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Abstract

Current duration data arise in cross-sectional studies from questions on the length of time from an

initiating event to the time of interview. For example in the National Survey on Family Growth,

women who were considered at risk for pregnancy were asked (a) “Are you currently attempting

pregnancy?” and (b) “If yes, how many months have you been attempting to get pregnant?” The

responses to (b), referred to as the current durations, are length-biased because women with longer

durations are more likely to answer yes to question (a) and therefore be included in the sample.

Previous methods to analyze such data include continuous time nonparametric and parametric

approaches. In this article, we propose a semiparametric Cox model and a piecewise constant

baseline model (used to account for digit preference) to analyze grouped current duration data. We

discuss and investigate through simulation studies, the robustness properties of the proposed

methods when digit preference is present. Lastly, we present an analysis of the current duration

data resulting from the 2002 National Survey on Family Growth.
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1. Introduction

Infertility is defined as the absence of pregnancy despite 12+ months of regular unprotected

intercourse [1], and is estimated to affect 6% of married women in the United States [2]

when using the National Survey on Family Growth (NSFG). However, recent evidence

suggests that this construct-derived figure underestimates infertility prevalence by more than

half. Specifically, the prevalence of infertility in the United States using the NSFG data was

estimated to be 16% when querying women and 12% when querying men [3, 4]. These

figures were estimated using the current duration based method proposed by Keiding et al.

[5], and are more consistent with estimates based on incident data obtained from the few

prospective cohort studies followed through 12 months of trying [6, 7, 8]. Underestimation

of the prevalence of infertility lessons the perceived impacts of the condition, which

includes social stigma in some societies [9], relationship stressors [10], and financial costs

associated with treatments or adoption that are often not covered by health insurance [11].
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The data we consider in this paper arise from two questions in the NSFG (a) “Are you

currently attempting pregnancy?” and (b) “If yes, how many months have you been

attempting to get pregnant?” The current duration approach [5, 12, 13] uses responses to (b),

denoted by Y, to make inference on the unobserved total duration of pregnancy attempt,

denoted by T. The Y values are an entirely right-censored sample from T, commonly referred

to as backwards recurrence times [14]. Further, Y is only observed for those who are

currently attempting pregnancy, which creates a length-bias because those with long

pregnancy attempts are more likely to be in an attempt when surveyed. Statistical methods

for analyzing current duration data have focused on continuous time parametric and

nonparametric approaches. For example, Keiding et al. [5] developed nonparametric and

parametric methods to estimate the survivor function of T from continuous Y values (see

also [15]), and Keiding et al. [16] proposed the use of continuous time accelerated failure

time (AFT) models to estimate exposures’ effect on the distribution of T.

Methodological research on statistical methods to analyze TTP data have mostly focused on

prospective [17, 18, 19], or retrospective [12, 20, 21] study designs. Unlike the retrospective

and prospective study designs, a benefit of the current duration method is the ability to use a

cross-sectional sample of reproductive aged women that are representative of the population.

This sample can include ‘non-planners’ that can be missed in prospective studies, and

couples that will never get pregnant who are missed in retrospectively reported TTP (see

[13, 22] for a thorough review of the statistical issues in various TTP study designs).

In this article, we propose a semiparametric proportional hazards model for the total

duration of pregnancy attempt. Specifically, we propose a semiparametric grouped

backward recurrence Cox model to analyze current duration data. The model results in

estimates of exposures effect on the distribution of T, and an estimate of the survivor

function of T conditional on covariate values. Some AFT models have no straightforward

method of assuring that survivor function of T can be estimated (discussed further in Section

2). This is troublesome since estimating the survivor function of T is a key goal in current

duration analyses. Furthermore, parametric inference based on the AFT models may be

restrictive, especially when little is known about the true distribution of T. By using a

semiparametric framework, the proposed methods are flexible to the distribution of T and

result in a proper estimate of the survivor function of T.

An additional challenge with survey-based responses is the presence of digit preference, as

reflected in Figure 1 for the 2002 NSFG data. Digit preference is especially detrimental

when interest lies in estimating the survivor function at a point of digit preference (i.e., at 6,

12, or 24 months). For example, in the NSFG we are interested in estimating the survivor

function at 12 months (i.e., estimating the proportion of infertile couples). When digit

preference is present, estimates of the survivor function at 12 months exhibit considerable

bias (> 40% in our simulation studies). As a result, we propose a piecewise constant

specification for the grouped baseline hazard to control for digit preference. We discuss knot

selection of the piecewise model, and apply it to data with and without covariates.

Our methods are based on observed current durations that are integer valued, and allow for Y

= 0 observations which are problematic with continuous time methods. For example, some
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parametric models are not defined at zero (e.g., the generalized gamma distribution), a

constant must be added to Y to implement AFT models, and methods to estimate continuous

nonparametric approaches cannot incorporate zeros or ties. In the NSFG data, Y represents

the number of completed months of a pregnancy attempt. Thus, Y = 0 represents a woman

who was surveyed before the completion of the first month of her pregnancy attempt.

Approximately 30% of women are reported to conceive in the first menstrual cycle of trying

[7], and the only way of including women who would get pregnant in their first menstrual

cycle (which is approximately one month) is by allowing for Y = 0 observations. As a result,

including such observations is critical to insure the sample is representative of the

population.

The paper is organized as follows. In Section 2, we present preliminary theoretical results on

backwards recurrence times, and discuss their implications on the current modeling

approaches. In Sections 2.1 and 2.2, we propose a semiparametric backward recurrence

proportional hazards model when the distribution of T is discrete and continuous,

respectively. In Section 2.3, we discuss how to account for digit preference by assuming the

baseline hazard is piecewise constant. The estimation of model parameters is discussed in

Section 3, and we investigate the properties of our model through simulation studies in

Section 4. In Section 5, we illustrate our methods using data from the 2002 NSFG. In the

supporting information, we present a discrete nonparametric method for estimating the

survivor function of the total duration of pregnancy attempt, additional simulation studies,

and the R code to implement the proposed methods.

2. Methods

Current duration data consist of observations, Y, that indicate the length of the current

pregnancy attempt. Our interest lies in estimating the distribution of the total duration of

pregnancy attempt T. Here, T = min(X, U) where X denotes the couples’ time-to-pregnancy

(TTP) and U denotes the end of a pregnancy attempt without becoming pregnant (note that

E(T) < ∞ since U < ∞). The unobserved T could arise from a continuous or discrete

distribution. The issue of whether T is best regarded as continuous or discrete was discussed

in depth by Keiding et al. [13]. As will be demonstrated in Section 2.2, our estimation

methods are robust for discrete or continuous distributions on T.

As described previously [5, 13], the observed current duration of pregnancy attempt

represents a length-biased sample of backward recurrence times [14]. To discuss the

relationship between T and Y, we initially assume that both arise from either continuous or

discrete distributions. Let g denote the density (or mass) function of Y. Under regularity

conditions discussed below,

(1)

[23] where F̄(t) = Pr(T > t), μT = E(T) and g is non-increasing. One can use an estimate of g,

denoted by ĝ, to estimate F̄ via  where μ̂
T = 1/ĝ(0). Let  be the space of all

probability measures, and ℱ the space of all survival functions (i.e., the space of non-
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increasing positive functions with F̄(0) = 1). Viewing the current duration operation as a

mapping from ℱ → , non-surjectivity will arise since there exists g ∈  with no

corresponding F̄ ∈ ℱ. Letting 0 denote the space of all non-increasing probability

measures with g(0) < ∞, all g ∈ 0 have a corresponding F̄ ∈ ℱ. For g ∉ 0 we can have

either (a) g(t)/g(0) is increasing for some t, or (b) F̄(0) is not defined (when g(0) is not

finite). Estimation procedures that restrict ĝ ∈ 0 (i.e., that map ℱ → 0) are surjective, and

will result in an  which is non-increasing with . Conversely, an unrestricted

estimation procedure is non-surjective and can result in ĝ ∉ 0. A benefit of the proposed

estimation procedure is that it is surjective and results in a valid estimate of F̄. The AFT

model does not use the ĝ ∈ 0 restriction, thus it is non-surjective and can result in ĝ with

no corresponding F̄.

The relationship between the distributions of T and Y given in (1) assumes that the renewal

process is in equilibrium with the renewal distribution, or that the process is in a ‘steady

state’ (cf. [24]). Specifically, the steady state assumption assumes (i) the calendar times at

which women are beginning their pregnancy attempts occur at a constant rate, and (ii) the

distribution of T is independent of calendar time. Assumption (i) is a stationarity assumption

and is satisfied if women are entering pregnancy attempts according to a homogeneous

Poisson process. We also assume that (iii) the observations are independent. We discuss the

validity of the assumptions in Section 6.

In Section 2.1, we propose a modeling procedure when Y and T are each discrete random

variables. In Section 2.2, we consider the situation where Y is a grouped outcome and T is

continuous.

2.1. Discrete backwards recurrence Cox model

In this section, we assume a discrete proportional hazards model for T, and we propose a

model to estimate regression coefficients and the survivor function F̄. Let T have discrete

hazard probability P(T = y|T ≥ y, Z) = 1 − exp{−αy exp(β⊤ Z)}, where αy ≥ 0. The survivor

function of T takes the form

where α0 ≡ 0. This model has been used for the analysis of TTP data by Scheike and Jensen

[20] and Sundaram et al. [19], and corresponds to the grouped version of the continuous

time proportional hazards model [25]. The discrete current durations Y have probability

mass function

(2)

where αj ≥ 0 for all j with α0 ≡ 0 and
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(3)

Notice g(y|Z) is non-increasing in y with maximum value equal to g(0|Z), where

.

2.2. Grouped backwards recurrence Cox model

When T is continuous, the actual current durations, denoted by Y*, have a continuous

density equal to F̄(y)/μT. However, we observe the grouped continuous outcomes. We

assume the continuous outcomes are grouped by rounding down, rounding upwards or to the

closest value can be handled similarly. As a result, Y = ⎿Y*⏌ = {y; Y* ∈ [y, y + 1)} has

probability mass function

(4)

We can apply the mean value theorem to (4) to get g(y) = F̄(y′)/μT for some y′ ∈ [y, y + 1].

Similarly, there exists a y″ ∈ [0, 1] such that g(0) = F̄(y″)/μT. As a result,

(5)

for some y′ ∈ [y, y + 1] and y″ ∈ [0, 1], where Λ denotes the cumulative hazard function of

T.

To incorporate exposures into the model, we assume that T is distributed with proportional

hazards form [26] with Λ(t|Z) = exp(β⊤Z)Λ0(t) and F̄(t|Z) = exp{−Λ(t|Z)}, where Z a q-

dimensional vector of exposures and β a q-dimensional vector of parameters. Under this

model, (5) motivates modeling Y with

(6)

where H(y) = Λ0(y′) − Λ0(y″) for some y′ ∈ [y, y + 1] and y″ ∈ [0, 1] with H(0) ≡ 0. Notice

that if we set , (2) and (6) are equivalent. As a result, we can use the method

in Section 2.1 regardless of whether F̄ is discrete or continuous to estimate of β. The form

for g in (6) is an approximation of the true mass function of Y which is

 where . Directly modeling

g* would require knowledge of F̄(u|Z) over [y, y + 1] for all y. When T follows an

exponential distribution with Λ0(t) = θt, we have g*(y|Z) = g*(0|Z) exp {−H(y) exp(β⊤Z)}

where H(y) = θt. As a result, (6) is equal to g* and the survivor function of T is F̄(y|Z) =

exp{−H(y) exp(β⊤Z)}. In the non-exponential setting, F̄(y|Z) ≈ exp{−H(y) exp(β⊤Z)}. In

our simulation studies, the estimates of F̄(y|Z) and β when Λ0(t) = θtγ were relatively

unbiased, suggesting that (6) was a close approximation to g*.
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2.3. Piecewise constant baseline model

Previous methods of analyzing data with digit preference include Ridout and Morgan [27],

Pickering [28], Price and Seaman [29], and Bar and Lillard [30]. In many circumstances, the

parameters governing the digit preference, such as the probability that someone reports Y =

12 when actually Y = 10, are nuisance parameters. In this case, digit preference can be

controlled for by imposing smoothness restrictions on the probability mass function [28],

i.e., imposing smoothness restrictions on g(y|Z). This type of correction assumes that the

rounding in the data is at random, and that people are equally likely to round up as they are

to round down. Heitjan and Rubin [31] referred to this assumption as coarsening at random

(CAR), for more on CAR see [32, 33].

The models in Sections 2.1 and 2.2 are smoothed by having the αj’s be constant over

disjoint intervals. The piecewise constant model is implemented by creating a disjoint

partition (t0, t1], (t1, t2], …, (tL−1, tL] with t0 ≡ 0 and tL ≥ max{Y}. We then assume αj = γl

for all j ∈ (tl−1, tl]. Following the results in Section 2.1 and 2.2, the probability mass

function of Y is

(7)

where x ⋀ y = min(x, y) and gP (0|Z) takes a form similar to (3). The piecewise estimate of

survivor function of T is F̄
P (y|Z) = gP (y|Z)/gP(0|Z).

Popular methods of knot selection, such as using the percentiles of the observed Y or

information criterion, will not suffice because they will not impose the desired smoothness

on g. To specify the tl’s, we consider the shape of a nonparametric estimate of the survivor

function of T, given by . In Appendix A of the supporting

information, we discuss the estimation of ĝNP and . In Figure 2, we present a

histogram of data with digit preference, the corresponding estimate of  and the true F̄.

When digit preference is present, Figure 2 demonstrates that  has large jumps at 7

and 13 months and is flat over the interval [7, 12] months. Heuristically, this results in

positive bias over [5, 6] and negative bias over [7, 8] (similarly for [11, 12] and [13, 14],

respectively). Let D0 = {d1, d2, …} denote the set of points of digit preference, which we

assume are known, and let Dk = {d1 + k, d2 + k, …} be the set of points k units after the

points of digit preference. In general,  will have large jumps for y ∈ D1, and be flat

over [dj−1 + 1, dj] for j > 1, which results in  having positive bias for y ∈ {D−1, D0},

and negative bias for y ∈ {D1, D2}.

To smooth the estimate of  we propose choosing the tl’s such that tl ∉ {D−1, D0, D1,

D2} for l = 1, 2, …, L. Under these guidelines note that all (tl−1, tl] such that dj ∈ (tl−1, tl]

contain the set of points {dj − 1, dj, dj + 1, dj + 2}. As a result, the knots are chosen such that

all intervals that contain a point of digit preference, include points with positive and negative
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bias, mainly {dj − 1, dj} and {dj + 1, dj + 2}, respectively. This method acknowledges the

difficulty in estimating the grouped baseline hazard around the dj’s, and balances the effect

of digit preference. When the maximum observed Y is in D0 we leave the last interval open

ended by setting tL = ∞. Our simulation study found that if tl ∈ {D−1, D0, D1, D2} for all l,

the choice of knots had relatively little effect of the results.

3. Estimation

In this section, we discuss maximum likelihood estimation of the models proposed in

Section 2. Let Y = {Y1, Y2, …, Yn}, and Y(1), Y(2), …, Y(m) denote the observed current

durations, and the ordered and distinctly observed current durations, respectively. When

there is no censoring (2) and (6) can be estimated by setting αy = ∞ for y > Y(m), thus

, and αy = 0 for all y ∉ {Y(2), Y(3), …, Y(m)}. Notice that by setting αy = 0

for y < Y(2) we have g(y|Z) = g(0|Z) for all 0 ≤ y < Y(2), which ensures that (3) is identifiable.

We then estimate β and α = {αY(2), αY(3), …, αY(m)} using maximum likelihood.

It is common to censor all current durations greater than a fixed value, denoted by τ, after

which they are not considered to be reliable. Let Ỹ = {Ỹ1, Ỹ2, …, Ỹn} denote the possibly

censored current durations, where Ỹi = min(Yi, τ) and δi = I(Yi ≤ τ). Let Ỹ (1), Ỹ(2), …, Ỹ(m)

≤ τ denote the ordered and distinctly observed uncensored current durations, and

. When censoring is present we cannot set αy = ∞ for y > Ỹ(m)

because the likelihood for those censored at τ would be Ḡ(τ|Z) = 0. To allow for Ḡ(τ|Z) > 0

we introduce an additional parameter ατ, and set αy = ατ for all y > Ỹ (m).

To estimate β and ατ = {αY(2), …, αY(m), ατ}, we use maximum likelihood estimation. The

likelihood corresponding to the observed Ỹ, δ = {δ1, δ2, …, δn}, and  = {Z1, Z2, …, Zn}

takes the form  with maxima denoted by

β̂ and α̂
τ. The survivor function of the unobserved T’s at given value of Z is estimated by

 where α̂
0 ≡ 0.

For the piecewise constant model the details of the estimation proceed similarly. That is, for

a given {t0, t1, …, tL} we use gP given in (7) and  to form the

likelihood. If there are censored values at τ ≥ Ỹ(m), an additional parameter γτ is used, or set

tL = ∞, so that Ḡp(τ |Z) > 0. After β and γ = {γ1, …, γL, γτ} have been estimated, the

piecewise constant estimate of F̄ at given value of Z is given by

.

The R programs [34] to implement the semiparametric and piecewise constant models to

simulated data are contained in Appendix B of the supporting information. In our data

analysis and simulation study, we estimated the standard error of β̂ with a numerical

approximation to the hessian matrix. If T is continuous, exp(β̂
j) corresponds to the estimated

hazard ratio, associated with a one unit increase in Zj. For discrete T, β̂
j can be interpreted as
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the approximate logarithms of subject-specific risk or odds ratios associated with a one unit

increase in Zj (cf. [35]).

4. Simulation Studies

To test the properties of our models with moderate sample sizes, numerous simulation

studies were performed. The current duration for the ith subject was simulated by generating

the unobserved total durations as Tij~F for j = 1, 2, …, K, where 

and M is a fixed large integer, replicating a renewal process in equilibrium with renewal

distribution (see [36] for details). For the continuous scenario discussed in Section 2.2, the

backward recurrence times were grouped with Yi = ⎿M − TiK−1⏌. For the discrete scenario

discussed in Section 2.1, the continuous Tij were grouped with  and

 where . Here, F had hazard function λ(t|Zi) =

λ0(t) exp(β⊤Zi), and Zi = (Zi1, Zi2) were independently generated as Bernoulli(0.5) and N(0,

0.52), respectively. The baseline hazard was set to λ0(t) = θγtγ−1 with θ = 0.3 and α = 0.75.

Note that αj ≠ αj+1 for all j, so the piecewise constant model is not correctly specified. In

Section 4.1 we test the effect digit preference would have on the results, and in Section 4.2

we test continuous and discrete distributions on T. For brevity, the results for the piecewise

model with a continuous F are not presented since they were similar to what was found with

discrete F. In Section B of the supporting information, we present expanded simulation

studies with piecewise model with a continuous F, an asymmetric rounding mechanism

(where CAR is violated), and a comparison to the Weibull AFT model. We found that

asymmetric rounding can result in bias in the survival function estimates. Further, the β

estimates from the proposed model performed similarly to the Weibull AFT model.

4.1. Digit preference and knot selection

In this section, we explore the effect digit preference has on the proposed methods, and the

knot selection for the piecewise model. The discrete scenario was used, and the data were

randomly grouped as follows, if 4 ≤ Yi ≤ 9 then Yi was rounded to 6 with probability 0.4, if

10 ≤ Yi ≤ 18 then Yi was rounded to 12 with probability 0.6, if Yi > 18 then Yi was rounded

to the nearest multiple of 12 with probability 0.8. The piecewise constant model was fit with

four separate knot scenarios, each used 7 knots, the locations for knot scenarios A–C were

{1, 2, 4, 9, 18, 30,∞}, {1, 2, 4, 9, 15, 27,∞}, and {1, 2, 4, 10, 17, 29,∞}, respectively,

while scenario E used the percentiles of the observed Yi. For scenarios A–C note that the

knots did not coincide with {D−1, D0, D1, D2} as recommended in Section 2.3, and the

majority of knots were close to 0. The last interval is open ended (i.e., tL = ∞) since it is

likely that Y(m) ∈ D0.

In Table 1, we present the results of the digit preference simulation for β1, β2, F̄(6|0), F̄(12|

0), F̄(24|0) and the l2-norm defined as  where

, and  is the estimated survivor function for iteration j

evaluated at Z = 0. The estimates of β showed little bias. In general, the piecewise estimates
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of β had more bias than the semiparametric estimates. The average estimate of F̄ for knot

scenarios A–C were closer to the truth than the semiparametric model, or knot scenario E.

This was especially true for the points of digit preference 6, 12, and 24. For these points the

semiparametric model showed significant over estimation. Overall, the results from

scenarios A–C with the piecewise model were the most robust to digit preference. Further,

knot selection did not have a large effect on the estimates under the guidelines discussed in

Section 2.3.

4.2. Continuous versus discrete F

In this section, we present the results of simulations designed to test differences when the

underlying distribution for T is continuous versus discrete. In Table 2, we present the results

from the piecewise constant (discrete F only) and semiparametric models for discrete and

continuous F. The piecewise model used 7 knots with locations {1, 2, 5, 8, 11, 18, Y(m)}.

The results from the piecewise constant and semiparametric models showed little bias for β

with either discrete or continuous F̄. The bias tended to decrease as the sample size

increased. The empirical coverage probabilities for β = 0 suggest that hypothesis tests of βj =

0 will have proper type I error. Further, the empirical coverage probabilities for nonzero β

were close to the nominal 0.95 level. For the semiparametric model, properties of the β

estimates were similar for the discrete and continuous scenario. The values of l2 norm

showed that the estimates of the survivor function accurately estimated the distribution for

both scenarios. Notice that the l2 norm for the continuous setting is similar to the l2 norm for

the discrete setting. This is noteworthy since g is modeled in the continuous setting using

(6), which is an approximation to the true mass function of Y, while in the discrete setting g

is modeled using the true mass function of Y. These results indicate that (6) is an accurate

form for this distribution.

5. Data Analysis

We use a nationally representative cross-sectional sample of 7,643 US women aged 15–44

years from the 2002 NSFG to demonstrate the proposed methods. Details of the study design

and survey have been described previously [37]. For this analysis, we included 270 eligible

women aged 15–44 years (mean age 31 years) who reported the current duration of their

pregnancy attempt (see [3] for further details). Initially we present unadjusted analyses of

the data, and then we incorporate covariates and present a comparison to a Weibull AFT

model. The validity of the current duration values decrease for longer durations [38], but can

be considered reliable over shorter periods of time [39]. As a result, we censor current

duration responses at a value after which they are not considered to be reliable. In this

analysis, we censored all durations longer than 36 months (21.4% of the data).

To estimate the unadjusted distribution of T, we analyzed the NSFG data with the piecewise

constant model without covariates . We compare  to a discrete nonparametric

estimate, denoted by , which can handle zeros and ties. The computation and asymptotic

properties of  are discussed in Appendix A of the supporting information. After

censoring, the points of digit preference for this data are 6, 12, 24, and 36 months. For the

McLain et al. Page 9

Stat Med. Author manuscript; available in PMC 2015 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



piecewise constant model we tested various locations and sizes for the vector of knots and

did not see any marked difference in the results. The analyses presented here used seven

knots with locations {1, 2, 4, 9, 18, 30, ∞}. Confidence intervals were calculated using the

percentiles of 270 bootstrap survivor function estimates.

The estimated piecewise constant and nonparametric survivor functions are given in Figure

3, along with 95% pointwise confidence intervals (CI). In Table 3, we present point

estimates and confidence intervals for the probability that a pregnancy attempt is longer than

12 or 24 months. The nonparametric method found  with 95% CI (0.212,

0.481), while the piecewise constant method found  with 95% CI (0.148,

0.310). Here,  is closer to historical values than . The over estimation of

 at the points of digit preference corroborates the results in Section 4.1.

To assess the association between exposures and the distribution of T, we used the proposed

backwards recurrence Cox model (piecewise and semiparametric). The covariates used in

the model were parity (z1), the indicator of at least one live birth, and the woman’s age

minus 31 years (z2). A woman is said to be parous if she has had a previous live birth (z1 =

1), and nulliparous otherwise (z1 = 0). In Table 3, we present the estimated β coefficients,

and the estimated probability that T > 12 months for a 31-year old parous woman, denoted

by F̄(12|1, 0), and a 31-year old nulliparous woman, denoted by F̄(12|0, 0). In Figure 4, we

display the estimated survivor functions  and .

The point estimates for the effect of parity on T were consistent for both models. These

estimates suggest that parous women become pregnant faster than nulliparous women. The

effect of age was negative in both models, and achieved significance at the 0.05 level for the

semiparametric model. The estimates for the prevalence of infertility corroborate the

nonparametric results, showing that at the points of digit preference there appears to be over

estimation of the survivor function for the semiparametric model. Further, the width of the

95% confidence intervals indicates greater precision for the piecewise model in the survivor

function estimate. These results indicate that with 0.358 probability, a 31-year-old

nulliparous women will have 12+ month pregnancy attempt.

We compared the above results to those obtained from the parametric AFT model proposed

in [16]. To fit the AFT model we altered the data to T* = T + C where C = 0.5, and fit

log(T*) = −(μ+ γZ) + ∈/γ where ∈has an extreme value distribution. The estimates of the

coefficients from the fitted model were in the same direction as those presented in Table 3,

where γ̂
1 = 0.76 and γ̂

2 = −0.06 for parity and age, respectively, and both were significant at

the 0.05 level. Further, the estimated shape was γ̂ = 0.84. Note that γ̂ < 1 and ĝ(0|Z) is

unbounded. Thus, using the notation in Section 2, ĝ ∉ 0 and F̄ cannot be estimated from

this model (see [13] for further discussion on this issue). The results were similar for C = 0.1

and 1.
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6. Discussion

The current duration approach is an evolving method that is gaining attention in light of

global concerns about declining human fecundity accompanied by purported increases in the

prevalence of infertility. In this paper, we have proposed semiparametric and piecewise

constant backward recurrence Cox models to estimate the distribution of the total length of

pregnancy attempt from the observed current length of pregnancy attempt. The use of the

semiparametric framework is advantageous over the parametric AFT model, since little is

known about the underlying distribution. As discussed in Section 2, applying the AFT model

to current duration data is a non-surjective operation since estimates of ĝ can have no

corresponding F̄. The proposed methods result in valid estimates of F̄, and can incorporate

issues that will be encountered in practice, such as current durations equal to zero and digit

preference. This gives the proposed methods practical relevance to those analyzing current

duration data.

Our findings suggest that inattention to digit preference overestimates the percentage of

women not achieving pregnancy at 12 and 24 months. Specifically, when controlling for

digit preference we estimated that 21.7% of parous women aged 31 years will require a 12+

month attempt for pregnancy, when ignoring such reporting preferences this value was more

than 50% larger at 33.6%. Our analyses also examined the effect that exposures have on the

distribution of the total length of pregnancy attempt. Assuming that F is continuous, the

semiparametric model found that the rate of the total length of pregnancy attempts was 1.64

times higher for parous women than it was for nulliparous women, and that an additional

year of maternal age lowers this rate by 0.97. When the Weibull AFT model was used, the

estimated coefficients resulted in a model where F̄ could not be estimated. As a result, a

different modeling approach would need to be implemented to estimate F̄. The proposed

modeling approach has assumed a proportional hazards form for T, which can not be

verified by the observed data. One could, however, check if (2) shows signs of lack of fit

based on the observed Y values. This would not guarantee that the proportional hazards

assumptions holds, but it would verify if the data are consistent with the assumed structure.

Validity and recall bias of current duration data has not been studied and if present could

bias parameter estimates.

Current duration analyses provides inference on the total length of pregnancy attempt (T),

which is the minimum of TTP (X) and the length of an unsuccessful pregnancy attempt (U).

The fact that the outcome is total length of pregnancy attempt and not TTP needs to be taken

into consideration when interpreting model estimates. For example, if we had found that

older age was associated with shorter T it could be due to older age being related to shorter

U, and thus not related to the outcome of interest X (we found older age being associated

with longer T so this was not an issue). Development of statistical methods that can

delineate between the competing factors that end pregnancy attempts is an area of future

development.

The steady state assumptions given in Section 2 would be violated if there is a change in

fecundity over time, or if there was a pattern to the initiations of the women’s pregnancy

attempts. With regard to the former the research has been mixed [40, 41], and this
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assumption should be reasonable over the time period of interest (1999–2002). In a short

time frame such as this (censored at 3 years), the variation in attempt times would mainly be

due to seasonal differences in pregnancy attempts over a given year. Sensitivity analyses

discussed in Slama et al. [42] showed some seasonal fluctuation in the distribution of

starting dates for planned pregnancies; however, they found little difference in findings

when accounting for this variation in their model. An area of future research is the

development of methods to address the validity of the steady state assumptions.

The field of fecundity has greater relevancy in light of sociodemographic changes in

childbearing for most developed countries, resulting in women or couples’ expectation for

more immediate pregnancy results. This underscores the relevancy of monitoring couple

fecundity as measured by TTP [8] for estimating fecundity related impairments such as

conception delay or infertility. The benefit of the current duration approach is that it can

incorporate women who are not planning to become pregnant (missed in prospective

cohorts), and women that have never been pregnant (missed in most retrospective studies).

The difficulty with current duration data is the lack of methods available to estimate the

distribution of the total length of pregnancy attempt (previously, only nonparametric and

parametric methods are available), and to estimate the association exposures have with the

total length of pregnancy attempt (previously, only parametric methods are available). The

proposed proportional hazards methods are semiparametric. Further, digit preference, which

is common in studies where recall is involved, has been addressed with the piecewise model.
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Figure 1.
Histogram of observed current durations from the National Survey on Family Growth.

Apparent digit preference is displayed at 12, 24, and 36 months
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Figure 2.
A histogram of data simulated to have digit preference at y = 6, 12, and 24, overlayed with

an unconstrained nonparametric current duration survivor function estimate (dashed line,

axis on right) and the true survivor function (solid line).
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Figure 3.
Current duration estimate of the survivor function of TTP for the NSFG data (solid line),

with 95% pointwise bootstrap confidence intervals (dashed line) for the nonparametric

method (black) and the unadjusted piecewise constant model (gray).
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Figure 4.
Semiparametric (black) and piecewise constant (gray) current duration estimates of the

survivor function of TTP for parous women (dashed line), nulliparous women (solid line).
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Table 3

(Top) Unadjusted estimates and 95% confidence intervals (95% CI) for the prevalence of total durations

longer than 12 and 24 months for the nonparametric and piecewise constant approaches. (Bottom) Regression

coefficients and estimates intertility prevalence for 31-year old women that are parous (F̄(12|1, 0)) or

nulliparious (F̄(12|0, 0)) from the semiparametric, and piecewise constant models.

Unadjusted

Nonparametric Piecewise

EST 95% CI EST 95% CI

F̄(12) 0.336 (0.212, 0.481) 0.223 (0.148, 0.310)

F̄(24) 0.223 (0.162, 0.290) 0.123 (0.082, 0.167)

Covariate Adjusted

Semiparametric Piecewise

EST 95% CI EST 95% CI

PARITY 0.492 (0.257, 0.728) 0.747 (0.206, 1.289)

AGE −0.035 (−0.054,−0.015) −0.036 (−0.074,0.003)

F̄(12|1, 0) 0.303 (0.138, 0.463) 0.191 (0.110, 0.295)

F̄(12|0, 0) 0.475 (0.291, 0.610) 0.358 (0.244, 0.473)
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