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Abstract

Working memory is widely considered to be limited in capacity, holding a fixed, small number of

items, such as Miller's ‘magical number’ seven or Cowan's four. It has recently been proposed that

working memory might better be conceptualized as a limited resource that is distributed flexibly

among all items to be maintained in memory. According to this view, the quality rather than the

quantity of working memory representations determines performance. Here we consider

behavioral and emerging neural evidence for this proposal.

Working memory refers to the short-term storage and manipulation of sensory information

lasting on the order of seconds1. It has been associated with persistent neural activity in

many brain regions2 and is considered to be a core cognitive process that underpins a range

of behaviors, from perception to problem solving and action control. Deficits in working

memory have been reported in many brain disorders; whereas performance on working

memory tasks improves with brain development from childhood to early adulthood, it

declines in the elderly, and is closely related to measures of intelligence.

The classic view has been that working memory is limited in capacity, holding a fixed, small

number (K) of items, such as Miller's ‘magical number’ seven3 or Cowan's four4. Such

hypotheses have arisen from tasks such as letter recall or change detection that use a discrete

or categorical stimulus set, such as a small number of easily identifiable colors5,6. For

vision, a highly influential proposal has been that items retained in working memory are

held in three or four independent object ‘slots’, one for each item stored5. This slot

conceptualization of working memory is all or none: an object either gets into a memory slot

and is then remembered accurately, or it does not, in which case it is not remembered at all.

This framework7 has had a huge influence on interpretation of neural data—imaging,
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monkey neurophysiology and human electrophysiology—as well as on studies of normal

development and aging, the effects of training working memory, and brain disorders.

Resource models of working memory

Recent work has led to substantial advances in our understanding of the structure and

organization of working memory. In particular, compelling reasons to reconsider the classic

view have arisen from psychophysical studies showing that the precision of recall declines

continuously as the number of items to be remembered increases (Fig. 1a–c), and increasing

the salience or goal relevance of a stimulus causes it to be stored with enhanced precision, at

the cost of poorer memory for other stimuli (Fig. 1d–f). Although interpretation of these

results remains an active area of debate, neither of these findings would have been predicted

on the basis of the original slot model5, in which every item is either stored with high

precision or not at all (Fig. 2a).

In contrast, the results are naturally accommodated by models that consider working

memory to be a limited resource, distributed flexibly between all items in a scene8–16 (Fig.

2b–d). Crucially, although resource models consider working memory to be extremely

limited, they do not invoke a fixed item limit on the number of objects that can be stored.

Thus, for these models, K is not the fundamental metric with which to measure working

memory. According to these views, it is not the number of items remembered, but rather the

quality or precision of memory that is the key measure of working memory limits.

Resource models of working memory8,11,17 are based on two premises. First, the internal

representations (or measurements) of sensory stimuli are noisy, that is, they are corrupted by

random, unpredictable fluctuations. Second, the level of this noise increases with the number

of stimuli in memory. This increase is attributed to limitations in the supply of a

representational medium that is distributed between items; thus, the more resource is

allocated to an item, the less noise is present in its representation and the more precise the

recall of that item. Resource models have strong links to other areas of neuroscience and

psychology. The premise that internal representations are noisy is common to all signal

detection theory and many Bayesian models of perception, whereas the increase in noise

with set size is also shared with models of attention.

Just as is common in perceptual psychophysics, one way to test working memory models

based on the concept of noise in memory representations is to vary stimuli on a fine scale,

thereby manipulating the signal-to-noise ratio (see below). Wilken and Ma modified the

method of adjustment, long employed in perceptual studies, to multiple-item working

memory8 (Fig. 1a). In this delayed-estimation technique, both the stimulus and the response

space are analog (continuous) rather than discrete. This is very different from conventional

methods for probing visual or other types of working memory (for example, change

detection or digit span in verbal working memory), where the stimulus or change in stimulus

is held constant to obtain a discrete measure of K or span.

The delayed-estimation technique has now been used to study memory of a range of visual

features, including color, orientation and motion direction8–10,15,16,18–21. Rather than

exhibiting the abrupt, step decline that would be expected on reaching a capacity limit of a
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fixed number of items5, in every case, recall variability has been shown to gradually and

continuously increase as set size increases (Fig. 1b,c), as predicted if working memory

resources are shared between items. Across a range of studies, this relationship between

precision of recall and set size has been shown to follow a power law9,11,15,17.

Although the concept of a limited working memory resource has considerable explanatory

power for behavioral data (discussed below), the exact nature of the representational

medium remains to be established and is an important goal for neurophysiological

investigation. The majority of electrophysiological and computational studies have confined

themselves to studying memory for a single object. However, understanding the neural

effects of increasing set size will be crucial for determining the cognitive architecture

underlying working memory and distinguishing between competing models (Fig. 2b–d).

Resource models are already beginning to have an effect on systems neuroscience. Animal

studies have started to measure working memory behaviorally in non-human primates using

set sizes >1, with testing of resource models in mind22–25. Looking ahead, interpretation of

such neural data will crucially depend on having a sound theoretical framework for

behavior. In this review, we focus on emerging data from studies that have employed simple

visual memoranda, as they are the easiest to model and have been used in both human and

animal studies.

Flexible resource allocation

Flexibility in memory allocation11 represents a crucial distinction between competing slot

and resource accounts of working memory. Rather than being limited to a fixed storage

resolution, a growing body of evidence indicates that memory resources can be unevenly

distributed so that prioritized items are stored with enhanced precision compared to other

objects. Voluntary control over resource allocation has been demonstrated by studies in

which one stimulus in a memory array is indicated as more likely to be selected for test,

resulting in a robust gain in recall precision for the cued stimulus10,18,26. Critically, this

recall advantage appears to come with a corresponding cost to other stimuli in memory,

which are recalled with less precision10,11,26.

These findings are consistent with an unequally distributed, but limited, resource: when

more resource is devoted to a prioritized item, less is available for other objects. Notably,

these effects cannot be explained simply by biased competition for sensory processing

favoring a prioritized item27, for several reasons. First, equivalent findings are observed for

stimuli presented one at a time in sequence10, eliminating competition in sensory input (Fig.

1d–f). Second, cues presented following prolonged examination of a stimulus array are of

similar effectiveness as those presented before the array26, indicating that working memory

resolution can be changed after the initial encoding is complete. Finally, recall precision can

be influenced by retrospective cues, presented long after the array is extinguished, that is,

when there is no sensory input available28.

These results indicate that the allocation of limited working memory storage can be

controlled and updated with changing behavioral priorities. Similar recall advantages and

costs have been observed for objects that are visually salient11,26,29, even when test
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probability is equal, indicating an automatic component to memory allocation that might be

linked to visual attention. Further evidence that resource is associated with allocation of

visual attention has arisen from demonstration of recall advantages for targets of

saccades11,29,30 and for targets of covert shifts of attention, as inferred from micro-

saccades25.

In oculomotor areas, including frontal eye field (FEF) and lateral intraparietal area (LIP),

neural activity is modulated by both stimulus salience and task relevance to produce

retinotopic maps of stimulus priority31. Such priority maps have been implicated in the

guidance of visual attention and eye movements, but could also be involved in determining

how working memory resources are distributed between objects. When eye movement

sequences are interrupted, the upcoming saccade target is held in memory with high

resolution, whereas objects that had previously been the focus of attention are represented

more coarsely11. This allocation may reflect a dual role of working memory representations

in visual exploration, whereby memory for the saccade target is compared with post-

saccadic input to correct inaccurate eye movements, and a record of attended locations is

maintained to inhibit re-examination of previously explored locations32.

Sources of noise

Errors in recollection of a stimulus could arise from multiple sources: noise in the initial

stage of sensory processing, in storing or maintaining information in a stable state once the

sensory input has been removed, or in the final stage of decoding (retrieval) and response

generation. It is important to distinguish between these possibilities.

Working memory precision is inevitably limited by the precision afforded by early sensory

representations, which is influenced by stimulus factors such as contrast. Moreover,

encoding of sensory information is not instantaneous26,33, so recall errors following brief

exposure to multiple or complex stimuli may reflect incomplete encoding. The quality of

encoding might also depend on attentional limitations34,35 instead of, or in addition to,

storage capacity limitations. Indeed, when the time available for encoding items into

working memory is systematically varied, the rate at which recall precision increases over

short exposures depends on the number of visual elements26, consistent with a continuous

parallel accumulation of sensory information into memory36. However, with prolonged

exposures, precision does not continue to increase, but rather approaches a maximum value

that depends on the number of items stored, which is consistent with a limit on how much

information can be simultaneously represented in working memory26.

During the maintenance stage, additional noise might be added. Recall variability has been

shown to increase with the duration of the delay period (for example, see ref. 28), which is

consistent with a gradual accumulation of error resulting from noise in memory, but is

difficult to explain solely in terms of noise at encoding or decoding stages. The possibility

that noise in working memory recall arises predominantly at the decoding or response stage

has generally received less attention. However, it is unlikely to be a major contributor in

delayed-estimation tasks, as only one of the items in memory is specified for recall; thus,

noise arising at this stage would not be expected to produce set size–dependent effects.
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Neural data

The search for a neural basis for limits on working memory performance has primarily

focused on brain areas that are active during the delay period of memory tasks.

Investigations using functional magnetic resonance imaging (fMRI) have identified regions

of human prefrontal and posterior parietal cortex that show elevated blood oxygen level–

dependent (BOLD) signals during working memory maintenance37–39 (Fig. 3a), whereas

electroencephalography (EEG) studies have observed a sustained negativity over posterior

electrodes contralateral to memorized stimuli21,40 (the contralateral delay activity, CDA).

Both BOLD and CDA signals are sensitive to the number of items in memory, displaying

increasing37,38,40 or inverted U–shaped21,39,41 responses to increasing load.

Within the slot framework, an increase in neural activity with memory load has been

considered to be the signature of a working memory store, based on the assumption that

increasing load engages more of a store's capacity. Indeed, a number of studies37,38,40 have

reported that neural signals reach an abrupt plateau at higher memory loads, potentially

corroborating the hypothesis of a maximum number of objects that can be stored5. However,

unambiguously identifying a signal plateau in the presence of noise is not trivial, and the

methods used to date have not been rigorous, either relying on appeals to subjective visual

judgment or on the statistical error of accepting the null hypothesis.

It therefore remains to be established whether these neural signals reach a maximum at a

particular set size and then plateau, or increase continuously toward an asymptotic limit (for

example, according to a saturation function; Fig. 3b). One perspective is that increases in

CDA amplitude may actually be explained by amplitude modulation asynchrony, whereby a

systematic decrease in the peak, but not trough, of alpha-band oscillation can produce the

appearance of a sustained negativity (the CDA) when trial averaged42.

At the level of individual differences, the rate at which neural signals change with load is

correlated with working memory performance measures40,43, although the common

assumption that this reflects differences in signal plateau has again not been rigorously

examined. Notably, both BOLD and CDA measures show effects of the complexity as well

as the number of visual stimuli in the memory array37,44, suggesting that the amplitude of

neural signals may reflect both information content and object number. Consistent with this,

the amplitude of the CDA is correlated with precision of recall45, even when only a single

item is held in memory46 (Fig. 3c).

In contrast with the slot framework, resource models of working memory dictate that the

same resources are engaged whether one or multiple visual items are stored. This is also true

for the latest revisions of the slot model, which effectively distribute resource in discrete

quanta19 (see below). Thus, increases in neural activity with load should not be considered

the definitive marker of a working memory store. Nonetheless, there are several reasons why

load-dependent signals might arise in a resource-based memory system. At the neuronal

level, BOLD and EEG signals are believed to primarily reflect synaptic conductances, rather

than spiking activity, with both excitatory and inhibitory conductances contributing to the

amplitude of these signals47. As a consequence, a working memory network whose spiking
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activity level is independent of memory load, for example, as a result of divisive

normalization (see below), may nonetheless demonstrate increases in BOLD and EEG

amplitude with load simply as a result of an increase in synaptic processing with increasing

set size.

Alternatively, load-sensitive signals might not be associated with coding of object features

directly, but instead with maintenance of ‘meta-information’ that is required to control

resource allocation or maintain bindings between features in dimension-specific stores48,49.

Thus, if features that belong to an object need to be maintained bound veridically, increases

in signal with working memory load might reflect greater demands resulting from feature

binding rather than increasing number of items per se (see below).

Single-unit recordings in monkeys have identified neurons with persistent delay period

activity in frontal and parietal areas, consistent with analogous regions displaying elevated

BOLD signals in humans. A recent study46 combining intracranial recording and EEG

demonstrated that the magnitude of the local field potential in prefrontal areas is correlated

with precision of recall, and may contribute to the CDA signal observed in humans.

In another investigation, recordings from prefrontal and posterior parietal neurons under

varying working memory load revealed that the ability to decode stimulus parameters from

persistent activity declined continuously with increases in memory load22. In other words,

the information about a stimulus that can be extracted from delay period activity gradually

decreases as the total number of stimuli in memory increases. This observation of graded

degradation is consistent with division of working memory resource between items.

However, memory items appear to compete for resources only with other stimuli presented

in the same hemifield, suggesting a degree of hemispheric independence in monkeys that is

much greater than that observed in humans50.

Recent advances in multivariate analysis of fMRI have widened the search for working

memory representations to include earlier cortical areas. Studies based on multivoxel

techniques have successfully decoded simple visual features held in memory from signals in

visual areas, including V1, where the BOLD signal is not globally elevated above baseline

levels during working memory maintenance51–53 (Fig. 3d). Furthermore, inter-subject

differences in the information content of BOLD signals in visual cortex are correlated with

the precision of an individual's recall54,55. Atlhough the factors that determine the

decodability of BOLD signals are still being explored56,57, these results highlight the

importance of looking beyond simple elevated delay activity as a unique marker of working

memory representation.

Neural models

Before slot models of working memory were called into question, neural modeling studies

proposed that a neural basis of slots could be found in the number of oscillatory states that

can be superimposed without interference58. These models made a connection to the binding

problem, as cortical synchronization has been proposed as a mechanism for binding features

of an object59. However, they did not describe the contents of working memory, let alone
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contain a description of the precision of encoding. Physiological evidence supporting

oscillation-based models has so far been sparse.

In the context of resource models, a possible neural basis for resource lies in the number of

action potentials used to encode working memories15,60 (Fig. 4). Cortical firing is highly

variable from trial to trial61, and this variability might underlie the (encoding and

maintenance) noise seen in working memory recall. A correspondence between resource and

the amplitude of neural activity (gain) in a neural population representing an item is

suggested by several lines of evidence. First, theoretical models of early sensory

representation have proposed that neural gain is proportional to the precision of encoding of

the stimulus62,63. Second, working memory resource is often considered to be similar to

attentional resource4,34,64, and attention modulates neural gain65. Third, there is

neurophysiological evidence that firing rate decreases with increasing set size66 and varies

from trial to trial67. Fourth, neural spiking is energetically costly and, at large set sizes, the

performance benefits of investing more spikes in encoding stimuli might be outweighed by

the energy spent, leading to a decrease of precision per item15.

One way to realize a decrease of precision with set size arises from the relationship between

precision and neural gain. It has been proposed that neural gain could be related to the

number of items in memory through a mechanism of divisive normalization60. The idea is

that activity in the population encoding a particular item is divided by the grand sum of the

activities of neurons in all populations encoding items. Thus, the larger the number of items,

the larger this sum and the lower the gain of the population encoding each item. This is a

directly testable physiological hypothesis.

A recent neural network model managed to capture a decrease of precision with set size

using biologically realistic neurons68. In this network, all items are encoded as persistent

activity ‘bumps’ in a shared feature-selective population, causing working memory errors to

arise from competition between and merging of these bumps. However, neurons in this

simulated network had no spatial selectivity, and stimuli were therefore artificially spaced

out in the feature space to be retained as distinct bumps. It remains to be seen whether the

proposed mechanism can account for performance when (potentially similar) visual items

are remembered in distinct spatial locations.

Making sense of memory errors

So far we have considered some key behavioral, neural and modeling data that have led to a

reconceptualization of working memory. Recent studies have gone further and started to

examine whether the pattern of recall errors might provide even deeper insights into the

nature of working memory representations.

A crucial advantage of the delayed-estimation technique for probing working memory (Fig.

1) is that it provides the experimenter not just with an estimate of error precision, but with

an entire error distribution. Theoretical models of sensory representation typically assume

that errors have a normal (Gaussian) distribution, and early instantiations of resource models

likewise assumed that recall errors would be normally distributed8,17. However, recent

studies have shown that errors in recall from working memory often deviate substantially
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from normality. Beyond changes in precision, accounting for the shape of the error

distribution has become a new testing ground for comparing working memory models (Figs.

2 and 5). In addition, an important new trend is to fit models to raw, individual-trial data

using maximum-likelihood estimation, instead of relying on summary statistics69.

Discrete representation

An influential study19 proposed that the shape of the error distribution in delayed estimation

could be reproduced by a mixture of two classes of error: some resulting from noisy recall

(with a normal distribution) and some resulting from random guessing (with a uniform

distribution) (Fig. 2c). Fitting this normal + uniform mixture to the data, the authors showed

that the proportion of errors accounted for by the uniform distribution (which they

interpreted as guessing rate) increased with set size. The standard deviation of the normal

component, denoted SDnormal, increased for the first three items, then reached a plateau (Fig.

5b)21, although this plateau has not always been replicated9,11,26. To explain this, the

investigators proposed that the same item could be stored in more than one slot19. When a

single item is held in memory, there would then exist several independent representations of

it in the brain (depicted as three overlapping quanta in Fig. 2c), which could be averaged at

recall to boost precision.

While attempting to retain the terminology of the slot model, this account actually differs

fundamentally from the classic slot model. Here, all the representational medium (that is,

every slot) is engaged for all set sizes and shared out between items. Furthermore, the

authors reported flexible allocation in response to a predictive cue, which they interpreted as

some objects being allocated more slots than others19. This makes the model equivalent to a

discrete or quantized resource model. The key distinction from continuous-resource

models8,11 is that it predicts a fixed upper limit on how many objects can be stored, that is,

an item limit (Fig. 2b,c). The plateau in SDnormal was interpreted as indicating just such a

limit on the number of items stored. However, interpretation of the parameters of the normal

+ uniform mixture critically depends on the validity of the mixture fit. Careful comparison

with data suggests the normal + uniform mixture provides a relatively poor fit to

experimental error distributions15,16,70 and SDnormal may therefore systematically

underestimate the true variability in memory (Fig. 5).

Variable precision

The most recently proposed continuous-resource model postulates that precision is itself

variable across items and trials, even when set size is kept fixed15,16 (Fig. 2d), and should

therefore be modeled as being drawn from a probability distribution. In this model, the noisy

memory of a stimulus would not follow a normal distribution with a fixed precision, but an

infinite mixture of normal distributions of different precisions, including very low ones.

Many sources could potentially contribute to variability in precision, including stimulus

differences71, waxing and waning of alertness, covert attention shifts25, grouping and other

configural effects72, and variability arising during maintenance16,61. One proposal is that

deviations from normality in the distribution of working memory errors may arise from the

same source of stochasticity as the errors themselves, namely Poisson variability in neural

spiking73.
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Error distributions in delayed estimation are predicted considerably better by a variable-

precision model than by alternative models, including the discrete-representation

model15,16,70. In particular, the model accounts for the increase in the ‘guessing rate’ with

increasing set size: when a normal + uniform mixture is fitted to recall errors, low-precision

trials will be absorbed into the uniform component, even though they might not represent

true guesses. Thus, an increase in guessing rate with set size simply reflects an increasing

prevalence of low-precision representations. The variable-precision model also provides a

good quantitative account for both actual standard deviation and SDnormal as a function of

set size15 (Fig. 5c). These findings further call into question the interpretation of the uniform

component in the normal-uniform mixture as being a result of an item limit. More generally,

it is important to keep in mind that summary statistics computed using a descriptive model,

such as capacity K when using a classic slot model or the guessing rate when using a normal

+ uniform mixture, are only as good as the model itself. They can be misleading when the

model is a poor description of the data. Conclusions from formal model comparison based

on individual-trial data are always more reliable than conclusions from summary statistics69.

Other findings also point to variability in precision: when subjects are asked on some trials

to recall the item they remembered best, performance on those trials was substantially better

than on ones on which a random item was probed16. Furthermore, when participants report

the confidence of their estimate, their ratings have a wide distribution and correlate strongly

with performance, consistent with variable precision20; indeed, the variable-precision model

fits these data well. However, further work is needed to determine the origins of variability

in precision, a basis for the particular distributions over precision that fit human data, and

how variable precision relates to neural coding of working memory.

Binding errors

Although delayed estimation (Fig. 1) provides advantages over classification tasks such as

change detection, the error distributions obtained using delayed estimation are not

determined solely by memory quality for the reported feature. This is because observers are

required to report a feature of just one of the objects in working memory, uniquely identified

by its value on some secondary feature dimension (Fig. 1a,d). In multiple-item arrays,

observers must not only hold in memory the features to be reported, but also the features that

will identify the relevant object and, crucially, the ‘binding’ information that pairs the two

features together (Fig. 6). Errors in storing or maintaining these latter classes of information

may result in incorrect retrieval of one of the other items in working memory at test. In other

words, memory recall might be systematically corrupted by reporting of features belonging

to items retained in working memory other than the probed item.

In delayed estimation, such non-target or swap errors may be mistaken for random guesses if

responses are compared only with the feature value of the probed item9. However, in a

comparison with all array objects, non-target errors have been directly observed as a

clustering of responses around feature values of non-probed items9,26,35,49,74. Such non-

target errors grow in prevalence as working memory object load is increased9,10,26,

consistent with the resource principle of a graded decline in representational quality (Fig.

5a–c). Both non-target errors and deviations from normality in target recall (of the kind
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predicted by variable precision) could account for responses previously attributed to

guessing.

There is emerging evidence that failures of binding properties that belong to an object in

working memory may have a specific role in forgetting over brief time periods10,28 and be a

crucial component of deficits associated with old age, dementia and medial temporal lobe

lesions28,75–78. Although the principles of neural coding of basic visual features are well

established, current neural models of binding remain largely hypothetical. Investigation of

the factors that determine binding failure might help constrain neural mechanisms of object

representation in working memory.

Computing with working memories: probabilistic inference in change

detection

The models described thus far are all concerned with encoding and maintenance: how

sensory stimuli are internally represented during a delay period. In many natural and

experimental situations, however, working memories are subsequently retrieved and used.

For example, in change detection, the memory of a first display is compared with a second

one to determine whether a change occurred (Fig. 7a). Because of encoding noise, change

detection decisions must be made without exact knowledge of the stimuli in the first display

and are therefore a form of inference. In the classic slot model, inference is ignored and

decrease of performance with increasing set size is attributed to a limited number of items

being held in working memory5,79. This approach is typically justified by stating that the

changes used in the experiments are large. However, how large a change is perceptually

depends on the noise level: even seemingly large changes will be difficult to detect when

precision is low. In fact, performance in detecting a change between supposedly highly

distinct colors strongly depends on the specific colors23.

Resource models attribute the majority, if not all, of change detection errors to the

consequences of noise (Fig. 7b). This idea has been formalized in signal detection theory

and Bayesian models of change detection8,13,25,80, change discrimination11,60 and change

localization15,23. Bayesian models are signal detection theory models in which observers

make the best possible decision based on the noisy evidence on each trial. These models,

which are computationally very similar to models of non-memory tasks such as visual

search81,82, account for many observations that are inconsistent with the slot model.

First, in change detection, false alarm rate increases with set size8,13. Although the slot

model predicts no relationship, resource models do: noise causes the internal representation

of an individual item to differ between the two displays, even if no physical change occurred

(Fig. 7c), and more so when precision is lower. Furthermore, resource models explain the

dependence of working memory capacity estimates on stimulus category12, and the higher

difficulty of within-category compared to between-category change detection83: the signal-

to-noise ratio will depend on the perceptual space associated with a category and is expected

to be lower within a category than between categories. Finally, receiver operating

characteristics obtained using a confidence rating procedure follow the predictions of

continuous-resource models across a range of set sizes and numbers of changing items8.
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Surprisingly, researchers have only recently started to systematically vary the magnitude of

change in multiple-item change detection13,25,80 and change localization15. Manipulating

the magnitude of change in addition to set size produces a much richer data set, consisting of

a full psychometric curve at each set size, rather than a single hit rate and a single false-

alarm rate. The psychometric curves show a gradual increase of performance with

magnitude of change (Fig. 7d). This is consistent with resource models, which predict that

performance increases continuously with signal-to-noise ratio. When these change detection

and change localization data were analyzed using the classic slot model, estimates of K were

consistent with earlier studies, but the full psychometric curves revealed that the slot model

was inadequate13. Instead, a variable-precision model augmented with a Bayesian decision

rule provided an accurate account of these data13 (Fig. 7d,e). In contrast, a different study

concluded that receiver- operating characteristics in a change detection task are consistent

with a slot model84, but neither variable precision nor a Bayesian decision rule were

considered in this work.

A change detection study in which stimulus reliability was unpredictably varied on a trial-to-

trial and item-to-item basis found that observers possess knowledge of these variations and

take them into account near-optimally during the decision stage80. This raises the possibility

that not only feature information, but also the corresponding precision (or certainty level),

gets stored in working memory on every trial.

Context and ensemble effects

Probabilistic inference may also be involved in delayed estimation. Further computation

could consist of combining the sensory measurement at the probed location with summary

statistics of the memory display. There is evidence that this happens: for example, a circle is

remembered as being slightly bigger than its true size when other circles of the same color

were bigger85. This illustrates a broader phenomenon, namely that the recalled value of a

stimulus might be influenced by the features and positions of other items in the display. A

shortcoming of all of the working memory models discussed thus far is that they assume that

all items are encoded independently. A recent focus has been on the effect of context on how

well we remember72,85,86. One proposal is that observers store summary statistics, or the

‘gist’, of a scene, such as how correlated the colors of neighboring elements tend to be, in

addition to individual items72. If working memory resources can be flexibly deployed,

stimuli that fit the gist could be safely stored with lower precision, reserving high-precision

memory for informative outliers.

Open questions

Taken together, behavioral evidence from multiple tasks supports a continuous-resource

account of human working memory and does not support the notion that it is limited by a

fixed number of slots that can hold items. However, resources may not be infinitely

divisible, and even if they are, outside of laboratory experiments there will always be

variations in the salience or importance of environment stimuli that make even allocation

over large numbers of objects undesirable. Furthermore, if the quality of item

representations in working memory is limited by noise, in practical terms there might be

limits to how well a limited working memory resource can be allocated, or thinly spread,

Ma et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2014 September 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



over a very large number of items. One direction of future research could be to examine the

optimal distribution of resources in situations in which items have unequal probabilities of

being tested or are rewarded differentially.

Another direction would be to combine ingredients from existing models in new ways, such

as a continuous-resource model with a maximum number of items that can be stored or

models in which the number of items stored varies across trials87,88. However, such models

should ideally be informed by biological plausibility and neural data. A recent paper,

comparing 32 models in a three-factor space, found that the most successful models

incorporated both continuous, variable precision and spatial binding errors, with additional

evidence for variability in the number of items stored70.

In the slots framework, a long-running debate askes whether slots hold individual features or

entire objects5,48,89,90. In resource models, this question has to be rephrased: do different

feature dimensions (for example, colors and orientations) compete for the same resource

pool? Present evidence indicates that recall variability depends primarily on the number of

competing features in each dimension and that errors arise independently for different

features of the same object49,74,91–93.

Generalizations of resource models to more real-world situations remain underexplored.

Alphanumeric characters, shapes and line drawings have all been used in previous working

memory experiments. In principle, resource models can also be applied to such stimuli.

However, the space in which these complex objects are perceptually represented, and how

noise corrupts measurements in this space, is not as well understood as for basic visual

features. In addition, each such stimulus is part of a large, high-level category of objects,

which might affect encoding. Resource models might have an advantage over slot models

when dealing with natural or crowded scenes. An ‘item’ is often relatively easy to define in

laboratory experiments, but this is not necessarily the case in real scenes. In an image of a

bike, for example, is the entire bike the item, or are its wheels or its spokes items? Slot

models cannot avoid this question, as the definition of the item determines what goes into a

slot. In resource models, resource is easily conceptualized as being allocated to groups of

features or spatial locations, rather than to items. However, it remains to be seen how well

behavioral data from natural scenes can be described by resource models.

Continuous-resource models might also be extendable beyond visual working memory, to

visual long-term memory94, other sensory domains95 or other multiple-object tasks.

Multiple-object tracking, for example, is often considered to be limited by a four-item limit,

but this conclusion is being challenged60,96,97. A similar reexamination may be necessary

for subitizing limits98. Finally, resource model approaches have now begun to be applied to

a range of issues in neuroscience, such as working memory development99, aging77,100 and

pathology78, where changes in memory quality may have a vital and previously overlooked

role.

Recent work that has explored decoding of working memories from neural activity51–55

opens the door to directly test, at a neural level, the predictions that the various models make

for the dependence of precision on set size. Although it is challenging to probe the contents
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of working memory of all items in a display simultaneously in behavioral experiments, this

might be possible when decoding neural signals, thereby providing more power to

distinguish between competing models. Moreover, neural data offers the opportunity to

study in detail the modulation of working memory when attention is directed to a subset of

stored items.

Conclusions

Recent years have seen a resurgence of interest in the nature and limits of short-term storage

in the brain, driven by methodological advances in measuring and interpreting recall errors,

as well as improved techniques for probing neural representations of memory. In this

review, we have presented some of the growing body of evidence from behavior and

neurophysiology that suggest that considering only the quantity of representations and

ignoring their quality provides an incomplete description of working memory.

An important consequence is that the common practice of characterizing memory ability

using a capacity estimate K is increasingly difficult to sustain. Although many researchers

use K as a convenient summary statistic, it is important to realize that such an approach is

not model free: using K implies committing to a particular slot model5,6 that has been

superseded by both resource models11,15 and newer slot models19. A model-agnostic

approach would be to simply report the standard deviation of recall errors as a function of

set size (Fig. 5) and compare this entire function, for example, between two subject

populations. An even better approach would be to fit both slot and resource models,

compare their goodness of fit and report the parameters of the best-fitting model.

Clearly, the concept of a limited memory resource has become central to present debates,

providing a consistent and intuitive account for both the decline in precision associated with

increasing working memory load and the precision gains (and costs) observed for stimuli of

differing salience. However, many details in this framework continue to be debated,

particularly the extent to which resources are divisible and the degree to which different

features tap independent resource pools. Regardless of theoretical position on these issues,

the growing sophistication of behavioral analyses combined with an expansion in the range

of neurophysiological approaches can only lead to a deeper understanding of how and why

individuals remember and forget.
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Figure 1.
Evidence from delayed estimation challenging the slot model. (a) Example of a color

delayed-estimation task8. Observers must report the color in memory that matches a probed

location by selecting from a color wheel. (b) The distribution of responses relative to the

correct (target) color depends on the number of items in the sample display. (c) Recall

variability as measured by the standard deviation (SD) of error increases gradually and

continuously with set size. In the item-limit (slot) model, this function would be flat up to

set size 4. Adapted with permission from ref. 9. (d) Example of an orientation delayed-

estimation task with sequential presentation10. Observers must report the orientation in

memory that matches a probed color by adjustment of the probe, using a response dial. An

item of the cue color (here, green) is more likely to be probed than items of other colors,

making it higher priority for accurate storage. (e,f) Response distributions and standard

deviation of errors for the orientation estimation task. When an item of the cue color is

present in the sequence, it is remembered with enhanced precision (lower standard

deviation) compared with other items in the sequence. Comparison with trials on which the

cue color is absent (no cue) shows that uncued items are recalled with lower precision when

a cued item is present. Adapted with permission from ref. 10.
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Figure 2.
Models of working memory. (a) In the slot (or item limit) model of working memory4,5,

each visual item is stored in one of a fixed number of independent memory slots (here, 3)

with high resolution (left, illustrated, by narrow distribution of errors around the true feature

value of a tested item). When there are more items than slots, one or more items are not

stored and the slot model predicts that errors in report of a randomly chosen item will be

composed of a mixture of high-precision responses (right, blue component of distribution

corresponds to trials when the chosen item received a slot) and random guesses (green

component corresponds to trials where it did not get a slot). (b) Resource models of working

memory8,11,17 fundamentally differ: they propose a limited supply of representational

medium that is shared out between items, without a limit to the number of items that can be

stored. Crucially, the precision with which an item can be recalled depends on the quantity

of resource allocated to it. If resources are equally distributed between objects, error

variability (width of the distribution) increases continuously with the number of items

(compare distribution of error for one versus four items), with a normal distribution being

commonly assumed. (c) In discrete-representation models19, the working memory medium

is divided into a discrete number of quanta, similar to the slot model. However, these slots

are shared out between items; in this respect, this type of model is much closer to resource
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models than the original slot model (a). For low set sizes (for example, one item shown at

left), the quanta combine to produce a high-resolution memory of an item. However, for

higher set sizes, above the number of slots available (right), all items get either one or zero

quanta, predicting a mixture of low-resolution recall and random guesses. Note how this

distribution differs from those in a and b. (d) Variable-precision models15,16 propose that

working memory precision varies, from trial to trial and item to item, around a mean that

decreases with increasing number of items as a result of limited resources. This model

predicts that recall errors will be made up of an infinite mixture of distributions (assumed

normal) of different widths. Variability in precision could stem from variability in resource

or from bottom-up factors.
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Figure 3.
Neural correlates of storage in working memory. (a) Short-term maintenance of visual

information is associated with sustained elevated BOLD signals (hot colors) in prefrontal

and posterior parietal regions, whereas the signal in occipital visual cortex is the same or

below that observed at rest (but see d). BOLD signals are displayed on an inflated brain

surface, showing gyri in light gray and sulci in dark gray. (b) During maintenance, BOLD

amplitude in posterior parietal regions varies with the number of features held in memory

(data are from ref. 38). A neural capacity limit has typically been inferred by looking for

increases in memory load that are not accompanied by a statistically significant (P < 0.05)

increase in signal (here, above four items). However, there are many continuously increasing

functions (for example, exponential saturation function, dashed line) that would be

incorrectly identified as reaching a plateau by this method. (c) In both humans and monkeys,

a lateralized EEG signal at posterior electrodes (the CDA) is correlated with precision of

recall, as measured by the error in reproducing a single remembered stimulus location. (d)

The information content of BOLD signals is dissociated from signal strength during memory

maintenance. In occipital areas (left), visual parameters held in memory can be accurately

decoded (blue lines) from voxels that are not consistently elevated above baseline during the

delay period (red lines). Decoding from these occipital areas is more effective than from

prefrontal and posterior parietal voxels (right) that show elevated delay-period responses.

Adapted with permission from refs. 51 (a,d), 38 (b) and 46 (c).
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Figure 4.
Putative neural basis of set size effects in resource models of working memory. (a) Example

displays for an orientation delayed-estimation task with one or two items. (b) Examples of

mean firing rate (dashed lines) and activity on a single trial (points) in neural populations

responding to the stimuli in a. Neurons are ordered by preferred orientation. At set size 2,

gain (population amplitude) per item is reduced compared with set size 1. (c) Error

distributions obtained by optimally decoding spike patterns such as those in b. Errors arise

because of stochasticity in spike generation. Precision declines with decreasing gain62,63,

leading to wider distributions for more memory items. In this context, the limited resource is

the gain of the population activity.
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Figure 5.
Interpreting the shape and width of working memory error distributions. (a) A crucial area

of debate concerns how to model the distribution of recall errors (gray histogram, color

estimation data from ref. 15, averaged over all subjects and set sizes). A popular analysis

method attempts to do this with a mixture of a circular normal distribution (intended to

correspond to items in memory) plus a uniform distribution (intended to correspond to items

that are not stored)19. The red line depicts this fit, also averaged over all subjects and set

sizes. Note that the circular standard deviation of the normal component in the mixture,

SDnormal (average value given) is much lower than that of the raw data (compare actual

standard deviation (actual SD) with SDnormal). The mixture does not fit human recall data

well, and the interpretation of the two mixture components has therefore been called into

question15,16. (b) Actual SD and SDnormal as a function of set size. SDnormal substantially

underestimates the level of noise in memory, which, if all items are stored, is simply the

actual SD. An apparent plateau in SDnormal (red symbols) at higher set sizes has been used

to argue for slot models19,21, but such a plateau is not present in the raw data (black

symbols). Data are from ref. 15. Error bars represent s.e.m. (c) A resource model in which

all items are stored with variable precision accurately accounts for both actual SD and

SDnormal. Thus, SDnormal by itself cannot serve to distinguish between slot and resource

models69. Adapted from ref. 15; shaded areas are s.e.m. of model fits.
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Figure 6.
Modes of failure in working memory retrieval. (a) The working memory representation of a

colored square can be decomposed into the location of the object in an internal

representation of physical space (for example, in posterior parietal cortex; green), the

location of the object's color in an internal ‘color space’ (for example, in area V4; blue), and

‘binding’ information that associates the position and color (illustrated here by a spring).

(b,c) Increasing working memory load may degrade the quality with which each of the three

classes of information is maintained: increasing variability in both color and space

representations and making binding information more fragile. (d) To report the color in

memory belonging to a given position, the relevant location in internal position space is

interrogated, leading via binding information to the corresponding representation in color

space. This process can fail in at least three ways. First, variability in position space may

cause the wrong position representation to be selected, leading to incorrect report of the

color of one of the other objects in memory. Second, binding failure may prevent access to

the corresponding color; in this case, a forced response may lead to a random guess from

any of the colors in memory. Third, variability in color space may lead to incorrect report of

a similar, neighboring color in the internal space. (e) In human data, incorrect reports of

non-target objects as a result of the first or second possible sources of failure will produce

responses that appear randomly (uniformly) distributed when plotted relative to the target

feature value. (f) However, such incorrect reports can be directly observed as a central peak

when responses are plotted relative to non-target feature values: if errors were solely a result

of variability in the reported feature, this distribution would be flat (data replotted from ref.

9).
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Figure 7.
Changing concepts of change detection. (a) Trial procedure in an orientation change

detection task13. In contrast with previous studies, the magnitude of the change was varied

on a continuum, producing a richer data set. (b) Resource model for change detection.

Stimuli in both displays are internally measured in a noisy manner, and an observer applies a

decision rule to these measurements to reach a judgment. To maximize accuracy, the

decision rule should be based on probabilistic inference. (c) Probabilistic inference in

change detection at set size 1 in a resource model, for a circular stimulus variable. The

change measured by the observer follows a bell-shaped distribution centered at the true

magnitude of change. The observer applies a criterion (green) to decide whether to report a

change. At small magnitudes of change, D, the miss rate (red shading) might exceed 50%.

Both the width of the distribution and the value of the criterion will depend on noise level

and thus on set size. At higher N, the measured changes at different locations are combined

nonlinearly before a criterion is applied. (d) Proportion of ‘change’ reports as a function of

the magnitude of change, for each set size. Circles and error bars represent data and shaded

areas represent variable-precision model with probabilistic inference. In traditional change

detection studies, magnitude of change is not varied systematically and these psychometric

curves cannot be plotted. (e) Probability distributions over precision in the variable-

precision model, as estimated from one subject in a change detection experiment. In the

equal-resource model (Fig. 2b), these distributions would be infinitely sharp. All panels

except for c are adapted from ref. 13.
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