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Summary

Due to the rising cost of laboratory assays, it has become increasingly common in epidemiological

studies to pool biospecimens. This is particularly true in longitudinal studies, where the cost of

performing multiple assays over time can be prohibitive. In this article, we consider the problem

of estimating the parameters of a Gaussian random effects model when the repeated outcome is

subject to pooling. We consider different pooling designs for the efficient maximum likelihood

estimation of variance components, with particular attention to estimating the intraclass

correlation coefficient. We evaluate the efficiencies of different pooling design strategies using

analytic and simulation study results. We examine the robustness of the designs to skewed

distributions and consider unbalanced designs. The design methodology is illustrated with a

longitudinal study of premenopausal women focusing on assessing the reproducibility of F2-

isoprostane, a biomarker of oxidative stress, over the menstrual cycle.
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1. Introduction

Estimating the sources of variation in new biomarkers is an important initial step in early

biomarker development. For example, estimating the between- and within-subject variations

as well as the intraclass correlation coefficient (ICC) is especially important for designing

future studies. This is important for a number of reasons. First, biomarkers with similar

biological function with the highest ICC can be considered the most reproducible and

therefore can then be selected as important markers for future studies. Second, estimates of

the ICC can be used for designing studies where the biomarker is an outcome measure.

Specifically, the ICC will dictate the trade-off in efficiency between taking an increased
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number of individuals or an increased number of repeated measurements. Third, for risk

modeling when the biomarker is a measure of exposure, estimates of the ICC will aid

investigators in correcting for measurement error (Fleiss, 1986).

The usual designs for estimating the ICC require repeated measurements taken on multiple

subjects. However, resources to conduct reproducibility studies are limited given that such

studies are often considered ancillary to the major research objectives. To reduce the cost of

these reproducibility studies, pooling multiple samples either across individuals or across

time may be advantageous. This article investigates various pooling strategies for estimating

the variance components as well as the ICC under a Gaussian random effects model. These

designs involve combining multiple samples across either time or individuals and

performing the assays on the resulting pooled samples.

Others have investigated the utility of pooling designs in various situations. The statistical

implications of pooling measurements across subjects have been considered for the problem

of efficient identification of rare positive cases (blood testing problem) (Dorfman, 1943;

Sterrett, 1957), for evaluation of diagnostic testing (Faraggi, Reiser, and Schisterman, 2003;

Mumford et al., 2006; Vexler, Schisterman, and Liu, 2008), for a longitudinal model (Albert

and Shih, 2011), for detecting random effects model misspecification via coarsened data

(Huang, 2011), and for logistic regression (Weinberg and Umbach, 1999; Vansteelandt,

Goetghebeur, and Verstraeten, 2000; Chen, Tebbs, and Bilder, 2009; Zhang and Albert,

2011). Pooling in microarray experiments has been discussed by Kendziorski et al. (2003)

and Shih et al. (2004). Schisterman et al. (2010b) proposed a hybrid pooled–unpooled

design to maximize efficiency while minimizing cost in a univariate biomarker setting. In

this article, we investigate various pooling strategies for estimating the variance components

under a Gaussian random effects model.

This article proposes design strategies for pooling in repeated measures analysis. In Section

2, we describe a motivating example where investigators were interested in assessing the

reproducibility of F2-isoprostane, a measure of oxidative stress, to design future studies

where this biomarker can be used as an outcome or as a measure of exposure. In Section 3,

we present the model and review methods of parameter estimation for the Gaussian random

effects model. In Section 4, we describe and compare different pooling strategies for

balanced designs where we pool over individuals, pool over repeated time points, and pool

over individuals and time points. In Section 5, we investigate the effect of imbalance on the

design results developed for balanced designs. In Section 6, with extensive simulations we

investigate the sensitivity of our results to the normal assumptions in both the between- and

within-subject variations. In Section 7, we illustrate the design methodology by analyzing

the F2-isoprostane data and show the efficiencies of different pooling design strategies for

estimating the ICC in this application. In Section 8, we provide a summary and discussion.

All proofs and additional relevant materials are presented in the online Supplementary Web

Appendix.
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2. A Motivating Example: BioCycle Study

F2-isoprostane is a biomarker that measures oxidative stress, an important measure of both

exposure and disease outcome. F2-isoprostane levels may be a surrogate for outcome of

cardiovascular disease, while F2-isoprostane may also be a marker for exposure in

determining the risk of cardiovascular disease (Roest et al., 2008). For a number of reasons,

understanding the reproducibility of measures of oxidative stress estimated by the ICC is

important for designing future studies where this measure can be used either as an outcome

or as a measure of exposure. The BioCycle Study was a longitudinal study designed to

assess the effects of endogenous hormones (i.e., estrogen and progesterone) on biomarkers

of oxidative stress and antioxidant status during the menstrual cycle. Women aged 18–44

years from western New York State were followed prospectively during 2005–2007. One

objective of the BioCycle Study was to assess the reproducibility of F2-isoprostane over the

menstrual cycle. However, the cost of the F2-isoprostane assay is about $130, making this

reproducibility assessment an expensive proposition that cannot easily be repeated in the

future. The BioCycle Study design involved measuring a series of oxidative stress

biomarkers (including F2-isoprostane) at eight times over two menstrual cycles among 259

women (Wactawski-Wende et al., 2009; Schisterman et al., 2010a). If our goal were simply

to estimate reproducibility of oxidative stress biomarkers, the cost of this design would have

been prohibitive. Designs where we pool samples either across time points or over

individuals may be cost-effective alternatives to analyzing all repeated assays or to

analyzing a random sample of measurements on individuals.

The F2-isoprostane measurements in the BioCycle data are used to illustrate the different

designs in this article. In the next section, we describe the model for reproducibility that we

will be considering.

3. Random Effects Model

In this section we present results for a Gaussian random effects model, where we do not pool

samples. Let Yij denote a continuous random variable with common mean μ, where i = 1, …,

l indexes individuals, and j = 1, …, n indexes repeated measurements on a given individual.

When we do not pool, each measurement Yij is obtained from a separate assay.

We assume the following random effects model

(1)

where individual random effects are denoted by Ai, the random error is denoted by eij, and Ai

and eij are assumed to be Gaussian, each with mean zero and variances  and ,

respectively. The random variables Ai and eij reflect the between- and within-subject

variations, respectively, and are assumed to be independent from each other. These

assumptions lead to Cov(Yij, Yi′j′) = 0 if i ≠ i′ and  if j ≠ j′ and

. Model (1) is a standard random effects model which can be used to

analyze the reproducibility of F2-isoprostane in the BioCycle Study.
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The popular measure of reproducibility of the within-subject measurements is the ICC,

defined as . This is the correlation coefficient between two measurements from

the same individual. Values of γ near one indicate higher reproducibility among

measurements from the same individual, and values near zero indicate low reproducibility.

Mean and variance component estimation as well as random effects prediction for model (1)

can be found in Searle, Casella, and McCulloch (1992) and in the Supplementary Web

Appendix to this article. The asymptotic (l → ∞) variance matrix for the maximum

likelihood estimation (MLE) of the variance components can be expressed as

(2)

where . The subscript F in the equation above denotes a design where a separate

assay is performed on every repeated measurement. Designs of this type will be called

Design F and will be used as a benchmark for comparisons of pooling designs that we will

develop in the next section.

Define  as the estimated ICC. Because  and  are MLE of  and , it follows

from the in variance property of maximum likelihood that γ̃ is the maximum likelihood

estimator of γ. The asymptotic variance of γ̃ can be obtained from equation (2) using the

Delta method (see Fisher, 1925; Donner, 1986) for the details):

(3)

The results in this section correspond to the situation where sample taken from the same

individual at different times are analyzed with separate assays. In the next section, we

consider strategies where we pool samples across individuals or repeated samples to reduce

the total number of assays needed in the study.

4. Pooling Strategies

In many situations, funding is limited to covering only the cost of M assays, M < ln. Recall

that l is the number of individuals and n is the number of repeated measurements. We will

compare different designs to obtain the efficient MLE for ICC γ. These designs involve

combining multiple samples across either time or individuals and performing the assays on

the resulting pooled samples. To reduce ln assays to M assays, we will use pooling. In any of

the pooling strategies that we are considering, we will not allow the pooling of samples

more than once. For example, we do not allow for designs where a biological sample for a

given individual at a given time point is in multiple pools.
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We begin with a discussion about the optimal pooling design. From model (1), it follows

that Y ∼ MVN(μ1N, V), where Y = (Y11,…, Yln)′, 1N = (1, 1,…,1)′, N = ln, and V is a block-

diagonal matrix with l identical matrices of the form  (In = diag(1n),

) in the diagonal. Pooling designs can be specified with a transformation matrix Q

that operates on the original data Y and results in data from a pooled sample Y*. The

transformation for a general Q can be written as

(4)

The objective in obtaining an optimal design is to find a transformation Q such that the

asymptotic (l → ∞) variance of the MLE of γ̃ is minimized. It is important to note that

under our pooling mechanism V* is guaranteed to be full rank.

Generally it is difficult to obtain the optimal design for variance estimation. However, for

some important design classes it is possible to express the asymptotic variances of γ,  and

 in closed form. To do this, we will distinguish between two types of designs, as follows.

Symmetric designs are designs in which we pool all data in equivalently sized groups only

across time (Design T) or only across individuals (Design I). Figure 1 provides an example

of both a T design and an I design. In this example, for Design T we pool every two

measurements over time, while for Design I we pool every two measurements over

individuals. Nonsymmetric pooling designs are ones for which pool sizes are not equal or

where pooling may be done across both individuals and time points. Designs 1, 2, and 3 in

Figure 1 are examples of such designs.

In the following example we demonstrate a nonsymmetric pooling strategy using the

transformation Y* = QY with M = 4 (total assays), l = 2 (individuals), and n = 3 (repeated

measurements). A design where we pool the last two measurements of each individual over

time can be expressed as

We discuss both symmetric and nonsymmetric designs in turn.
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4.1 Symmetric Pooling Design

Pooling across individuals, Design I—Suppose that l = PIk and we combine samples

into PI pools, with each pool containing k samples (e.g., Design I in Figure 1 with l = 4, PI =

2, and k = 2). In the terms of equation (4), we have , where

 and  for p = 1, …, PI, j = 1, …, n. In this case,

model (1) becomes: , with , epj ∼ N(0,

σ2/k), where p = 1, …, PI and j = 1, …, n.

In Result 1, we derive the asymptotic (l → ∞) covariance matrix for the MLE of the

variance components under Design I.

Result 1.

(5)

and

(6)

The proof is given in the Supplementary Web Appendix.

Using equations (3) and (6), the efficiency of Design F relative to Design I is

. Therefore, the efficiency of Design I (i.e., we pool l individuals to PI

groups of size k) is the same as the efficiency of an unpooled design (Design F) with PI

individuals. This result also applies to estimating  and .

Pooling across time, Design T—Suppose that n = PTk and we pool across time into PT

pools, each one of size k (e.g., Design T in Figure 1 with l = 4, PT = 2, and k = 2). In terms

of equation (4) we have , where  and

 for p = 1, …, PT, i = 1,…,l. In this case, model (1) becomes:

, with , where p = 1,…, PT and i = 1,…, l.

In Result 2, we derive the asymptotic (l → ∞) covariance matrix for the MLE of the

variance components under pooling across time (Design T).

Result 2.
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(7)

and

(8)

The proof is given in the Supplementary Web Appendix.

Using equations (3) and (8), the efficiency of Design F relative to Design T is

(9)

We can see from equation (9) that the ratio of asymptotic variance of γ̃ for Design T versus

Design F does not depend on γ and that the ratio is bounded above by two. We can also see

from equation (9) that the efficiency of the T design is minimized when the number of

repeated measurements is large and for each individual the measurements are separated into

two pools. Overall, compared with Design I, Design T is an efficient alternative to Design F

for ICC estimation, because the variance ratio is bounded regardless of pool size for Design

T but is proportional to pool size for Design I.

Result 2 has important design implications for estimating the individual variance

components. Combining equations (2) and (7), we derive the following results. First,

. Hence, we can conclude that for estimating , the loss of

precision is at least proportional to the size the pooled group. Second,

, and it is easy to see that the function f(γ) is a

convex decreasing function of γ ∈ [0,1], with  and f(1) = 1. Hence,

we can conclude that we lose less information as γ becomes larger, and in the worst case the

variability of  with Design T is less than twice that with Design F.

Alternatively, we can find the number of repeated measurements in a nonpooled design,

which would result in an asymptotic variance equivalent to that of a particular Design T.

Specifically, we have to find x (number of nonpooled repeated measurements), which solves

the following equation
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(10)

Result 3. Equation (10) has a single positive solution, which is

The proof is given in the Supplementary Web Appendix.

4.2 Nonsymmetric Pooling Design

It is not possible to get analytical expressions for the MLE of  and , and therefore for

the MLE of ICC, for most nonsymmetric pooling designs. Recall that it was shown in

equation (4) that the pooled data Y* are distributed according to

. It follows that in most cases, using a nonsymmetric

pooling strategy introduces dependence among individuals, and it is therefore very difficult

to calculate the information matrix in closed form. (In Design I, we also induce dependence

within the pooling groups, but in this case the pooling groups have the same size and using

appropriate reparametrization allows us to derive the estimators in the same way as for the

full data.) Therefore, we evaluate the asymptotic (l → ∞) variance of γ̃ for nonsymmetric

designs using Monte Carlo numeric approximations.

In Figure 1, we present different design schemes with l = 4, n = 4 and evaluate designs with

M = 8 assays. We compare each Design d to the most efficient Design T through the ratio R

= Vard(γ̃)/VarT (γ̃) for two values of ICC, γ = 0.3, 0.9, and present the results under each

scheme. We evaluated Vardγ̃ in the following way. Using 2500 Monte Carlo simulations, we

approximate the information matrix of vector Y* in equation (4), which is

, where  and L(Y*;θ) is the likelihood function. In this

case we calculated in closed form the matrix  and evaluated the expectation

using Monte Carlo approximation. The inverse of the information matrix provides a Monte

Carlo approximation of , , and . Further, an additional Delta

method calculation is used to evaluate Vard (γ̃). Figure 1 shows that we have increasing

efficiency as we pool less across individuals and more across repeated measures. A

comparison of many nonsymmetric and symmetric designs suggests that Design T is the

most efficient design. In Figure 1, the Designs T and 1 have the same efficiency. In Design

T, we pool four repeated measurements into two groups of size 2, and in Design 1 we pool

four repeated measurements in two groups of sizes 3 and 1. In the following result (Result 4)
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we provide theoretical justification of this result and show that every pooling design across

repeated measurements with a given number of groups has the same efficiency.

Until now, we have considered pooling designs under the assumptions of a balanced design

and normal error distributions. These assumptions may not hold in practical biomarker

studies like the F2-isoprostane example. In Sections 5 and 6, we examine the

appropriateness of our design results when these assumptions are not met.

5. Unbalanced Case

The previous results are limited to balanced designs. However, in many situations, these

repeated measures designs may have a different number of repeated measurements on each

subject. Of practical importance is extending our previous results to the case of unbalanced

designs. This section presents two results which apply to unbalanced designs. First, we show

in Result 4 that for Design T (where we pool over repeated measurements), all possible

pooling strategies with a fixed number of pooled groups have the same asymptotic

efficiency. The practical importance of this result is that, for both balanced and unbalanced

designs, it does not matter how we allocate samples into pools. In this case, what matters for

efficiency is only the number of pooled groups. Second, we show in Result 5 that if the

number of repeated measurements follow a distribution, the difference in expected

information between Designs T and I across ni is equal to the difference in the information

matrices for the average ni. This suggests that the efficiency of Design T relative to Design F

under imbalance will be close to the relative efficiency of a balanced design with n repeated

measurements, where n is the expected value on ni. Practically, this has important

implications in that we can design studies based on what we expect will be the ‘average’

balanced design, and the relative efficiencies will be valid under imbalance.

With regard to Result 4, we focused on the comparison between the T and F designs for the

unbalanced case, because Design I is difficult to characterize in this situation. We extend our

model (1) to allow for the unbalanced case, where i = 1,…,l (individuals), j = 1,…, ni

(repeated measurements). For each individual i, we pool all repeated measurements in P

groups with size . We call this Design T*. We also denote

the unbalanced design without pooling as Design F*. The following result follows from the

fact that the information matrix of the T* design does not depend on the values of pooled

group sizes, kip, i = 1,…,l; p = 1,…,P, and depends only on the number of pooled groups P

for each individual i = 1,…, l.

Result 4. Suppose that we pool ni measurements of each individual i, i = 1,…,l into P

groups (P ⩽ mini(ni)) of sizes . Then all

 different pooling designs have the same efficiency for estimating

parameters , , and γ. The proof is given in the Supplementary Web Appendix.
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Liu and Schisterman (2003) have observed a similar result for independent univariate data,

where they show that all designs with P groups have the same efficiency for variance

estimation.

We now present a result (Result 5) which shows that the design results for the balanced case

are useful for unbalanced designs. With the information matrices  and

 (see Supplement), we can calculate using the Delta method the asymptotic

variance of the ICC for unbalanced Designs F* and T*, but unlike for the balanced case, the

results are complex and provide no insight into the comparison of the two designs. However,

with a new result, we now show that the analytic result presented for the balanced case can

be applied for unbalanced designs. Suppose that ni, i = 1,…,l are independent random

variables from distribution G with expectation n. In this general case, we can show that the

difference between the information matrices of Designs F* and T* is equivalent to the

difference between the information matrices of the average balanced Designs F and T

(Result 5).

Result 5. Suppose that ni is a random variable from distribution G with finite first two

moments and expectation n. In this case, the information matrix is defined as the expectation

with respect to G, say, . Then, we have

where IF,n and IT,n are the above information matrices with fixed ni = n, i = 1,…,l for the F

and T designs, respectively.

The proof is given in the Supplementary Web Appendix.

This result has important practical implications in that it implies that we can design studies

for an average balanced design, and the result would apply to the actual unbalanced design.

We demonstrate that the designs work well in expectation with the following example. We

assume that  and fix . We calculated the ratio of the two

ratios Rs, . The ratio R for the unbalanced design was evaluated

with Monte Carlo simulations of size 10, 000. We observed that the maximum change in the

relative ratio (|RR − 1|*100%) of Designs T and F versus T* and F* is only 2.4% when n is

4 and P is 2. When n is 16 and P is 2, the relative difference is less than 0.5%. Thus, ratios

comparing the efficiencies of the T and F designs under imbalance are very close (small

relative ratio) to the corresponding ratios for the average balanced design.
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6. Robustness to the Additive Gaussian Assumption

The analytic results derived in Section 4 assume additive Gaussian random effects and error

distributions. Practically, this may not be realistic assumption for many biomarker studies.

With extensive simulations, we investigated the sensitivity of our results to the more

realistic scenario where random effect and residual variation are not additive and the

variance depends on the mean. The data were simulated from the following model,

(11)

where i = 1,…,l and j = 1,…, n, and we compare Designs F, T, and I for estimating γ. We

fixed γ to be 0.25, 0.75, 0.9, and  is calculated under model (11) with Expression (S0) in

the Supplementary Web Appendix. We set l = 1000 and n = 8. For Designs T and I, we

consider strategies where we pool every two repeated measurements and where we pool

every two individuals, respectively. In the estimation step we assume the additive random

effects model (1) and estimate the variance components  and  using the method of

moments (analysis of variance [ANOVA]) for each Design F, T, and I. Table 1 presents the

results from 10, 000 simulated realizations. The fourth, sixth and ninth columns of Table 1

present the estimators for γ under Designs F, T, and I, respectively. The eighth and eleventh

columns are estimators of RTF = VarT(γ̃)/VarF(γ̃) and RIF = VarI (γ̃)/VarF (γ̃), respectively.

It follows from Result 1 and Result 2 that under normal assumptions, RTF = 117, RIF = 2.

The simulation results show (Table 1) that we get nearly unbiased estimators of ICC under

the nonadditive gamma-normal model for Designs F, T, and I. Monte Carlo estimators of

RTF, RIF also are very close to values computed under additive normal model (1). These

results have practical importance in that they show that the efficiency comparisons derived

under an additive Gaussian assumptions are robust to this assumption.

7. The F2-Isoprostane Example Continued

We analyzed the F2-isoprostane data from the BioCycle Study described in Section 2. The

BioCycle Study enrolled 259 women with five to eight study visits. To examine the pooling

strategies under both balanced and unbalanced designs, we focused on the subset with six

complete measurements (n = 174) and on the complete dataset. Using the balanced subset,

we compared Design T, where we pool every three repeated measurements for each

individual, with Design I, where at each time point we pool the measurements for three

individuals. The pooling strategies applied to the balanced subset would have allowed us to

perform only one third the numbers of assays needed for the unpooled design, thereby

reducing the cost of the study substantially. Specifically, assuming that the cost of an assay

is $130, the full design would cost $135,720, while the pooled designs would cost only

$45,240. For the complete dataset, we compared Design T, where we pooled every

individual's repeated measurements into two pools (of equal size for an even number of

repeated measurements or approximately equal for an odd number of measurements), with
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Design F. Here the full design would cost $254,800, while the pooled design would cost

only $67,340.

For both analyses, ANOVA estimators of γ were used because the error distributions were

highly skewed for F2-isoprostane. Because the error distributions were highly skewed, we

used the bootstrap to construct confidence intervals for ICC and to demonstrate the validity

of the theoretical results. For the F and T designs, the bootstrap was applied by resampling

individuals with replacement and by resampling pools (preserved over time for the I design).

The results are presented in Table 2 for the balanced and unbalanced designs. The point

estimates of the ICC are similar across both designs and datasets, with the estimated ICC

ranging between 0.68 and 0.74. Further, the relative efficiencies across designs are close to

what would be expected based on our analytical design comparisons.

8. Discussion

In this article, we proposed various pooling design strategies for estimating the variance

components and the ICC under a Gaussian random effects model. In this setting, pooling is

particularly attractive, because conducting longitudinal reproducibility studies is

prohibitively expensive when the assay costs are high. We were able to develop closed-form

expressions for the efficiencies of Design T (across time) and Design I (across individuals)

relative to full data designs (no pooling) under the assumption of normal error distributions,

balanced designs, and no technical variation. Using these expressions, we showed that

designs where we pool samples over time on individuals (T) are more efficient than designs

where we pool over individuals at the same time point (I).

Our analytic design results were developed under assumptions that may not be realistic in at

least some biomarker studies. For example, the BioCycle Study is unbalanced and F2-

isoprostane markers are highly skewed, with the variances increasing with the mean. We

showed that the analytic results apply to unbalanced designs. Specifically, we can design

studies based on the average balanced design. Further, through extensive simulations, we

showed that the analytical results still apply under realistic departures from an additive

Gaussian model; namely, the T design is a highly efficient alternative to both the full and I

designs. Although the ICC does not have a direct relationship with the sources of variation

under the nonadditive model, it still has an interpretation as the correlation coefficient

between repeated measurements. Thus, even under the nonadditive non-Gaussian model, the

ICC can be used for assessing the reproducibility of biomarkers and for designing studies

where the biomarker is an outcome measure. However, it is not directly useable as a

correction for measurement error when the biomarker is treated as a covariate in regression

analysis.

The analytic results were developed under the assumption of no technical variation. This is

reasonable for the F2-isoprostane biomarkers, where technical variation is expected to be

very small. We show in the Supplementary Web Appendix how to incorporate technical

variation into the estimation. We also show that when the technical variation is more sizable,

Design T is still optimal.
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Model (1) can be extended to allow for a more flexible mean structure. All our analytic

results for estimating the ICC extend to this model, because MLEs of the mean structure and

variance components are independent from each other. The correct estimation of the ICC

relies on the correct specification of the mean structure. However, particularly for Design T,

the specification of the correct mean structure may be difficult to justify empirically in

practical situations. Therefore, a limitation of pooling across time (Design T) is that we need

either to assume a constant mean or to specify the mean structure based on biological

information.

The analytic results in this article were developed for a simple one-way ANOVA. In

practice, more complex hierarchical random effect structures may be appropriate. We

conducted simulations that examined the performance of our design results when an

additional source of variation was added. Specifically, we examined a model that

incorporates a center effect, where individuals are nested within centers. These simulations

along with a discussion of the results are included in the Supplementary Web Appendix.

Overall, Design T is still more efficient than Design I even when the center effect is large.

Practical issues related to biomarker development need to be considered in the designs of

longitudinal studies with pooling. Although limit of detection was not a concern in our

applications, it may be an issue for other biomarkers. Hughes (1999) developed a Gaussian

random effects model for longitudinal data with detection limits. Future work will focus on

extending this approach to allow for pooling. Fortunately, in our example F2-isoprostane is

not subject to a limit of detection.

A dilution effect may be an issue for some biomarkers (particularly if the pool size is large).

A dilution effect is a type of technical variation discussed in the Supplementary Web

Appendix, where the effect can be viewed as eM having a nonzero mean which depends on

pool size. We could account for this effect by estimating the mean of eM as a function of

pool size as long as we have pools of different sizes. This is an area of future research.

The BioCycle study example has intermittent missingness. Result 5 deals with unbalanced

designs, which can be described as a type of intermittent missingness where data are missing

at random. Future work will focus on developing inference and designs for longitudinal data

with pooling under a more general missing data mechanism.

In summary, designs where we pool over time will provide a practical, efficient alternative

to performing assays at each time point. Of course, it is important not to pool all

measurements on a given person, because in this case, between- and within-subject

variations are not identifiable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Nonsymmetric pooling designs (Designs 1, 2, 3) versus symmetric designs (Designs T,I),

and random sample, where i1, i2, i3, i4 denotes the individuals and t1, t2, t3, t4 denotes the

repeated measurements. R = Vard(γ̃)/VarT (γ̃), d= Design d. We evaluate designs with eight

assays. In the random design we randomly choose eight (marked) points. (This figure

appears in color in the electronic version of this article.)
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Table 2

F2-isoprostane example: Estimates of γ for 174 women with six complete measurements (upper table), all

259 women with five to eight measurements (in total 1960) (lower table), number of bootstrap is 10,000.

Design ANOVA est. Boot est
104  (Boot)

Boot 95% CI

F 0.743 0.739 8.262 [0.677, 0.789]

T 0.687 0.687 20.635 [0.589, 0.767]

I 0.681 0.670 26.320 [0.557, 0.757]

F 0.732 0.728 7.817 [0.667, 0.777]

T 0.696 0.693 9.165 [0.630, 0.748]
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