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ABSTRACT: We have developed an algorithm to determine
membrane structure, area per lipid, and bending rigidity from
molecular dynamics simulations of lipid vesicles. Current
methods to extract structure from vesicle simulations define
densities relative to the global center of mass of the vesicle.
This approach ignores the long-wavelength fluctuations
(undulations) that develop across the sphere and broaden
the underlying structure. Our method establishes a local
reference frame by defining a radially undulating reference
surface (URS) and thereby removes the broadening effect of
the undulations. Using an arc-length low-pass filter, we render
the URS by defining the bilayer midplane on an equi-angular θ, ϕ-grid (colatitude, longitude). This surface is then expanded onto
a truncated series of spherical harmonics. The spherical harmonic coefficients characterize the long-wavelength fluctuations that
define both the local reference frameused to determine the bilayer’s structureand the area per lipid (AL) along the
undulating surface. Additionally, the resulting power spectrum of spherical harmonic coefficients can be fit to a Helfrich
continuum model for membrane bending in spherical geometry to extract bending rigidity (kc). kc values determined for both
DMPC and DMPC + cholesterol (30 mol %) vesicles are consistent with values from corresponding flat-patch systems
determined using an independent, previously published spectral method. These new tools to accurately extract structure, AL, and
kc should prove invaluable in evaluating the construction and equilibration of lipid vesicle simulations.

Molecular dynamics (MD) simulations are commonly
used to study the structure (number density ρ(z) and

area per lipid AL) and bending rigidity (kc) of lipid bilayer
systems.1−6 Recently, MD simulations of lipid vesicles of
biologically significant size (radius >20 nm) have become
possible due to more reliable coarse-grained force fields,7−13

but analysis tools for extracting structure and rigidity are
lacking. In simulations of flat-patch bilayers (<200-lipids), the
membrane structure normal to the bilayer (z-dimension) can
be determined by binning the relative z-position for each bead
in the system relative to the global bilayer center of mass
(COM).3 A similar approach has been employed for
simulations of vesicles, where the global COM of the vesicle
defines the radial reference frame for determining the radial
membrane structure profile.8,9,11,14

However, in simulations of large bilayersboth flat-patch
and vesicleslong-wavelength fluctuations convolve a smooth-
ing function with the intrinsic structure profile. This results in a
broadened structure when the calculation relies upon the global
COM. We previously developed a method to remove this effect
in the flat-patch geometry that defines a local reference frame
using an undulating reference surface (URS).3 Our approach
surface referencing with undulation correctioncharacterizes
the long-wavelength fluctuations and removes them from the
bilayer structure calculation. This paradigm relies on the notion
that undulations introduce fluctuations in the lipid bilayer’s

local normal, but do not alter the underlying membrane
structure.15 Because the undulation correction isolates the local
normal vector, the resulting number density profile is system-
size independent.3

A bilayer’s number density profile, ρ(z), is a one-dimensional
measure of its structure. The area per lipid (AL) is directly
coupled to ρ(z), and is of fundamental importance in
describing changes in membrane structure.5,16−19 AL is
commonly determined as a projected area, defined as AL =
NLipids/2LxLy, where NLipids is the number of lipids and Lx, Ly are
lateral periodic box dimensions.17−19 A more appropriate AL

metric determines the area along the URS for the system, as we
showed that the correction accounts for a systematic ∼1%
change in the calculated AL.

3

One important question that arose in our previous study, and
which is further complicated in the case of vesicles, is what
should be the gold-standard against which extracted structures
should be compared? This issue is confounded by the fact that
experimental structure determination for bilayers (e.g., from X-
ray scattering) often use simulations or modeling as a
guide.3,18−21 For our previous work, we used a flat-patch
system small enough to not develop any undulations (Nlipids <
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200) as the comparison point for structure profiles extracted
from much larger systems.3

With vesicle simulations, the appropriate gold-standard is not
as clear. Lipid asymmetry may exist in a radius-dependent
manner. If a vesicle is large enough, it could be compared to the
flat-patch. However, at smaller length scales, local curvature
alter the distributions. Furthermore, the methods for building
vesicle starting configurations are still evolving. It is difficult to
know exactly how many waters to include in the interior of the
vesicle as well as the appropriate ratio of lipids on the inner and
outer monolayer. It is also unclear how long simulations need
to be in order to ensure the appropriate lipid distribution is met
in the two monolayers (e.g., lipid flip-flop). It has not been our
goal to address these important complexities, for which an
extensive effort is needed but for which the appropriate
measures for evaluation is lacking. Indeed, our new algorithm
should provide a more quantitatively reliable framework for
rationally building and testing physical characteristics (e.g.,
water density) and convergence.
Regarding bending rigidity, methods to extract kc from

periodic, flat-patch lipid bilayers rely on Helfrich-like
continuum models. In this well-known model, the continuum
behavior of the bilayer manifests as a wave-vector to the inverse
fourth power for long wavelengths (undulations).1,2,22 Similar
theoretical treatments have been developed for spherical vesicle
geometries23−26 and are commonly used in interpreting
fluorescent and neutron spin−echo experiments to extract
bending rigidity from lipid vesicles.27−29 Several algorithms
have been developed for extracting kc from flat-patch bilayer
simulations (e.g., spectral fluctuations analysis, simulated
buckling, and lipid tilt modulus).2,30−32 However, implementa-
tion of any of these approaches in spherical geometry has not
yet been developed within the MD simulation literature,
making it critical that we develop appropriate tools to handle
the more complex geometry.
In this study, we develop a novel algorithm to extract the

undulation-corrected number density profile (ρuc(r)), area per
lipid (AL) and bending rigidity (kc) from vesicle simulations by
eliminating the smoothing effect inherent in undulating bilayer
systems. Translating current algorithms for extracting these
bilayer properties from lipid vesicles is far from trivial because
of the loss of periodicity and closed membrane envelope. Our
algorithm is based upon a spectral method that characterizes
the radial undulating membrane fluctuations using spherical
harmonics analysis (SPHA), the Fourier analysis corollary for
spherical geometries. We thereby provide a seamless link to our
previous work in flat-patch systems.2

■ METHODS AND ALGORITHM DEVELOPMENT
Defining the Vesicle Surface, r(θ, ϕ). In order to

characterize the radial undulations from a simulated vesicle, we
start by recasting the positions of the bilayer beads into an equi-
angular discrete surface representation using a θ, ϕ-grid
(colatitude and longitude respectively), where θ ∈ [0, π] and
ϕ ∈ [0, 2π], with θ = 0 at the northern pole. The angular
resolution is defined as

θ ϕ
λ

= =d d
n r

S

s 0 (1)

where λS is the arc-length where the bilayer fluctuations
transition between a continuum mode to molecular (λS ≈ 4
nm), r0 is the average vesicle radius, and ns is the number of
sampling points per λS with ns ≥ 2 to satisfy Nyquist sampling
theorem.
To render the surface, we define the origin at the COM of

the vesicle (lipids + membrane inclusions) and then transform
the system into spherical coordinates (xi, yi, zi ⇒ ri,θi, ϕi, where
ri,θi, ϕi corresponds to radius, colatitude, and longitude for each
bead i, respectively). The direct use of an equi-angular θ, ϕ-grid
to bin bead positions introduces discontinuities at the poles.
We mitigate these discontinuities by implementing an arc-
length low-pass filter with filter cutoff qarc = 2π/λS. Our
previous work with undulation analysis on flat patch systems
identified a cutoff wavenumber, q0 = 1.5 nm−1, at which the
long-wavelength undulations transition into molecular structure
fluctuations.2,3 We use this q0 as a guide in defining an
appropriate qarc for the vesicle systems.
Figure 1A shows a snapshot from an equilibrated, 34 nm

DMPC vesicle, and Figure 1B presents a cutaway view,
emphasizing the vesicle’s diameter relative to its thickness. We
parse all lipids into the inner and outer monolayer using the
average vector between the acyl-chain terminal beads and the
phosphate bead, where the radial component defines which
monolayer the lipid belongs to (i.e., r < 0, inner monolayer; r >
0, outer monolayer). Using an arc-length filter with qarc = 2.5
nm−1, we define the local θ, ϕ-membrane surface for both inner
and outer monolayers, rin(θ, ϕ) and rout(θ, ϕ), respectively.
Figure 1C schematizes the first stages of our method, with the
inner (red) and outer (blue) monolayer beads shown for
numerous θ, ϕ-positons. On the left hemisphere of Figure 1C,
regions of rin(θ, ϕ) and rout(θ, ϕ) are presented for illustration.
The average of the two surfaces define the undulating radial
surface as

θ ϕ θ ϕ θ ϕ= +r r r( , )
1
2

( ( , ) ( , ))und in out (2)

Figure 1. A. Snapshot of a 34 nm DMPC-lipid vesicle. B. Cutaway of the vesicle. C. An arc-length filter is used to define a surface for both inner and
outer monolayers (blue and red selection beads respectively). D. rund(θ, ϕ) is determined as the average of the inner and outer monolayers (color-
map indicates fluctuations about the average radius, r0, (units in nm).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500460u | J. Chem. Theory Comput. 2014, 10, 4160−41684161



Figure 1D shows rund(θ,ϕ) calculated from one frame of the
DMPC trajectory. The color-map displays the deviations about
the average vesicle radius, r0′ (units in nm), which is typically
smaller than the ideal sphere radius r0. From rund(θ, ϕ), we then
define the normalized radial fluctuations as

θ ϕ
θ ϕ

=
− ′

′
r r

r
f( , )

( , )und 0

0 (3)

Spherical Harmonics Analysis (SPHA). Next, spectral
decomposition of rund(θ, ϕ) is accomplished using spherical
harmonics analysis (SPHA). Spherical harmonics are standing
waves on a sphere. Given that rund(θ, ϕ) is a discrete surface
defined on a spherical manifold, we can represent it as a linear
combination of spherical harmonics with degree (l) and order
(m), corresponding to the number of waves in the θ, ϕ-
dimensions, respectively. Figure 2 illustrates three standing
wave patterns as calculated from our simulations.

Helfrich’s formulism for SPHA expands the normalized radial
fluctuations in spherical harmonics as

∑θ ϕ = a Yf( , )
l m

lm lm
, (4)

where alm are the spherical harmonic coefficients of degree l and
order m (l ∈ 0,1···,lmax and m ∈ −l,...,l) with Lmax defined by the
number of colatitude grid points.23 Ylm are the spherical
harmonic basis functions

θ= ̅ ϕY P (cos )elm l
m mi

(5)

where P̅l
m(θ) are the fully normalized associated Legendre

polynomials with the normalization factor, Nlm, defined as

π
= + − !

+ !
N

l l m
l m

(2 1)( )
4 ( )lm

(6)

Because f(θ, ϕ) is a real-valued function alm = al,−m* , the
complex conjugate of alm. We thereby redefine alm such that

=
≥

<⎪

⎪⎧⎨
⎩a

C m

S m

, 0

, 0lm
lm

lm (7)

allowing us to write

∑θ ϕ θ ϕ ϕ= ̅ +P C m S mf( , ) (cos )( cos sin )
l m

l
m

lm lm
, (8)

where now m ∈ 0,...,l.
We generate the matrix P with dimensions (2N * Lmax) × N2

for a given θ, ϕ-distribution,33 where N is the number of

colatitude parallels, such that for each li ∈ 0,...,Lmax, the
corresponding 2m + 1 rows are defined as

θ θ θ

θ θ θ
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from which the transformation matrix Y follows as

ϕ

ϕ
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<
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⎪⎧⎨
⎩

m m

m m
Y
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P
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l m

l
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i

i (10)

From the matrix Y we can write the spherical harmonic
forward transform as

= θ ϕaY flm
1

,
1

(11)

where alm
1 is a recasting of the spherical harmonic coefficients

alm with dimension N2 × 1 corresponding to the row
construction of Y, and fθ,ϕ

1 is a matrix of positions with
dimension (2N * Lmax) × 1.
Whereas the forward transform is exact, the inverse

transform (i.e., SPHA) is overdetermined. Using the FAC-
TORIZE34 package in Matlab, we compute the pseudoinverse
of Y using QR-factorization and apply a least-squares
approximation to determine alm

1 as

=θ ϕ
− aY f lm

1
,

1 1
(12)

Implementation of the SPHA algorithm results in error
propagation from numerous sources (i.e., truncation error,
round-off error, and least-squares approximation). We
evaluated the magnitude of these effects by calculating the
root-mean-squared-difference (RMSD) between rund(θ, ϕ) and
the transformed rŭnd(θ, ϕ), where

θ ϕ̆ = ′ +r r aY( , ) (1 )lmund 0
1

(13)

RMSD calculated for the DMPC system is 3.5 × 10−3 nm
and for the DMPC + cholesterol system is 1.8 × 10−3 nm.
These errors are 2 orders of magnitude lower than the
magnitude of the radial fluctuations, O (0.5 × 10−1 nm),
allaying concerns regarding the inherent propagating errors.

Determining Flat-Patch Structure (ρ(z) and AL).
Membrane structure (ρ(z) and AL) for flat-patch membrane
systems was determined using our previously published
method.3 Briefly the URS was determined using the phosphate
atoms and subsequently filtered with a 1.5 nm−1 cutoff. The
filtered surface was then used to reference every atom to the
local bilayer midplane. These distances were subsequently
binned and volume normalized to extract the number density
profile.

Determining Vesicle Structure (ρ(r) and AL). The
standard method for determining the radial membrane number
density profile, ρrbin(r), references every bead/atom in the
system relative to the COM of the vesicle in spherical
coordinates, averaging across all θ, ϕ-angles. We have
previously shown that the membrane structure profile is
smoothed out in systems where long-wavelength undulations
develop.3 By isolating the long wavelength undulations and
referencing every bead/atom to the local undulating reference
surface we can mitigate this broadening effect.
Following the same principles for our method developed for

flat-patch systems, we apply a low-pass ideal filter to the

Figure 2. SPHA decomposes rund(θ, ϕ) into a series of standing waves
on a sphere with degree l and order m.
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spherical harmonic coefficients with an order cutoff Lcut = qarcr0′
− 0.5 such that

̃ =
≤

>⎪

⎪⎧⎨
⎩

a
a l L

l L

;

0;
lm

lm1
1

cut

cut (14)

where al̃m
1 are the filtered coefficients. For the DMPC vesicle

Lcut = 26, whereas for the slightly larger DMPC + cholesterol
vesicle, Lcut = 29. We next apply an the inverse spherical
harmonic transform to resolve a filtered radial-undulation
surface rũnd(θ, ϕ) as

θ ϕ̃ = ′ + ̃r aYr ( , ) (1 )lmund 0
1

(15)

With the filtered surface we resolve the vesicle’s local
membrane structure, ρuc(r), by referencing every bead/atom i
relative to it is position on the surface, such that

θ ϕ θ ϕ θ ϕ̃ = − ̃r r r( , ) ( , ) ( , )i i und nearest (16)

where rũnd(θ, ϕ)nearest corresponds to the closest equal-angular
grid point on rũnd(θ, ϕ). The grid definition samples the
corresponding filter wavelength at least 2 times (satisfying
Nyquist sampling theorem). As a default we employ 4-samples
per wavelength (at qarc = 2.5 nm−1 the arc-length resolution is
∼0.4 nm), providing a close approximation to the unique
rũnd, i(θ, ϕ). The resulting rĩ(θ, ϕ) is then binned with a bin-
width of dr = 0.1 nm and subsequently normalized by the
differential volume shell

π= −− +dv r r
4
3

( )b dr b dr0, /2
3

0, /2
3

(17)

with r0the radius of the ideal sphere with equal volume as
rũnd(θ, ϕ) defined as

∑
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and adjusted for every bin index b by the corresponding
distance from the surface.23

In addition to number density profiles, we can identify the
vesicle’s area per lipid, AL, both as a whole and independently
for both monolayers. Instead of defining r0′ with all vesicle
beads/atoms, we parse them independently as inner and outer
monolayers. Then using eq 18, we obtain two additional ideal
sphere radii (three in total), r0,vesicle, r0,inner, and r0,outer. The
corresponding AL for each ideal radius is simply

π
=

+
A

r

n n

4

( )
L,vesicle

0,vesicle
2

1
2 L,inner L,outer (19)

π
=A

r

n

4
L,inner

0,outer
2

L,outer (20)

π
=A

r

n

4
L,outer

0,outer
2

L,outer (21)

where nL, inner and nL, outer refer to the number of lipids in the
respective monolayer.
Determining Bending Rigidity (kc). From alm

1 , we obtain
the undulation power spectrum by binning the modulus of the
spherical harmonic coefficients across degree l. The resulting
profile can be interpreted according to the Helfrich continuum

model for undulations on a sphere with vanishing spontaneous
curvature as

| | =
+ − +

a
k T

k l l l l[ ( 1) 2 ( 1)]lm
C

2 B
2 2

(22)

where T is temperature and l ∈ 2,...,Lmax.
23

In the flat-patch spectral method, the undulations power
spectrum, ⟨|u(q)|2⟩, determined by direct Fourier trans-
formation of the bilayer selection atoms can be modeled as

⟨| | ⟩ = + ρN u q
k T

ak q
S q( ) ( )

C

2 B
4

(23)

where N is the number of selection atoms, a is the projected
area per lipid, and Sρ(q) is the in-plane structure factor.

2 Sρ(q)
is subtracted from N⟨|u(q)|2⟩ to provide a broader range of
modes within the q−4 regime. kc is then determined by fitting
the low-q, long-wavelength modes.

Arc-Length Filter Cutoff Effects. Using a filter to define
the URS attenuates the spectral intensity of the undulations.
This attenuation can span a broad frequency bandwidth,
bleeding through into the desired frequencies of the signal. We
explored a range of arc-length filter cutoffs to characterize the
filter’s frequency response, with the goal of identifying a cutoff
where signal attenuation is limited to frequencies above the
crossover wavenumber, q0 = 1.5 nm−1. Figure 3 presents the
power spectra for the DMPC vesicle system using four different
arc-length filters with wavenumber cutoff, qcut, ranging from 0.5
nm−1 to 2.5 nm−1.

The frequency response of the arc-length filter is far from
ideal, with significant bleed-through extending below the
desired cutoff wavenumber. This is most noticeable when
comparing the crossover wavenumber q0 = 1.5 nm−1 (black
dashed-line)the wavenumber where continuum undulations
transition into molecular fluctuations2to the 1.5 nm−1

filter
cutoff (green triangles). There is significant loss of undulation
intensity for degrees 12−25, all before the 1.5 nm−1 crossover
wavenumber. This loss of intensity skews the kc-fit, resulting in
a larger kc. Furthermore, increasing the filter cutoff increases the
number of degrees that comprise the linear region below q0,

Figure 3. Undulation spectra for a range of arc-length cutoff
wavenumbers, (qcut = 0.5 nm−1: blue; 1.5 nm−1: green; 2.0 nm−1:
red; and 2.5 nm−1: cyan) for the DMPC vesicle system. The crossover
wavenumber q0 = 1.5 nm−1 is denoted by the black dashed line. kc
values for each qcut are detailed in the legend.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500460u | J. Chem. Theory Comput. 2014, 10, 4160−41684163



thereby improving the fit to eq 22. Bending rigidities for each
filter cutoff are listed in the Figure 3 legend. With qcut = 2.5
nm−1, all 26 degrees (spanning the full range, q0 ≤ 1.5 nm−1)
can be used to determine kc.
Molecular Dynamics Simulations. All simulations were

run using the MARTINI force field and using the GROMACS
v4.5.3 program.10,35−38 All systems were prepared and run in
the isothermal−isobaric (NPT) ensemble at constant pressure
and temperature (1 bar and 303 K, respectively) using either a
25 fs time step for pure lipid or 10 fs time step for cholesterol
systems. Pressure coupling was isotropic for the vesicle systems
and semi-isotropic for flat-patch, with independent xy- and z-
barostats, resulting in a tensionless bilayer. Initial equilibration
for vesicle systems included 100 000 steps of steepest descent
minimization followed by 500 ns of dynamics using the
velocity-rescaling thermostat and a Berendson barostat (flat-
patch systems underwent 10 000 steps steepest descent
minimization and 100 ns velocity-rescaling dynamics).37,38 All
production runs were simulated using the Nose−́Hoover
thermostat and the Parrinello−Rahman barostat with a time
constant of 2.5 and 250 ps, respectively.39,40 Pressure coupling
was applied isotropically for vesicle simulations and semi-
isotropically for flat-patch systems. Vesicle production simu-
lations were 2.5 μs (10 μs scaled simulation time), flat-patch
simulations were 5 μs (20 μs scaled time) sampled every 1 ns.
The starting configurations for the DMPC vesicle (11 126-

DMPC, 1 123 315-coarse grained water + antifreeze, “high-
water”, 1 113 742-cg water + antifreeze “low-water”) and
DMPC + cholesterol (12 771-DMPC + 5473-cholesterol, 1
313 698-cg water + antifreeze) were constructed by randomly
seeding two opposing monolayers with the appropriate number

of lipids (DMPC and/or cholesterol) based on the area per
lipid of each species, the surface area of the monolayer shell,
and the mole fraction of the mixture. A second DMPC vesicle
was simulated using the 3 μs frame as a starting configuration
with 10% of the internal water beads removed to explore effects
of system construction on structure and bending rigidity. Flat-
patch bilayer systems were constructed with 3200-DMPC lipids
and 2240-DMPC + 960-cholesterol, randomly seeded in flat
monolayers with 70,400 coarse grained water + antifreeze
particles.
During the early stages of equilibration, rapid pore formation

occurred throughout the vesicles. These pores coalesced and
closed quicklywithin 70 nsproviding an opportunity for
both lipid flip-flop and water exchange across the vesicle to
equilibrate the system. For the low-water system, the vesicle
collapsed into an ellipsoidal shape within 100 ns, and
maintained an ellipsoidal character throughout the 3 μs
production run.

Data Analysis. Trajectories were manipulated and
processed using both the GROMACS v.4.5.3 simulation
package37,38 and the MDAnalysis python library.41 Further
data analysis and figure rendering was performed using
MATLAB (v.R2012a) with use of the FACTORIZE library.34

■ RESULTS

Radial Membrane Structure. Having established the
framework to define rund(θ, ϕ) for vesicle simulations, it now
becomes possible to extract the underlying membrane structure
from the fluctuating vesicle’s trajectory. Figure 4 presents the
number density profiles for the DMPC vesicle, ρrbin(r) and
ρuc(r), and the DMPC flat-patch, ρuc(z), systems. Vesicle

Figure 4. Comparisons of component number densities for DMPC vesicle and flat-patch systems. Vesicle profiles are dashed-lines. Flat-patch
profiles are filled-distributions with headgroup (black/gray), carbonyl-glycerol (red/pink), and acyl-chain (blue/cyan). (A), (B) ρrbin for the high-
water and low-water DMPC system, respectively. (C), (D) ρuc for high-water and low-water DMPC system. The same flat-patch profile has been
included in all panels.
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profiles are illustrated as dashed lines, flat-patch profiles as filled
distributions, with the component groups color-coded as
described in the caption. Negative radial positions correspond
to the inner monolayer, positive values correspond to the outer
monolayer.
Figure 4A compares the high-water vesicle profile, ρrbin(r), to

the flat-patch profile, ρuc(z). The ρuc(z) profile was translated
by the average vesicle radius, r0′, to allow direct comparison to
the vesicle profiles. As expected, using a global reference frame
with a fluctuating bilayer results in a broadening of the
component distributions (RMSD between ρrbin(r) and ρuc(z) is
3.08 nm−3). This broadening results in a loss of structural
resolution in the vesicle profile, most noticeably in the acyl-
chain distributions, where the typically pronounced terminal
methyl trough is absent. Figure 4B compares ρrbin(r) from the
ellipsoidal, low-water DMPC system to the flat-patch profile. As
fluctuations increase, the structural broadening effect intensifies.
The low-water ρrbin(r) displays significant distortion (RMSD is
7.12 nm−3) across all lipid-component distributions, high-
lighting the problem with using a global COM reference frame
to define membrane structure.
Figure 4C,D present comparisons of our new method, ρuc(r),

to the flat-patch profile for both the high- and low-water
DMPC systems, respectively. In both cases, the resulting
number density more closely resembles the flat-patch result
(RMSD between ρuc(r) and ρuc(z) is 1.66 nm−3 for low-water
DMPC and 2.34 nm−3 for high-water). Each component
distribution is tightened up relative to ρrbin(r), and key
structural features (e.g., the terminal methyl trough) are
properly characterized. In the high-water system (Figure 4C),
the headgroup distributions are centered at the appropriate
position (i.e., the bilayer thickness matches that of the flat-
patch). However, the amplitude and width of the headgroup
distributions do not fully agree with the flat-patch result: the
amplitudes are too high and the widths to narrow. This small
discrepancy suggests that the lipids are under tension, either
due to water-density or lipid density asymmetry across the
bilayer.
Comparison of the low-water profiles (Figure 4B,D)

demonstrates the dramatic improvement in calculated mem-
brane structure when undulations are isolated and characterized
during structure determination. Even with a dramatic ellipsoidal
geometry, the ρuc(r) method extracts the underlying membrane
structure. The low-water profile amplitudes agree with the flat-
patch profile, more so than the high-water result. However, the
membrane appears thicker and the component distributions are
slightly broader than the flat-patch result.
Comparing Figure 4C with 4D (ρuc(r) for the spherical and

ellipsoidal DMPC vesicle systems), we see a dramatic change in
the structural profile of the membrane. As expected, varying the
number of waters inside the vesicle can lead to different
membrane tensions and corresponding structures. With our
new algorithm, this type of comparison can serve as a guide in
the initial construction of vesicle simulations, evaluating the
membrane structure for imbalances in water density or lipid
density across the bilayer.
Analysis of the DMPC + cholesterol system highlights

additional complexities that can develop due to the different
system geometries. Supplemental Figure 1 presents ρrbin(r) and
ρuc(r) for the DMPC + cholesterol system. The undulation
correction still sharpens the component distributions, albeit to
a lesser extent than the pure DMPC system. Cholesterol’s facile
ability to flip-flop during the time-scale of the simulation results

in an asymmetric cholesterol distribution across the bilayer in
the vesicle geometry. The development of an asymmetric
cholesterol distribution is not surprising for the vesicle as the
spontaneous curvature difference between inner and outer
monolayers will induce an asymmetric partitioning of lipids
with non-neutral spontaneous curvature.42

Close inspection of all vesicle number density profiles
highlight an asymmetry (particularly in the headgroup
distributions) where the inner monolayer has a higher density
relative to the outer monolayer (Figure 4 and Supplemental
Figure 1). We cannot know for certain whether this asymmetry
is due to a redistribution of lipid components or an artifact
from a poorly equilibrated vesicle.
Vesicle structure does not change across the last 1.5 μs for

both the DMPC and DMPC + cholesterol systems. However,
the differences in structure between high-water and low-water
DMPC vesicle systems highlight the effect of water density
imbalances across the bilayer. Furthermore, in all simulations,
lipid flip-flop was only observed for cholesterol and never for
DMPC. Significantly longer simulation times (>100s of μs) of
standard MD would be necessary to allow for both water
equilibration and sufficient lipid flip-flop events to fully
equilibrate the vesicle.
Our focus here has been on the development of a method to

calculate structure from vesicle simulations and not to perfectly
refine these particular simulations. Nevertheless, the problem of
vesicle construction and equilibration is an important challenge
that must be answered to facilitate further study of these more
complex systems. Risselada et al. employed an artificial pore
allow for both water and lipid exchange across the vesicle prior
to the production MD simulation.9 For simple lipid
compositions, this approach is preferable over an iterative
refinement of the lipid and water distributions (altering them
by hand on the basis of structural profile imbalance) and far
more computationally efficient than extending the simulation
until sufficient lipid flip-flop is observed.

Area Per Lipid, AL. Figure 5 presents the area per lipid (AL)
time-series for the DMPC vesicle systems. We compare values
determined along the URS for the full vesicle (ALL, blue) and
both inner and outer monolayers (green and red, respectively)
with those of the flat-patch AL (cyan). A summary of the
average AL is presented in Table 1. In the high-water DMPC
system (Figure 5A) there are three distinct differences between
the vesicle and flat-patch result: (1) the inner and outer
monolayer have different AL, with inner monolayer lipids
occupying more lateral area than those in the outer leaflet; (2)
all measures of AL are greater than the flat-patch AL; and (3)
the fluctuations in AL are significantly decreased in the high-
water vesicle system versus the flat-patch. The imbalance
between inner and outer monolayers correlates with the
structural asymmetry in the headgroup ρuc(r).
We presume that this reflects that the inner monolayer is

under greater tension than the outer, constraining the inner
headgroups in the radial dimension and resulting in a tighter
position distribution (recall that the thickness is the same,
Figure 3B). There are two potential causes of this tension,
either an imbalance in the water density or the lipid density
across the vesicle. The area per unit cell, AUC = 2 ASurface/
NDMPC, for the DMPC + cholesterol system shows a similar
trend as the DMPC vesicle (see Supplemental Figure 2).
Figure 5B illustrates the same AL analysis for the ellipsoidal,

low-water DMPC system. It is immediately evident that the
water content dramatically affects the vesicle’s structure and
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dynamics. The ideal sphere AL is increased for all three AL
metrics, even though the average vesicle radius is smaller. There
is a partial recovery in the AL symmetry across the monolayers
(i.e., a reduction in ΔAL = AL,out − AL,in from 0.015 nm2 to
0.011 nm2). The residual discrepancy between AL,out and AL,in
likely stems from a lipid density imbalance across monolayers,
which is still evident in Figure 4D. Although the structure from
the low-water system more closely matches the flat-patch
profile, it is the AL of the high-water system that is in better
agreement. The number density profile calculation isolates the
increased fluctuations in the low-water system, whereas the AL
does not.
Bending Rigidity. Figure 6 presents the power spectra and

subsequent model fits for DMPC high-water (black) and
DMPC + cholesterol (red) in both vesicle (Figure 6A-C) and
flat-patch (Figure 6D) geometries. In each case the spectra was
determined over the final 1.5 μs of the trajectory. As expected,
in both the flat-patch and vesicle simulations cholesterol
reduces the magnitude of the undulation intensity, reflecting
the sterol’s well-know rigidifying effect.5,21,43,44 kc values were
determined by fitting the linear regime across low degrees
corresponding to q0 ≤ 1.5 nm−1 to the appropriate Helfrich
continuum model for vesicle or flat-patch geometries (l ≤ 26
for DMPC and l ≤ 29 for the slightly larger DMPC +
cholesterol vesicle). As shown in Table 2, we observe a similar
cholesterol-induced increase in kc in the vesicle- and flat-patch

geometry (the latter of which was obtained via our the
previously published method).2

The high-water (hw) DMPC vesicle kc is in better agreement
with our previously published kc from a large flat patch, where a
30 000 lipid DMPC coarse-grained flat-patch system had kc =
1.5 × 10−19 J.2 To ensure the use of an equi-angular grid did not
introduce any artifacts into the vesicle analysis, we repeated the
SPHA on the high-water DMPC vesicle in a 90° rotated
reference frame. The results were identical to the nonrotated
system (see Supplemental Figure 3).
The increased kc from our smaller 3200 lipid DMPC flat-

patch highlights potential system-size effects with spectral
methods to extract kc. The low-water (lw) system shows a
reduced kc, relative to the high-water kc, agreeing with the
increased AL fluctuations (see Figure 5B, Table 2, and
Supplemental Figure 4). As we discuss below, other factors
may also contribute to the differences in kc across the two
system geometries, including hydration levels. For example, in
the low-water system, we observed a dramatic increase in
fluctuations and concomitant decrease in kc.
The increase in rigidity for the DMPC + cholesterol system,

determined as the ratio of kc between DMPC + cholesterol and
DMPC, shows excellent agreement for the high-water (hw)
case, 1.8 for flat-patch versus 1.9 for vesicles. For both cases
(pure lipid and + cholesterol), the vesicle’s kc is smaller than the
corresponding flat-patch (1.3 × 10−19 J versus 2.1 × 10−19 J for
DMPC and 2.4 × 10−19 J versus 3.8 × 10−19 J for DMPC +
cholesterol).
In both the flat-patch and vesicle systems, the calculated kc

value for DMPC is an order of magnitude greater than that
determined experimentally (0.58 × 10−20 J, determined from
diffuse X-ray scattering on oriented bilayer stacks45). This
overestimate of kc is known for the MARTINI force field with
DMPC.2 However, given that our goal is to establish a reliable
and robust (i.e., force-field independent) algorithm, we
consider the agreement between the established flat-patch
method and our new vesicle method as the relevant measure of
success, rather than close agreement between our result and
experiment. That said, we do note that there is much better
agreement between the kc calculated from simulation and the
experimental values45 for both DMPC low-water (6.1 × 10−20 J
versus 5.8 × 10−20 J) and the DMPC + cholesterol systems (2.4
× 10−19 J versus 2.73 × 10−19 J, respectively). Achieving better
agreement with experiment in these values remains a challenge
for force-field development, though it remains to be seen
whether any force field (even fully atomistic ones) will be able
to accurately capture kc across all lipid types.
Because of the sensitivity of the spectrum to the arc-length

filter cutoff (see Figure 3), it was important to evaluate the
sensitivity of the kc fit to the loss of undulation intensity. We
did so by varying the number of degrees used in the data-fitting,
testing both the 1.5 nm−1 and 2.5 nm−1

filters. Supplemental
Figure 5 illustrates the sensitivity of kc fits and time course of kc
for both DMPC and DMPC + cholesterol vesicle systems. The
increased linear region for the 2.5 nm−1 spectra results in a
much broader span of converged kc fits for both vesicle systems
(Supplemental Figure 5B). This added robustness confirms our
choice of filter parameters, specifically the 2.5 nm−1 arc-length
filter (for rendering the initial surface) and the 1.5 nm−1 ideal
filter (to define the URS and truncate the SPH coefficients for
the kc-fit at the transition from continuum to molecular length
scales). The evolution of kc shows very small changes across the

Figure 5. (A) AL trajectory for the high-water DMPC vesicle system
with total vesicle (blue), inner monolayer (green), outer monolayer
(red), and flat-patch system (cyan). (B) AL trajectory for the low-water
DMPC system.

Table 1. AL (or AUC) for Flat-Patch and Vesicle Systems

geometry flat-patch vesicle

subset all all inner outer

DMP (high-water) 0.601 0.622 0.623 0.608
DMP (low-water) 0.653 0.652 0.641
DMP + cholestrol 0.644 0.672 0.652 0.684
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duration of the simulations for both DMPC and DMPC +
cholesterol systems (Supplemental Figure 5C).

■ CONCLUDING REMARKS

We have developed a method to determine membrane
structure (number density and area per lipid) and bending
rigidity from MD simulations of lipid vesicles. Comparisons of
number density profiles determined from vesicle simulations
using either a global or a local reference frame highlight the
broadening effect introduced by local bilayer fluctuations,
similar to what was previously observed in large flat-patch
simulations.3

Using a URS removes the fluctuation-induced broadening
effect and recovers the underlying structure profile, even under
extreme vesicle deformations (e.g., elliptical vesicles). Our new
SPHA method can be applied to any MD simulation where the
topography is such that radial lines intersect the topography
only once (e.g., vesicles, bubbles, micelles). In systems where
the topography is more tortuous (e.g., where radial lines
intersect the topography multiple times) the SPHA method
breaks down. Nevertheless, the local structure profile can still

be resolved via the URS, as long as the method used to define
the URS is modified to accommodate the more complex
topography.
Our choice of using an equi-angular grid in order to define

the URS as well as in implementing the SPHA was done to
simplify the calculation of the SPH coefficients via matrix
transformation (eq 12). Alternative surface definitions (e.g.,
geodesic gridding) are equally viable; however, they may
introduce increased complexity and computational cost in
determining the transformation matrix. Any predefined θ, ϕ
surface reference frame requires either a real-space filter (e.g.,
arc-length filter) or a direct spherical harmonic transformation
that requires treating every membrane bead as a radial delta
function to obtain the URS. Although the latter is the direct
corollary to our flat-patch direct Fourier method,2 the increased
computational cost of the explicit SPH transform makes that
approach prohibitive.
The spherical harmonics analysis of the URS allows us to

determine the AL for the equivalent ideal sphere that samples
the same area as the undulating bilayer. We define a unique AL
for the vesicle as well as both monolayers. These three AL
metrics describe structural imbalances that exist due to initial

Figure 6. Power spectra for both vesicle systems (A) with corresponding kc fit for DMPC (B) and DMPC + cholesterol (C). Undulation power
spectrum and kc-fits for flat-patch systems. For all panels, DMPC (black) and DMPC + cholesterol (red).

Table 2. kc Comparison Across System Geometry and Compositiona

kc[J]

system/geometry flat-patch (3200 lipids) vesicle (∼12 200 lipids) flat-patch (30 000 lipids)* experiment**

DMP (high-water) 2.1 × 10−19 1.3 × 10−19 1.5 × 10−19 5.8 × 10−20

DMP (low-water) 6.1 × 10−20

DMP + cholesterol 3.8 × 10−19 2.4 × 10−19 2.7 × 10−19

ratio 1.8 1.9 (hw); 3.8 (hw) 4.7
aThe * denotes values from Brandt et al.;2 experimental values (**) from Pan et al.45.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500460u | J. Chem. Theory Comput. 2014, 10, 4160−41684167



vesicle construction (e.g., water or lipid imbalances across the
bilayer). The convergence of these three metrics may serve as a
simple readout for vesicle equilibration.
This paper lays the groundwork for an iterative process to

improve vesicle construction. With flat-patch membranes,
numerous studies have been successful in matching exper-
imental structure profiles by tuning the AL through altering the
periodic box dimensions.5,18,20 The vesicle membrane geometry
raises a new and more difficult challenge: obtaining AL,
structure, and bending rigidity correct by varying the lipid
distribution in the two monolayers and the water density inside
the vesicle.
Our algorithm can extract these structural and mechanical

properties to guide the construction and equilibration of these
complex vesicle systems. Comparison of these structural and
mechanical results with experimental measurables is the
ultimate goal. Although we are currently limited by the
accuracy of the simulation force fields, changes in structure
that correlate with changes in rigidity may provide insight into
the interpretation of experimental results.
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