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Abstract

The receiver operating characteristic (ROC) curve is a tool commonly used to evaluate biomarker

utility in clinical diagnosis of disease. Often, multiple biomarkers are developed to evaluate the

discrimination for the same outcome. Levels of multiple biomarkers can be combined via best

linear combination (BLC) such that their overall discriminatory ability is greater than any of them

individually. Biomarker measurements frequently have undetectable levels below a detection limit

sometimes denoted as limit of detection (LOD). Ignoring observations below the LOD or

substituting some replacement value as a method of correction has been shown to lead to

negatively biased estimates of the area under the ROC curve for some distributions of single

biomarkers. In this paper, we develop asymptotically unbiased estimators, via the maximum

likelihood technique, of the area under the ROC curve of BLC of two bivariate normally

distributed biomarkers affected by LODs. We also propose confidence intervals for this area under

curve. Point and confidence interval estimates are scrutinized by simulation study, recording bias

and root mean square error and coverage probability, respectively. An example using

polychlorinated biphenyl (PCB) levels to classify women with and without endometriosis

illustrates the potential benefits of our methods.
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1 Introduction

The use of biomarkers to assist medical decision making, the diagnosis and prognosis of

individuals with a given disease, is increasingly common in both clinical settings and

epidemiological research. This has spurred an increase in exploration for and development
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of new biomarkers. All biomarkers, established and emerging, are limited by the sensitivity

of the measurement instrument which can lead to censored observations, often more

frequently in emerging biomarkers as laboratory methods are underdeveloped. This

censoring process is due to a limit of detection (LOD) or the inability of an instrument to

reliably measure samples below (or in some cases above) some threshold. Polychlorinated

biphenyl (PCB) levels fit this scenario well as they have been linked with several adverse

outcomes and their measurements are affected by LODs. A common statistical tool used to

evaluate the utility of a potential biomarker such as PCBs is the receiver operating

characteristic (ROC) curve.

Consider populations of diseased and non-diseased people with levels of a specific

biomarker denoted by independent random variables X and Y, respectively, with cumulative

distribution functions F(x) and G(y). Suppose, the biomarker is utilized as an indicator of

disease status where a level above some cut point, c, indicates a positive test for the disease

and a level below c corresponds to a negative test. The sensitivity (the true positive test rate)

and specificity (the true negative test rate) of the biomarker for a given c are q(c) = 1− F(c)

and p(c) = G(c), respectively. The ROC curve is then a mapping of {1 − p(c), q(c)} across

all possible c. Proposed uses for the ROC curve (Zhou et al., 2002; Pepe, 2003) include

assessing discriminatory ability over all c, over a specific range of q(c) or p(c) and the

maximum ability to differentiate between the populations. The area under the ROC curve,

denoted here by AUC, is the most commonly used summary measure (Zhou et al., 2002;

Pepe, 2003) and has been shown to be P(X>Y) for continuously measured biomarkers. AUC

tends to range from 0.5 to 1 with larger values indicating greater separation between

diseased and non-diseased biomarker levels. As a result, given multiple markers for the

same disease, a researcher would be inclined to choose the one with the highest AUC to aid

in decision making. Another approach would be to utilize a linear combination of these

multiple biomarkers in lieu of selecting one. The attractiveness of a linear combination lies

in being able to better discriminate, achieve a higher AUC, than if using any single

biomarker alone.

Now consider the case where two biomarkers, X⃗ = (X1, X2)T and Y⃗ = (Y1, Y2)T, measured in

individuals with and without a disease, respectively, are independent bivariate normally

distributed. Clearly, each biomarker considered individually would be normally distributed

and AUC’s for each could be calculated and contrasted. The alternative described previously

would be to use a linear combination, say U = β⃗T X⃗ = β1 X1 + β2 X2 and V = β⃗T Y⃗ = β1 Y1+β2

Y2, as a composite “biomarker” for decision making. Conveniently, U and V are also

normally distributed with an ROC curve that is now a function of the choice of βT⃗ and the

corresponding AUC can be denoted by AUCβ.

Linear combinations for binary outcomes are often estimated using logistic regression for a

given set of covariates. However, given this scenario of having several biomarkers following

a multivariate normal distribution, Su and Liu (1993) developed a best linear combination

(BLC), , leading to AUC0, that is “best” with respect to maximizing AUCβ over all real

β⃗T directly rather than maximizing the logistic regression model which, can be concordant or

discordant depending on the scenario (Pepe et al., 2006). This would allow for better
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discrimination than from any individual biomarker. When normal parameter values are

unknown, we can use random samples to calculate estimates  and AÛC0 via maximum

likelihood techniques.

One common complication in biomarker evaluation is that for a variety of reasons, random

samples X and Y of biomarkers are often evaluated with non-detects or missing data below

some LOD, quantified as d, effectively censoring the data below d. Omitting these values

and proceeding with a complete case analysis has been shown to lead to biased AÛC for

univariate normal and gamma distributed biomarkers (Perkins et al., 2007). Categorizing the

missing biomarker levels as ties at the lowest score, the standard non-parametric ROC curve

and empirical AUC yield unbiased estimates of the biomarkers’ effectiveness given the

measurement limitations. However, when underlying discriminatory ability is of interest,

parametric methods can be used to estimate the ROC curve below the LOD and thus an

AUC for a latent variable that might be measured completely. Generally, substituting a

replacement value such as 0, d/2,  and d for unobservable data have been shown as a

simple method to lessen biased parametric estimation (e.g. mean, variance and potential

AUC) but the magnitude and direction of the remaining bias is highly dependent on the

value chosen as well as the parameter being estimated (Hornung and Reed, 1990). It has

been shown (Haas and Scheff, 1990; Lyles et al., 2001; Singh and Nocerino, 2002; Lynn,

2001; Perkins et al., 2007) that all of these methods lead to biased estimation of mean and

standard deviation parameters, regression coefficients, odds ratio and AUC for a single

biomarker following common distributions. In the logistic regression framework which has

similarities here, Lynn (2001) demonstrated that the bias of these replacement values lessens

the closer they are to the expected value below d, which performed similarly to more

sophisticated methods of estimation.

Lyles et al. (2001) proposed a more thoughtful solution of constructing a likelihood function

for two censored bivariate normally distributed random variables. Based on this likelihood

and under the assumption of normality, subsequent maximum likelihood estimators (MLEs)

are efficient and asymptotically unbiased point estimators.

In this paper, we propose in Section 2 to obtain MLEs for normal distribution parameters

using Lyles et al.’s (2001) bivariate normal developments for parameter estimates based on

a sample with left censoring in order to construct  and AÛC0 to estimate that underlying

potential of the BLC of two biomarkers. In Section 3, we extend Lyles et al. (2001) and

consider the asymptotic distributions of parameter estimates by constructing the Fisher

Information matrix for this case. Also in Section 3, these developments are subsequently

used in finding the asymptotic distributions of point estimates  and AÛC0, leading to

accompanying confidence intervals (CIs). This procedure allows for the estimation of the

BLC’s underlying discriminatory ability or the potential that could be realized if it were

possible to eliminate the LOD and censoring in the tail. This would be especially useful

when researchers are exploring biomarkers for a given outcome using more cost-effective

but less-sensitive assays, with the idea of further measurements or re-measurement being

conducted on a narrowed set of promising biomarkers using a more sensitive and costly,

Perkins et al. Page 3

Biom J. Author manuscript; available in PMC 2014 September 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



“gold standard” assay. When a more sensitive assay is lacking this would help identify

biomarkers with potential that are worth additional resources in refining a measurement

process. However, the discriminatory ability of the BLC of these biomarkers as measured

with LOD is better estimated using the AUC for traditional empirical ROC curve, denoted

AŨC0 here, which appropriately accounts for the censored values by essentially treating

them as ties because they are indiscernible from one another. In Section 4, simulation is used

to assess  and point estimators AÛC0 and AŨC0 as well as CIs for AUC0. An example in

Section 5 using levels of the environmental toxicants PCBs to classify women with

endometriosis is used to illustrate empirical and maximum likelihood techniques. We end

with a brief discussion of issues surrounding estimation based on two biomarkers affected

by LODs.

2 Methods

Suppose that pairs of biomarkers’ levels X⃗ = (X1, X2)T and Y⃗ = (Y1, Y2)T for cases and

controls, respectively, are independent and have bivariate normal distributions f(X⃗; μ⃗
X, ΣX)

and g(Y⃗; μ⃗
Y, ΣY), respectively. These distributions can be written in a matrix form or

explicitly expanded

where ηl = (wl − μl)/σl, l = 1,2, μ⃗ = (μ1, μ2)T is the mean vector and the covariance matrix Σ

consists of variances,  and covariance terms, Σ12 = Σ21 = ρσ1σ2. For ease of

development, we will exclusively work with the latter, explicit form. Under this assumption

Su and Liu (1993) showed that the formulae for coefficients leading to the BLC’s ROC

curve is

(1)

which in turn leads to,

(2)

Now suppose that the biomarker levels are measured with fixed LODs d ⃗ = (d1, d2)T. Let the

measured observations, Z⃗
X and Z⃗

Y, be the componentwise transformation of X⃗ and Y⃗,

respectively, such that
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where for a fixed dl, l = 1, 2, the l-th biomarker level is either quantified or not. Without loss

of generality we assumed that both diseased and non-diseased biomarker measurements

were affected by the same point of censoring, say dXl = dYl = dl.

Lyles et al. (2001) considered the case of two censored bivariate normally distributed

random variables and developed the likelihood

(3)

where j = 1, …, n, , Q⃗ is a vector of

indicator functions with Ql = 1 if wl≥dl and Ql = 0 otherwise, and ϕ and Φ are the univariate

standard normal pdf and cdf, respectively. Given random samples, ZX and ZY, of two

biomarkers levels measured with LODs in nX and nY individuals, respectively, we can

maximize Eq. (3) in order to generate MLEs for underlying normal parameters, θ⃗ = (μ⃗, Σ) =

(μ1, σ1, μ2, σ2, ρ), for cases and for controls. Substituting these estimators for the appropriate

parameters in Eqs. (1) and (2), the MLE’s  and AÛC0 are formed based on samples with

multiple biomarkers affected by LODs.

3 Asymptotic results

Previously, the MLE AÛC, for a single biomarker affected by an LOD (Perkins et al., 2007),

was developed along with 1−α level CI formed using the asymptotic properties of AÛC.

Applying those developments to  results in

 where ~˙ denotes the asymptotic distribution. Again

similar to the univariate case, the variance  is obtained by the standard delta method

(4)
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with λ = nX/(nX+nY) ∈ (0, 1) as nX → ∞ and nY → ∞ and (∂AUC0/∂θ⃗)ij = ∂AUC0/∂θ⃗ij being

the ij-th element of (∂AUC0/∂θ⃗). The covariance matrices of MLE’s of unknown vectors of

parameters are evaluated by the inverse of the Fisher information matrices, say IX, IY, i.e.

Cov(θ⃗
X) = [IX]−1 and . The asymptotic properties of  mirror those for

AÛC0 with distribution , where 0⃗ = (0, 0)T and the

standard delta method is used to obtain the 2×2 covariance matrix

(5)

with  being the ij-th element of . To calculate CI’s for

the elements of  and AÛC0, we must find Σβ and , respectively, which consist of the

covariance of the MLE’s  and  and the partial derivatives of  and AUC0 with

respect to each parameter. Here we are considering the case where two biomarkers’ levels

are bivariate normally distributed with unknown parameters μ⃗
Y and ΣY. The covariances,

 and , can be determined by

(6)

of bivariate normal distributions with LODs, where

The details of Eq. (6) and the partial derivatives of  and AUC0 for Eqs. (4) and (5) are

found in the Supporting Information.

When all or a portion of the parameters are unknown, the MLE’s , Σ̂
X,  and Σ̂

Y are

substituted for the appropriate parameters and generate approximate variances Σβ and  for

 and the AÛC0, respectively. We can then use this distributional information to assess

the variability in our BLC coefficients, , and to approximate α-level CI’s for AUC0 by

.
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4 Evaluation

Utilizing the R programming language, we simulated B = 2000 data sets of biomarker values

via the mvtnorm package (nY = nX = 50, 100, 200) for non-diseased and diseased individuals

from various bivariate normal distributions with θ⃗
Y = (μ⃗

Y, ΣY) = (μY1, σY1, μY2, σY2, ρY) = (0,

1, 0, 1, 0) and θ⃗X = (μ⃗
X, ΣX) = (μX1, σX1, μX2, σX2, ρX), ,

mean μ⃗
X corresponding to AUC0=0.6, 0.7, 0.8, 0.9 and ρX=0, 0.2, 0.5, 0.8. For each

simulated group of samples, , Σ̂
X,  and Σ̂

Y were calculated by maximizing Eq. (3) via

the optim function with method= “L-BFGS-B” allowing for bounded results necessary for

the variance/covariance terms. Using Eqs. (1) and (2), these estimators then lead to  and

subsequently AÛC0. Additionally, we calculated the empirical AŨC0 using the same 

and replacing missings with the often used replacement values al=dl, l=1, 2, for each

biomarker although any value 0 ≤ a ≤ d will result in the same AŨC0 for these positive .

Using methods laid out in Section 3 and bootstrapped quantiles (1000 resamplings using the

boot function), 95% CI’s for AUC0 accompany AÛC0 and AŨC0, respectively. We

calculated these estimators first with no LOD, no missingness, to appreciate the baseline

properties of the estimators under these various conditions and then applied increasing levels

of censoring, where values of d were chosen to be the 20, 40, 60 and 80th quantiles of

marginal distributions of the non-diseased population.

The  themselves were assessed and, while bias increased slightly as missingness

increased, the proportionality of the coefficients’ bias remained consistent with the

proportion of the true coefficients, e.g. β̂
01/(β̂

01+β̂
02) ≈ β01/(β01+β02). This is an excellent

result as Eq. (1) only requires proportionality in the coefficients. As expected, the estimated

relative bias, (AÛC0 − AUC0)/AUC0, and root mean squared error (RMSE) of AÛC0

decrease as sample sizes increase. The ranges of relative bias were 0.0027 to 0.1463, 0.0019

to 0.0880, 0.0003 to 0.0446 and were 0.0245 to 0.1504, 0.0174 to 0.0973, 0.0121 to 0.0618

for RMSE, respectively for nY=nX=50, 100, 200. Figure 1 depicts the relative bias and

RMSE for ; the  and (1, 0.5) cases display similar

relations in direction and magnitude regarding increasing sample size and percent missing.

Relative bias in Fig. 1 clearly increases as ρX and percent missing increase and decreases as

a function of sample size and AUC0. Changes in relative bias are slight for all levels of ρX

and from 0 to 40% missing, increasing moderately at 60% and only substantially from 60 to

80% missing. Generally, AÛC0 generated from only nx=ny=100, with over half of those

values missing, has bias that is less than two percent of AUC0, which is generally equivalent

to the relative bias of AÛC0 based on a full data set. The second row of plots in Fig. 1 show

that RMSE of AÛC0 has generally the same relationship with sample size, correlation,

percent missing and level of discrimination as with relative bias. Again, AÛC0 calculated

using only nx=ny=100, with over half of those values missing, has relative RMSE around

one percent, which is comparable to that of AÛC0 based on all the data.
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The empirical estimator AŨC0, is obviously unbiased for the discriminatory ability of the

BLC of the biomarkers as measured with ties for missing values below the LOD. However,

Fig. 2 displays a plotting of pairs of relative bias of AÛC0 and AŨC0 with regard to the

underlying latent AUC0 for the various scenarios with nx=ny=50. This depiction shows,

relatively, how consistently AŨC0 can estimate AUC0 with the  and the current

measurements. Toward this end, scenarios of relative bias of AŨC0 close to the horizontal

dashed line indicating consistent estimates range from higher levels of AUC0,

(triangles=0.8, cross=0.9) and for 0, 20 and 40% missingness and also for lower AUC0 with

40 and 60% missingness. In the latter instance, AŨC0 displayed better consistency for

AUC0 than AŨC0 for these small sample sizes. Figure 2 also shows the potential bias of

using AÛC0 in lieu of AŨC0 when measurement cannot be improved.

The coverage probability of 95% CI’s that accompanied AÛC0 were nominal or near

nominal coverage for all AUC0 ranging from 0.890 to 0.964, 0.913 to 0.965 and 0.933 to

0.960 for nx= ny=50, 100 and 200, respectively. No discernable patterns exist regarding

ρX=0, 0.2, 0.5, 0.8 or the percent missing due to the LOD. It should be noted that unlike

Reiser and Faraggi’s (1997) CI for AUC using complete data, our CI’s do not take into

account the bounded nature of the AUC and coverage may be adversely affected near these

bounds. However, our simulation did not reflect any difficulties for the sample sizes and

levels of discrimination shown. Figure 3 displays the width of MLE and bootstrapped CI’s,

open and solid points, respectively, versus their coverage probability for our smallest sample

size, nx=ny=50. Generally, CI’s increase in width to reflect uncertainty from increasing

missingness, where larger point size corresponds to a larger proportion missing. Additional

plots for the larger sample sizes displaying increased coverage and tighter widths are

included in the Supporting Information.

5 Example

To illustrate our method, we use PCBs, environmental toxicants, as potential indicators of

endometriosis (Louis et al., 2005). Endometriosis is a gynecological disease exclusive to

species that menstruate such as humans and other primates, occurring predominantly in

women of reproductive age. Data from experimental studies in animals and observational

human studies suggest an association between dioxin and PCBs and endometriosis. In our

data, PCBs 153 and 180 were measured in 28 women with and 51 women without

endometriosis. The biomarkers were measured jointly and were expected to be correlated.

However, the sensitivity of the measurement process differed for each biomarker with PCB

153 having an LOD of d153=0.2, resulting in 64% of the cases and 74% of the controls

having unobservable levels and PCB 180 having an LOD of d180=0.034, resulting in no

missing cases but 11% of the controls having unobservable levels (Whitcomb et al., 2005).

Analyzing the biomarkers univariately, empirical methods led to AŨC153 = 0.564 and

AŨC180 = 0.609. As measured, PCB 180 and 153 appear to have some discriminatory

ability for women with endometriosis, greater for PCB 180. To investigate what potential

might lie below the LODs, we can employ parametric techniques. Univariate normal

distributions were assessed on the log transformed biomarkers similar to Lyles et al. (2001)
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via q–q plots. Figure 4 displays q–q plots where both biomarkers fit log normal distributions

well, as evidenced by diagonal points corresponding to the points above the LODs. The

horizontal points are essentially quantile place holders for the observations below the LOD.

Assuming that the data we don’t see follow the data we do see, univariate normal

likelihoods led to the MLE’s AÛC153 = 0.511 and AÛC180 = 0.630 for PCB 153 and PCB

180, respectively (Perkins et al., 2007). Again, PCB 180 displays a moderate ability to

differentiate but the potential of PCB 153 seems to have been diminished. The result

AŨC153>AÛC153 is due to a large “hook” in the ROC curve (Pesce and Metz, 2007)

resulting from disparate variances. This behavior is rarely reflective of actual etiology but

rather is likely to be a result of highly variable parameter estimates given the small sample

sizes and large amount of missings. Regardless, PCB 153 might be discarded as potentially

lacking discriminatory ability for endometriosis.

However, these two biomarkers are closely linked biologically and are suspected as being

highly correlated as a result of being in a mixture of environmental exposures. Using a

variety of methods, we considered the joint distribution of PCB 153 and 180 to investigate

whether PCB 153 might have some potential as a contributor in a BLC. First, Eq. (3) was

maximized using log transformed PCB levels, MLEs for distribution parameters were

calculated as well as  via Eq. (1). Using Eq. (2), we

estimated that the potential from this BLC if measurements could be improved to be AÛC0

= 0.747 with 95% CI (0.580, 0.915). This result shows that the BLC of PCBs 153 and 180

could be far superior to either biomarker alone and is potentially a good discriminator of

women with and without endometriosis if the measurement sensitivity of PCB 153 could be

improved. However, the sample sizes here have led to a significant but wide CI which does

not rule out AUC0<0.630.

Table 1 compares AÛC0 to several alternative estimators of the potential AUC0. Naïve

methods to estimate potential AUC0 in Table 1 shows the results of using replacement

values (e.g. imputing al=dl/2 for values below the LODs) and standard parametric methods

to obtain naïve BLC, . Imputing values in this fashion clearly violates the assumption of

bivariate normality. However, we generated such estimates for the sake of comparison since

standard methodology is often applied to data sets with imputed values. While these results

are a slight improvement over the univariate biomarkers, it is vastly less than the proposed

AÛC0. These naïve cases also point to widely varying linear combinations, as in column 3

of Table 1.

The second set of estimates in Table 1 begins with this BLC’s current diagnostic ability,

where AŨC0 was estimated empirically using various replacement values (d, d/2 and

al=E[Xl|Xl<dl], the expected values below the LODs) and the mles  estimated previously.

These estimates vary but all are less than AŨC180 and even AŨC153. Alternatively, we

could use these replacement values in conjunction with simple logistic regression as a means

to identify the “best” coefficients to estimate AŨC0 as measured. Lynn (2001) showed that

in some cases these naïve methods can provide logistic regression coefficient estimates

comparable to those using a full maximum likelihood approach for logistic regression
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accounting for an LOD. These “logistic” AŨC0 in Table 1 are on par with those using the

, “mle,” likely due to the logistic coefficients having the same signs and not grossly

different proportionality. However, they do shift some of the focus to PCB 180 as evidenced

by the slightly larger proportion of the linear combination, making the subsequent AŨC0

better than AŨC153. The ordering AŨC153<AŨC0<AŨC180 is due to the difference in signs

for the coefficients and in percent below the LOD for the two biomarkers. If both

coefficients were positive, the order of PCB 180 would be preserved when ties from PCB

153 are introduced to a BLC and thus AŨC0 ≥ AŨC180. As measured, the BLC of PCBs 153

and 180 would not be of use beyond what PCB 180 can already achieve, however, Fig. 2

shows us that we need only to reduce the missingness in PCB 153 to between 20 and 40% to

realize most of the difference between the potential latent and as measured effectiveness.

6 Discussion

While multiple biomarkers are often available or obtainable for the same outcome,

investigators often ignore all but one and in doing so essentially throw out potential ability

to discriminate beyond the biomarker they have chosen. For this reason and where

biomarkers can be assumed to be normally distributed, the proposed BLC should be used in

lieu of a single marker, especially in cases where multiple biomarkers come at no additional

cost, as is the case with multiplex assays.

Using two biomarkers measured with LODs can result in one or both measured with

censored values for an individual. The methods developed here allow us to properly account

for the missing values while simultaneously taking advantage of the benefits in

discriminatory ability realized by a BLC. While replacement has been shown previously to

be useful in certain situations as an ad hoc approach for the AUC in the univariate case,

we’ve shown here that standard parametric methods with replacement values can yield

estimates of the potential AUC0 that vary greatly from the MLE (Perkins et al., 2007). For

this reason, replacing missing values by a constant is not recommended when estimating,

even naïvely, the potential of a BLC of biomarkers.

The method proposed here is related to the approaches for handling censored covariates in

logistic regression setting. Lynn (2001) discusses an approach for estimating the linear

combination of subject-to-LOD covariates for prediction of a binary outcome. Due to the

invariance of the ROC curve with respect to order-preserving transformations and because

of the assumed multivariate normality of the covariates, the potential AUC0 for Lynn’s

linear combination can be computed using the standard formulation for binormal AUC. The

novelty of the approach developed here is that the proposed BLC targets maximization of

the AUC0 rather than maximization of the likelihood under the logistic regression model.

Depending on the parameters of the distributions the results can be either similar or

substantially different (Pepe et al., 2006).

While the likelihood ratio has been demonstrated to achieve the highest possible AUC for a

given set of biomarkers, in the case of two bivariate normally distributed biomarkers the

absolute difference in estimated AUC can be minimal. However, this is not always the case

as likelihood ratio ROC curves are assuredly “proper” or completely concave while
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conventional “binormal” ROC curves and those based on linear combinations of normal

biomarkers can have minimal to severe non-concave portions or “hooks” (e.g. ,

(β⃗TΣXβ⃗)≫(βT⃗ΣYβ⃗) or b≪1 from Pesce and Metz (2007)). The linear combination here has

the benefit of being simple to interpret and can incorporate the empirical estimate of the

biomarkers’ effectiveness as currently measured where the likelihood ratio does not. More

importantly though is that in the context of the latent discriminatory ability, both would

work similarly in identifying biomarkers with potential that could be measured more

precisely and more extensively in the future. While, Section 3 considers the asymptotic

properties of AÛC0 for the BLC of two multivariate normal biomarkers, Section 4 shows

small sample performance that is nearly unbiased and achieves nominal coverage probability

for sample sizes as little as 100 with 20, 40 and 60% missing values due to LODs. The need

for further investigation regarding magnitude and potential causes of differences between

the likelihood- ratio and conventional “binormal” ROC curves in the context here remains.

As with all parametric estimation, this BLC of two biomarkers corrected for LODs is

dependent on distributional assumptions specifically that the biomarkers or their transforms

are multivariate normally distributed. The literature (Molodianovitch et al., 2006; Perkins et

al., 2007) has shown MLEs of AÛC for the univariate case are robust to minor deviations

from the normal assumption and unfavorable results when assumptions are grossly violated.

Estimates of the AUC based on replicates of a single biomarker, a special case of the

multivariate normal developments here, have shown favorable robustness by generating

biomarker levels from gamma distributions (Perkins et al., 2009). While the bias was on

average less than one percent of the AUC being estimated, caution and diligence should still

be taken when employing this BLC resulting in AÛC0.

A biomarker may provide differential discrimination based on some associated factor. The

inclusion of this covariate information can of course be incorporated by conducting a

stratified analysis for each level of such a factor. A better approach might be to directly

include the covariate information in the likelihood function.

In our example we applied several methods to empirically estimate the as measured

discriminatory ability, AŨC0, by using simple replacement values in standard logistic

regression or with . Lynn (2001) showed that in some cases, naïve replacement could

yield similar logistic regression coefficient estimates to those estimated using maximum

likelihood accounting for the LOD properly. We found a similar concordance here in AŨC0

by virtue of the naïve logistic coefficients and our  yielded similarly proportional

estimated coefficients. However, instances where this is not the case surely exist and care

should be taken to investigate potential discordance before applying either BLC in practice.

These methods for estimating AUC0 while properly accounting for missing data censored

below LODs will provide an asymptotically unbiased view of the potential discriminatory

ability of the BLC of a set of two biomarkers. We must note again that the AÛC0 in this

scenario reflect potential discriminatory ability and cannot be realized in practice until

observations can be measured and thus allow for differentiation below the LODs. This is
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often the case where a less sensitive, but cheaper assay could be conducted to narrow down

potential biomarkers before conducting more expensive but more precisely measured assays.

We have also demonstrated the usefulness of the empirical estimate of what is possible “as

measured” and how the majority of two biomarkers’ latent discriminatory ability might be

realized by improving measurement, reducing missingness to between 20 and 40% rather

than to zero. Estimating this potential is increasingly important as it allows researchers to

focus limited resources to improve the measurement process in biomarkers that display

promise and subsequently lead to improved diagnostic care.
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Figure 1.
Relative bias and RMSE of maximum likelihood estimates of various levels of AUC0 based

on simulated bivariate normally distributed data of various sample sizes and correlations as a

function of the percent of the non-diseased population missing due to LODs. Measurements

of diseased were also affected by the LODs but to a degree that lessens as AUC0 increases.
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Figure 2.
Relative bias of maximum likelihood versus empirical estimators of AUC0 based on the

estimated BLC of simulated bivariate normally distributed data of various correlations (point

size) and missingness due to LODs from samples of 50 health and 50 diseased. Squares,

circles, triangles and crosses indicate estimators with true AUC0=0.6, 0.7, 0.8 and 0.9,

respectively.
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Figure 3.
Confidence interval (CI) width and coverage probability of 95% CI’s estimated via

maximum likelihood (open points) or bootstrapped percentiles (solid points) that accompany

ML and empirical estimates of the AUC0, respectively. True AUC0=0.6, 0.7, 0.8 and 0.9 are

identified by squares, circles, triangles and crosses/diamonds, respectively.
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Figure 4.
q–q normal plots of the log transformed biomarker levels of PCBs 153 and 180 for women

with endometriosis (cases) and without (controls). Horizontal points correspond to

observations censored below an LOD.
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Table 1

Estimates of linear combinations of log PCBs 153 and 180 measured with LODs intending to maximize the

AUC0 for women with and without endometriosis using various methods.

Type of AUC0 Estimation methoda) Estimates

(β153, β180) AUC0

Potential mle (−1.733, 1.651) 0.747

naïve mle (d) (0.927, 0.204) 0.639

naïve mle (d/2) (0.014, 0.390) 0.639

naïve mle (E[x|x<d]) (0.138, 0.346) 0.629

As measured mle/emp (d) (−1.733, 1.651) 0.557

mle/emp (d/2) (−1.733, 1.651) 0.534

mle/emp (E[x|x<d]) (−1.733, 1.651) 0.532

logistic/emp (d) (−0.322, 0.472) 0.581

logistic/emp (d/2) (−0.348, 0.557) 0.553

logistic/emp (E[x|x<d]) (−0.195, 0.449) 0.575

naïve mle/emp (d) (0.927, 0.204) 0.608

naïve mle/emp (d/2) (0.014, 0.390) 0.607

The AUC0 estimated are for the biomarker as measured with missing values below the LODs and for the potential of the latent biomarkers if they

could be measured completely.

a)
Method for estimating (β153, β180)/method for estimating AUC0 (replacement value used).
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