opsin sequences (supple-

mentary fig. S5, Supplementary Material online). However,

lower SHB and aBS for this group (0.18 and 0.47, respectively,

fig. 2) indicate that some instability affect this node. As more

cnidarian opsins will become available in the future, the sta-

bility of this node could be further tested.

Opsins and Early Animal Evolution:
Reciprocal Illumination

Our results show that the phylogenetic position of

Mnemiopsis3 is outgroup dependent and sensitive to the in-

clusion of compositionally heterogeneous opsins in the data

set. We conclude that the use of distant outgroups in

Schnitzler et al. (2012) destabilized opsin ingroup relationships

through the exacerbation of saturation-dependent artifacts, as

shown previously for a different opsin data set (Plachetzki et al.

2007). Overall, our analyses suggest that cnidarians possess

R-opsins (albeit this node is still somewhat unstable). This is

because the acroporan opsin shown by Mason et al. (2012) to

interact with Ga (q) groups with the putative R-opsins

identified by Feuda et al. (2012). By turn, these opsins group

with the Ga (q) binding, bilaterian R-opsins. We could not

identify ctenophorans (or at the very least M. leydi) R-opsins.

Because all other ctenophoran opsins emerge as either C or

Go-opsins (depending on the data set used, figs. 1 and 2), a

parsimonious interpretation is that the R-opsins and either the

Go-opsins (according to SEAm, fig. 1) or most likely their C-

opsins (as from the results of FEAm, fig. 2) have been lost or

not yet detected in Ctenophora. These absences would repre-

sent secondary losses irrespective of whether Ctenophora-

early or Neuralia is correct. However, more generally, our in-

terpretation of the evolutionary history of opsin gene

Table 2

AU Test Results

Hypothesis Data Set

SEA SEAm1 SEAm2 FEAm1

Mnemopsis3 is not the sister of all other opsins 0.437 0.228 0.297 0.995

Mnemopsis3 sister of all other opsins 0.563 0.772 0.703 0.005*

NOTE.—Topologies used for the AU test are those of figures 1 and 2 (in the case of SEA, SEAm1, SEAm2, and FEAm1, respectively).
These trees were manually modified, by moving Mnemopsis3, to represent the alternative possible placement for this opsin sequence
(in each considered case).

*Significant results.
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duplications and deletions depends on a correct interpretation

of the relationships of the nonbilaterian animals. If

Ctenophora-early is correct, R–, C–, and Go-opsins emerged

in the stem-metazoan lineage. After that, a secondary (lineage

specific) deletion would have caused ctenophorans to lose

their R-opsins and either their C– or Go-opsins (figs. 1 and

2). In addition, under the Ctenophora-early hypothesis,

sponges must have secondarily lost all their opsins, whereas

Placozoa retained a divergent type of opsin (that might not

function in light detection—the Placopsins). This scenario is not

particularly parsimonious. Differently, if Neuralia is correct, as

proposed in Feuda et al. (2012) scenario, C–, R–, and Go-

opsins emerged in the stem neuralian ancestor, sponges

never had opsins, and the placopsins represent the sister

group of all other animal opsins (a more parsimonious recon-

struction). The discovery of a Ctenophora-specific opsin found

to be the sister of all the other opsins, as in Schnitzler et al.

(2012), might be seen as evidence corroborating the scenario

underpinned by the Ctenophora-early hypothesis. However,

this could only be the case if Ctenophora were also shown not

to have opsins belonging to the bilaterian subfamilies (C–, Go-,

and R–), which is not the case when using close opsin out-

group genes, as ctenophorans have opsins belonging to the

C + Go Cluster (Schnitzler et al. 2012) and figure 1a. It follows

that the “basal” position of Mnemopsis3 in Schnitzler et al.

(2012) and in figure 1a is better seen as a possible tree-recon-

struction artifact. Indeed, if ctenophores are fast evolving (Pick

et al. 2010; Philippe et al. 2011; Dohrmann and Wörheide

2013; Nosenko et al. 2013), and precautions are not taken

to avoid tree reconstruction artifacts, their most divergent

opsins (e.g., Mnemiopsis3) would be expected to cluster at

the base of the opsin tree.

To minimize attraction artifacts, outgroup choice is key.

Schnitzler et al. (2012) used outgroups that are not closely

related to the opsin family (Fredriksson et al. 2003;

Srivastava et al. 2010; Feuda et al. 2012). Our results, derived

using close opsin outgroups (MLTs and placopsins, Fredriksson

et al. 2003; Srivastava et al. 2010; Feuda et al. 2012), corrob-

orate the view that Mnemiopsis3 is a divergent (i.e., fast evolv-

ing) opsin of bilaterian type (either a Go- or a C-opsin), not the

sister of all other animal opsins. Our results show that opsins

underwent a series of duplications before the separation of

Cnidaria, Ctenophora, and Bilateria (as postulated by Feuda

et al. (2012)). After that, Ctenophora (or at the least M. leydi)

lost their R-opsins and either their C– (figs. 2 and supplemen-

tary figs. S3 and S5, Supplementary Material online) or less

likely their Go-opsins (fig. 1).

Results of the analyses of a single protein family cannot

represent a test of the animal phylogeny. Therefore, whether

the animal opsins emerged in a stem metazoan (as implied by

Schnitzler et al. 2012) or in a stem neuralian (as suggested by

Feuda et al. 2012) remains unclear. Nevertheless, given the

lack of opsins in sponges, lack of a retinal-binding lysine in the

placopsins, and the clustering of cnidarian and ctenophoran

sequences in figure 2 and supplementary figures S3 and S5,

Supplementary Material online, it is clear that opsin evolution

fits best a traditional scenario of animal relationships where

Ctenophora are neuralians and not the sister group of all other

animals.

Materials and Methods

Data Sets Generation

The data sets of Feuda et al. (2012) and of Schnitzler et al.

(2012) were modified (updated) as necessary, generating the

FEAm1 and SEAm1 and SEAm2 alignments—all available as

supplementary material, Supplementary Material online. In the

case of Feuda et al. (2012) data set, all the ctenophoran opsins

identified by Schnitzler et al. (2012) and the cnidarian opsins

identified by Mason et al. (2012) in the acroporan A. palmata

were added to the alignment (generating FEAm1). Inclusion of

acroporan sequences is key to test the R-opsin nature of the

putative R-opsins of Feuda et al. (2012), see above.

Ctenophoran opsins have also been added to Feuda et al.

(2012) data set to further test the nature of these sequences,

and the stability of the results obtained from the analyses of

FEA as new data are included. In the case of Schnitzler et al.

(2012) data set, we created two updated data sets (SEAm1

and SEAm2). In both SEAm1 and SEAm2, the original out-

groups were deleted. In SEAm1, the MLTs, identified by

Feuda et al. (2012), Fredriksson et al. (2003), and Srivastava

et al. (2010) to represent one of the closest outgroups of the

opsin family (if not the closest one), was used. In SEAm2, both

the MLTs and the opsin-like sequences identified by Feuda

et al. (2012) in Placozoa (i.e., the placopsins) were used as

outgroups. In all cases, new sequences were added to the

original data sets using the profile alignment option in

MUSCLE (Edgar 2004). This was done to maintain compara-

bility between the original results of Feuda et al. (2012) and

Schnitzler et al. (2012) and those in this study. The final align-

ments were further manually adjusted (if necessary, e.g., to

remove sites at the 30- and 50-end of the alignment present

only in the newly added sequences).

Phylogenetic Analyses

All three considered data sets (see above) were subjected

to Bayesian analyses in PhyloBayes (Lartillot et al. 2009). All

analyses were performed under the GTR + G and the

WAG + G models. In addition, an analysis of the original SEA

alignment was performed using the GTR + G model. For

all analyses, two runs were performed, and convergence

was tested using the BPCOMP program, which is part

of PhyloBayes. All analyses were run to convergence

(number of generations changed from analyses to analyses),

and majority rule consensus trees were derived from the trees

saved after convergence. Analyses were assumed to have con-

verged when the standard deviation of the split frequencies
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between the trees in the compared runs dropped below 0.2

(see PhyloBayes manual).

FEAm1 was subjected to posterior predictive analyses of

saturation (in PhyloBayes) under both GTR + G and

WAG + G. Posterior predictive analyses allow evaluating how

well a model fits a data set, rather then simply testing which

model fits the data best. The second question (which model

fits the data better between GTR + G and WAG + G) has al-

ready been addressed by Feuda et al. (2012), who showed

that GTR + G provides a better fit to the data than other site

homogeneous models like WAG + G and site-heterogeneous

models of the CAT family (Lartillot and Philippe 2004; Quang

et al. 2008). However, whether GTR + G (and WAG + G for

that matter) fits the data adequately has never been investi-

gated. Testing adequacy of fit (in addition to testing what is

the best fitting model) is important as the best fitting model

could still not fit the data adequately (Goldman 1993), and the

use of models that do not fit the data adequately can drive the

appearance of tree reconstruction artifacts.

The AU test was used (on SEA, SEAm1, SEAm2, and

FEAm1) to evaluate whether these data sets could significantly

discriminate between alternative hypotheses of ctenophoran

opsin relationships. To calculate the AU test, we first used

RAxML (Stamatakis 2006) to estimate site-wise likelihoods

(for all positions in the considered alignments) under each

considered alternative hypothesis, using the GTR + G model.

The site-wise likelihood values were inputted to CONSEL

(Shimodaira and Hasegawa 2001) to calculate the AU test.

For the FEAm data set, the three in figure 2 was compared

with one in which Mnemopsis3 was moved to represent the

sister group of all the other opsins. For the SAE data sets, the

topology of figure 1A was contrasted against the one in figure

1B and C (where all Ctenophoran opsins form a single group).

To further test robustness of our results, for the FAEm1 data

set, we also calculated node-specific SH-support values and

their Bayesian counterparts (aBayes) support values

(Anisimova et al. 2011) as implemented in PhyML (Guindon

et al. 2010). Because of software limitations, these tests could

only be performed using the WAG + G model. However, this

should not be a problem as we showed that model choice was

not a major determinant of the opsin relationships (see

Results).

To test whether the results of our analyses could have been

driven by compositional biases in the data, a posterior predic-

tive analysis of composition was performed in PhyloBayes

(under GTR + G) for FEAm1. Results of this test were used to

identify and exclude from the alignment compositionally het-

erogeneous sequences. Analyses were repeated, for this re-

duced data set, under GTR + G in PhyloBayes and the results of

this final analysis were compared against those obtained for

the complete data set. Further to that, a PCA of the frequen-

cies of the 20 amino acids in the remaining (compositional

homogeneous) sequences of supplementary figure S4,

Supplementary Material online, was performed. The first

two axes, which overall describe 42% of compositional diver-

sity, were plotted.

Supplementary Material

Supplementary tables S1 and S2 and figures S1–S6 are avail-

able at Genome Biology and Evolution online (http://www.

gbe.oxfordjournals.org/).
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