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Abstract

This work proposes a frailty model that accounts for non-random treatment assignment in survival

analysis. Using Monte Carlo simulation, we found that estimated treatment parameters from our

proposed endogenous selection survival model (esSurv) closely parallel the consistent two-stage

residual inclusion (2SRI) results, while offering computational and interpretive advantages. The

esSurv method greatly enhances computational speed relative to 2SRI by eliminating the need for

bootstrapped standard errors, and generally results in smaller standard errors than those estimated

by 2SRI. In addition, esSurv explicitly estimates the correlation of unobservable factors

contributing to both treatment assignment and the outcome of interest, providing an interpretive

advantage over the residual parameter estimate in the 2SRI method. Comparisons with commonly

used propensity score methods and with a model that does not account for non-random treatment

assignment show clear bias in these methods that is not mitigated by increased sample size.

We illustrate using actual dialysis patient data comparing mortality of patients with mature

arteriovenous grafts for venous access to mortality of patients with grafts placed but not yet ready

for use at the initiation of dialysis. We find strong evidence of endogeneity (with estimate of

correlation in unobserved factors ρ̂ = 0.55), and estimate a mature-graft hazard ratio of 0.197 in

our proposed method, with a similar 0.173 hazard ratio using 2SRI. The 0.630 hazard ratio from a

frailty model without a correction for the non-random nature of treatment assignment illustrates

the importance of accounting for endogeneity.
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1. Introduction

In health services research, randomized controlled experiments are rare. As a result, much

effort has been expended developing and adapting methods to control for endogenous

selection, a condition that exists when non-random treatment assignment leads to correlation

between the treatment (selection) variable and the error term in the outcome of interest.
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These methods are used to account for potentially endogenous consumer choices and

treatment effects [1–3]. For example, an insured person’s endogenous selection of a health

plan has the potential to affect medical demand [4], number of provider encounters [5], and

wellness activities [6]. Modeling the impact of endogenous treatment effects is also a

frequent task in health services research, and is an important factor in analyses supporting

the development of clinical guidelines (for example, Kenkel and Terza [7]). Recent focus on

patient-centered outcomes research, placed in real-world settings, will increase the demand

for methods that account for non-random treatment assignment. This study extends the

endogenous selection literature by developing a parametric survival model incorporating a

treatment effect, and allowing the treatment effect to be correlated with the patient’s

unobserved heterogeneity, captured in a multiplicative frailty term. A key objective in the

development of the model was to avoid sophisticated methods such as Markov Chain Monte

Carlo estimation, which might limit the accessibility of the technique. This model is easy to

implement in any statistical package that allows maximum likelihood estimation using

Gauss-Hermite quadrature (e.g., ml with ghquad in Stata or GLIMMIX in SAS). We

compare the proposed model to two selection-correction methods previously used in the

literature: use of propensity scores and two-stage residual inclusion. We identify advantages

of our proposed model in consistency, simplicity of estimation, precision, and interpretation.

In addition to simulations, we illustrate the use of this model with mortality data for dialysis

patients, adjusting for an endogenous means of vascular access at the start of dialysis

treatment.

2. Background

Survival analysis is an important tool used by health services researchers. Whether the event

of interest is death, disease incidence, or treatment failure (such as a transplanted organ),

accurately modeling the time to the event, or “failure time,” is crucial. In most cases, it is

assumed that observed patient characteristics such as age, previous disease burden, or

previous health events will influence the failure time. The general form for the hazard of an

event, with proportionality in patient i’s observed characteristics captured in xi, is

 where h0 (t) is a baseline hazard rate estimated in fully parametric

models (e.g., Weibull), or factored out in semi-parametric models (e.g., Cox proportional

hazards). The function c(·) is the link function, which has a model-specific, non-negative

form. An exponential function is often chosen for c(·), due to its mathematical tractability.

A characteristic of these nonlinear models is that parameter estimation will be biased in the

presence of unobserved patient characteristics, even when these unobserved characteristics

are uncorrelated with the observed characteristics captured in xi [8]. Frailty models were

developed to account for these unobserved characteristics, summarized nicely in a tutorial

by Govindarajulu et al. [9]. In its simplest form, when there is no clustering of observations,

this frailty takes the form of a simple univariate random term εi within c(·):
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When the link function is chosen so that time until failure follows a Weibull distribution,

this leads to a multiplicative frailty term, θi = exp(pεi), where p is the Weibull shape

parameter. (Note that the Weibull hazard model simplifies to the commonly used

exponential hazard model when p = 1.) Assuming the baseline hazard is time invariant and

captured in an intercept in xi, hazard in a Weibull survival model takes the form

Often, a “treatment group” variable, di ∈ {0,1}, is also included as a regressor so that the

hazard can be described as

Typically, d’s effect on failure time is of primary interest. But because health services

research often involves observational or administrative databases, and patients are not

randomly assigned to treatment groups, endogenous selection is a concern. If unobservable

patient characteristics affecting treatment assignment are correlated with the individual

frailty, these unobservable characteristics may confound the effect of treatment on time to

the event. To avoid bias in estimation of the treatment parameter, we must recognize this

selection effect in our estimation method.

This issue of selection is common in economics, statistics, and epidemiology. Previous

authors have demonstrated that endogenous selection leads to biased and inconsistent

estimators when a dependent variable is modeled through the usual regression techniques. In

a linear setting, much of the seminal work was done by Heckman [1;10] and Lee [11]. Lee’s

work [11] extended Heckman’s sample selection methods [1], in which observation of the

variable of interest depends on an endogenous selection equation, to a switching model in

which two separate equations of interest are estimated, based on an endogenous switch

between populations. For example, a researcher might want to model medical care demand

in a health maintenance organization plan vs. demand in a fee-for-service plan. In the

context of treatment effects, these separate equations of interest are typically simplified to a

basic intercept shift, so the researcher models . Chiburis and Lokshin [12]

extended the linear case further to allow for several levels of the endogenous treatment

variable (e.g., dosage level) using an ordered probit selection model.

This selection analysis has been extended to nonlinear settings. Greene [3], Terza [13], and

others developed estimation methods for count data with endogenous selection and

switching. Much of this literature is nicely summarized by Greene [14]. Estimation of

Poisson models with endogenous dummy variables was operationalized by Miranda [15] in

the espoisson Stata command. These methods were generalized by Miranda and Rabe-

Hesketh [16] in the ssm Stata command, which allows the dependent variable of interest to

be a binary, ordinal, or count variable, with endogenous switching or selection.
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In an extension of this work, our model focuses on the presence of an endogenous dummy

variable in a Weibull hazard model with a multiplicative frailty term, allowing the

estimation of treatment effect on survival. This endogenous selection survival (esSurv)

model is an important addition to the literature on this topic.

In practice, a common method of adjusting for selection in survival models has been the use

of propensity scores, in a wide variety of formats (see for example Badalato et al. [17],

Hadley et al. [18], and Liem et al. [19]). The use of propensity scores is grounded in the

seminal paper by Rosenbaum and Rubin [20], in which three methods of using propensity

scores are presented: (1) creation of samples matched by propensity score, (2) stratification

of the population by propensity score, and (3) inclusion of the propensity score as a

regression adjustment. Rosenbaum and Rubin predicated their work on the assumption of

strong ignorability, i.e., that the response variable is uncorrelated with the treatment

assignment, once one has conditioned on the predictor variables. The difficulty is that many

researchers extend these methods without careful consideration of whether strong

ignorability holds, instead focusing diagnostics on assessing balance in the observed

predictors.

Clearly, propensity score matching violates the requirement that proportional hazard models

be based on independent samples [21]. And Terza et al. [22] demonstrate the inconsistency

of regression adjustment in nonlinear models, labeling this a two-stage predictor substitution

(2SPS) model. Therefore, we compare our proposed esSurv model to only one of

Rosenbaum and Rubin’s suggested applications of propensity scores: using propensity

scores to stratify the population (PS-strat). In addition, we consider the use of regression

weights based on propensity scores (PS-weight), as used by Hadley et al. [18], for example.

These two methods are also reviewed by Lunceford and Davidian [23], who do an excellent

job of clarifying the often-ignored requirement of strong ignorability. Our simulations

deliberately introduce an unobserved covariate to induce endogeneity and thus a violation of

strong ignorability, which we expect will lead to inconsistency in both sets of propensity

score results, even though we have an instrumental variable to use in the development of our

propensity scores.

While demonstrating the inconsistency of 2SPS in nonlinear models, Terza et al. [22] also

demonstrate that two-stage residual inclusion (2SRI) methods are generally consistent for

nonlinear models. It is thus imperative that we make a third comparison of our model to the

model of a 2SRI survival method. In this 2SRI method, a residual from the initial equation

that models the probability of treatment is included as a covariate in the second frailty

equation.

3. Econometric Models

3.1 Proposed esSurv Model

We observe the time of failure (e.g., death, relapse, organ failure), ti, for the ith individual

who is characterized by a set of explanatory variables xi, an endogenous switching variable

di ∈ {0,1}, and a random error term εi. We assume the error term follows a normal
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distribution with mean zero and variance σ2, so that the frailty follows the non-negative

lognormal distribution.

If ti follows a Weibull distribution with a person-specific hazard rate

, then the conditional density for ti is:

Let di be determined by a standard probit:

where the vector of explanatory variables, zi, may or may not be the same as xi, and νi is a

normally distributed error term. Typically, zi contains xi and one or more instruments for the

switching variable. The instrument for di is helpful in identification, though some work

suggests that the model is weakly identified due to nonlinearity alone [10;24].

We assume that εi and νi are bivariate normal:

It can be shown that the conditional distribution of νi given εi is then

We can use this distribution to find the conditional probabilities for the endogenous

selection variable:

The likelihood of the selection-corrected failure time model depends on the joint density
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To facilitate Gauss-Hermite quadrature in our maximum likelihood estimation, we borrow a

technique from Miranda’s count data model [15] and make the variable substitution

 to express the likelihood as

3.2 Comparison Models

The two methods based on propensity score matching first estimate a probit model as

described above to capture the estimated parameters α̂. The estimated propensity scores are

then computed as . Under an assumption of strong ignorability, Rosenbaum and

Rubin [25] demonstrate that stratifying in quintiles is expected to reduce 90% of the bias in

a linear setting. Therefore, in our PS-strat model we divide the population into five strata

(indicated by j) based on their estimated propensity scores, despite the fact that we know

through our deliberate introduction of endogeneity that strong ignorability is violated. We

estimate the form

In our simulation results (Table 1), we show the distribution of the estimated treatment

parameters averaged across the strata within each Monte Carlo iteration to show the overall

treatment effect.

For the PS-weight model, we follow a method used by Hadley et al. [18], applying the

regression weight wi = 1/psi for patients who were assigned the treatment and the weight wi

= 1/(1 – psi) for patients who did not receive the treatment to an estimation of the general

hazard model
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These weights are multiplied by the individual log-likelihoods in the summed overall log-

likelihood to be maximized: L = Σiwi ln f(Xi,θ), where Xi captures the observed data, θ is the

vector of parameters to be estimated, and f(·) is the individual’s Weibull likelihood function.

Finally, we estimate a 2SRI model by computing the residual , and including this

as a covariate in the hazard model:

The estimated residual is assumed to capture and correct for the impact of unobserved

patient characteristics that are the source of the endogeneity.

4. Simulation Study

4.1 Setting

To demonstrate the impact of the endogeneity in the model, we undertook a series of Monte

Carlo simulations. In each simulation, we generated observations with sample size N ∈

{1000; 5000; 10,000} with four continuous covariates, each drawn from a N(0,1)

distribution:

• X1 predicts both failure time and treatment assignment, and is observable.

• X2 predicts failure time but not treatment assignment, and is observable.

• X3 predicts treatment assignment but not failure time, and is observable, allowing it

to be used as an instrumental variable to identify treatment assignment.

• X4 predicts both failure time and treatment assignment, and is not observed, thus

causing the treatment assignment to be endogenous in predicting the failure time.

In order to test the impact of violating Rosenbaum and Rubin’s [20] assumption that

treatment assignment is strongly ignorable given the observed x = [X1 X2 X3]′, we include

three scenarios for the true X4 parameter in the treatment assignment equation, selected so

that the unobserved X4 explains approximately 0%, 5%, and 20% of the treatment

assignment, based on partial R2 statistics [26].

Once these regressors were generated, we began 100-replication Monte Carlo simulations

across the three levels of endogeneity and three sample sizes, simulating two dependent

variables: a 0/1 indicator of treatment assignment (d), and time of death (t) measured in

months and censored at 12 months, a level of mortality relevant to organ transplant, dialysis,

and some cancer diagnoses. Approximately 5% to 10% of the times of death are censored in

these simulated data. Distributions used to generate these dependent variables are detailed

below:

• d* = x′α + ν = 0.4 +1.0 X1 + 0.0 X2 + 0.8 X3 + α4 X4 + ν

where α4 ∈ {0.00, 0.35, 0.95} controls the level of endogeneity (violation of strong

ignorability) in the simulation.
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•

• λ = exp[x′β + ε] = exp[1.5 – 1.3 d +1.0 X1 – 0.3 X2 +1.0 X4 + ε]

• f(t|ε) = pλptp−1 exp[–(λ · t)p], with Weibull shape parameter p = 0.8

• We drew the error terms ν and ε from independent, standard normal distributions,

so we can show that the modified errors that result from the omission of the

unobservable X4, ν̃ = α4X4 + ν and ε̃ = β4X4 + ε, have joint distribution

Thus, for the three possible values of α4 (0.00, 0.35 and 0.95), and the fixed β4 = 1,

our estimations using only observable covariates have true error term correlations

of ρ = 0.00, ρ = 0.23, and ρ = 0.49, respectively.

Using each Monte Carlo replication of this generated data, we estimate parameters from a

Weibull survival model for each of the five estimation methods (esSurv, 2SRI, regression

with weights based on propensity scores, regression with stratification based on propensity

scores, and no endogeneity correction), using xi = [X1 X2]′ in the hazard equation and zi =

[X1 X2 X3]′ in the treatment (propensity score) equation, leveraging the instrumental

variable X3.

4.2 Simulation Results

In Table 1 we summarize the results of our simulations, showing the median estimation error

[and inter-95% range] of the treatment parameter, γ̂ – γ, from the 100 Monte Carlo

replications. These are shown for the five estimation methods at three levels of endogeneity

and three sample sizes. The estimation error for the treatment parameter is centered at zero

for all five methods when there is no endogeneity (ρ = 0). In the presence of endogeneity (ρ

= 0.23 or ρ = 0.49), the propensity score-based and uncorrected regressions have bias in the

direction of the correlation of the error terms (negative ρ simulations are available from the

corresponding author), and this bias is not mitigated by large sample sizes. Both our

proposed esSurv method and the 2SRI method produce estimation errors that are centered on

zero across all endogeneity levels and sample sizes.

Replication of the Weibull shape parameter, correlation, and other regression parameters

(not shown here) is also quite good for both of these consistent methods. We also compared

AIC statistics within Monte Carlo replications to assess model fit. In even the worst case

scenario (ρ = 0.49, N = 1000), the median difference AICesSurv − AIC2SRI = −0.7 was not

meaningful.

The baseline simulations in Table 1 are based on a fairly strong instrument (X3), with an

original true parameter α3 = 0.80. The effect of eliminating the instrument from the selection

equation is a drop in that equation’s pseudo R2 of approximately 0.11, from 0.27 to 0.16. To

test the importance of the instrument’s strength, we repeated these simulations with smaller
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true parameters on X3 (α3 = 0.20 and α3 = 0.05), equivalent to a contribution to the pseudo

R2 of 0.01 and 0.002, respectively, in “medium instrument” and “weak instrument”

scenarios. Table 2 compares the results of this experiment with the baseline results using the

scenarios with the largest endogeneity (ρ ≈ 0.50). As the instrument weakens, we see

significant increase in dispersion of the estimates for the two consistent methods (esSurv and

2SRI), but the inter-95% range of the simulations’ errors continues to straddle zero. The

small upward bias we see in the median of the weaker instruments is mitigated with

increased sample size for these two methods. The inconsistent methods (PS-strat, PS-weight,

Uncorrected) continue to show significant upward bias, as in the baseline scenarios, and this

bias persists with increased sample size.

An advantage of the esSurv method is reduced run time because of the full maximum

likelihood estimation of all parameters, removing the need for bootstrapping to compute

accurate standard errors as is required in the 2SRI method. Though sampling in bootstrap

methods is typically done a very large number of times, say 1000 or 10,000 times,

preliminary testing indicated that 400 bootstrap iterations provided reasonable convergence

in estimation of standard errors for our Monte Carlo replications. Using 400 samples in

bootstrapping, the run time for 2SRI Monte Carlo replications was 85 times the run time for

the esSurv replications (averaging 20 minutes, 2 seconds for 2SRI vs. 14 seconds for esSurv

per 1000-observation replication, using Stata 12), a conservative estimate of the run time

difference given the relatively small number of samples in the bootstrap process.

In addition, the esSurv method has some advantages of interpretation over the 2SRI method.

As a byproduct of the estimation, we have quantified the correlation estimate ρ̂, a more

intuitive measure of endogeneity than the parameter of the estimated residual in the 2SRI

model. The 2SRI residual parameter tells the user statistical significance and directionality

of the correlation in unobservable factors, but the parameter does not have the intuitive

appeal of an actual correlation measure such as the estimate from the esSurv model.

Finally, the results of our bootstrapped standard errors in the 2SRI method, compared to the

standard errors of the parameter estimates from the esSurv method, suggest that esSurv

produces a more precise estimate of the treatment parameter, compared to the 2SRI method.

The distribution of the standard errors of the treatment parameter estimate, se(γ̂), is shown in

Figure 1 for both 2SRI and esSurv using 100 bootstrapped Monte Carlo replications in the N

= 5000, ρ ≈ 0.50 scenario. The bootstrapped 2SRI standard error is greater than the esSurv

standard error in 96% of the replications with a median se2SRI(γ̂)/seesSurv(γ̂) ratio of 1.11.

Similar results are found across a variety of sample size/endogeneity scenarios. For example

when N = 1000, the ρ ≈ 0.50 scenario’s median standard error ratio is 1.12 (2SRI standard

error is greater in 81% of the 100 replications) and the ρ ≈ 0.25 scenario’s median standard

error ratio is 1.07 (2SRI standard error is greater in 72% of the 100 replications).

5. Empirical Application

To illustrate use of this model on real data, we employed data from the United States Renal

Data System (USRDS) to investigate the association of the state of a vascular access for

hemodialysis to first-year survival. The USRDS database contains information on patients
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with end-stage renal disease (ESRD), including demographic characteristics and heath

encounter information in the form of Medicare claims for eligible patients. A patient is

considered to have ESRD when kidney function has declined to the point where either a

kidney transplant or regular dialysis is required to survive. The large majority of ESRD

patients are treated with regular hemodialysis, in which waste products in the blood are

removed by an external dialysis machine. To perform dialysis, access to the circulatory

system is needed. The two most common methods of vascular access are temporary catheter

and arteriovenous fistula (AVF). Since placing an AVF is a surgical procedure, time is

required for the AVF to heal, or “mature,” before it can be used for dialysis. For this reason,

clinical guidelines recommend placing the AVF as much as six months before it is estimated

that the patient will develop ESRD [27]. Patients whose AVF is not mature at dialysis

initiation must dialyze with a temporary catheter until the AVF is ready. Whether or not a

patient’s AVF is mature at the time of dialysis initiation is a function of when it was placed

and how long it takes to mature. Because dialyzing with an AVF (compared to a catheter) is

associated with fewer complications and infections [28–31], as well as lower required doses

of typical drug therapies [32;33], AVFs are generally considered to provide superior care

and are preferred to catheters. AVF use is also thought to be associated with better first-year

survival [34;35]. Our goal was to investigate the magnitude of that association while

adjusting for measureable characteristics and accounting for unmeasured characteristics that

could lead to selection bias.

From the USRDS database, we identified 5,427 patients who met several criteria: (i) they

initiated dialysis at age 67 years or later (to allow for up to two years of Medicare coverage

before ESRD onset), (ii) they had continuous Part A and Part B Medicare coverage during

the observation period, (iii) their first type of renal replacement therapy was hemodialysis,

and (iv) they had an AVF placed before ESRD onset to ensure that all patients in the cohort

were deemed viable candidates for AVF. These patients were classified by whether or not

the AVF was mature and ready for use by the time they initiated dialysis, which is the

comparison of interest. Observable patient characteristics, including general disease burden

(identified from claims before ESRD onset), are displayed in Table 3. The two groups

appeared to be of similar age. Patients whose AVFs matured before dialysis initiation tended

to be more often men (their generally larger veins and arteries can affect the speed of

maturation) and to have lower prevalence of several diseases, including atherosclerotic heart

disease, congestive heart failure, cerebrovascular attack (stroke), chronic obstructive

pulmonary disease, dysrhythmia, and diabetes mellitus. When survival after dialysis

initiation was calculated, fewer patients in the mature AVF group died (17% vs. 26%), and

mean survival time was longer (174 days vs. 158 days, when censored at 365 days).

The instrumental variable chosen for this analysis represents the number of days before

starting hemodialysis that the patient first saw a nephrologist, as identified from Part B

claims during the two years before hemodialysis initiation. Clinically, the earlier a patient

sees a nephrologist, the earlier an AVF is likely to be placed, thereby increasing the chance

that it will mature by the time of dialysis initiation. At the same time, the timing of the first

nephrologist visit should have little direct influence on survival after dialysis begins, as not

being under a nephrologist’s care after dialysis initiation is extremely rare. While no formal
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test is available, the data appear to support the assumption that timing of first nephrologist

visit is unrelated to survival after dialysis initiation, as seen in Figure 2, suggesting that this

variable can serve as an instrument for maturity of AVF. For patients with no nephrologist

claims before dialysis initiation, the “days” variable is set to zero.

Because of space considerations, we do not show the results of the selection equations; they

are nearly identical for all models with a selection equation. We include all exogenous

variables and the instrumental variable in this equation. The instrumental variable, number

of days between first nephrologist visit and dialysis initiation, is parameterized as a

categorical variable in deciles. The effect of this instrument is strong (five of the nine

parameters have P < 0.01; one has P < 0.05) and nearly monotonic, with a longer

nephrologist relationship prior to dialysis initiation predicting higher probabilities of having

a mature AVF in place.

Table 4 contrasts the estimation of selected parameters1 using our proposed esSurv model

with estimates using the 2SRI and PS-weight method. Unfortunately, the PS-strat method,

with 135 parameters to estimate due to the stratification, would not converge. A Weibull

survival model in which the non-random treatment assignment is ignored (“Uncorrected”),

incorporating a lognormally distributed multiplicative frailty term, is shown for comparison.

We expect to see a monotonically increasing mortality as the duration of dialysis increases,

implying an expected shape parameter greater than 1, and indeed we obtain 95% confidence

intervals (not shown) for the shape parameter with a lower bound greater than 1 for all but

the PS-weight method.

We show AIC statistics at the bottom of Table 4 to assist in comparing model fit. These are

based on a pseudo log-likelihood for the PS-weight method, and we combine model

components when the equations are not jointly estimated to produce comparable measures

across methods. Consistent with the Monte Carlo results, we see little difference in fit

between the two consistent methods (esSurv and 2SRI).

The estimated treatment parameter from the esSurv model implies a hazard ratio associated

with treatment group of 0.197, indicating that the hazard rate for patients with mature AVFs

is about 80% lower than for patients with maturing AVFs at dialysis initiation, and 2SRI

gives a similar 0.1732 hazard ratio. But the estimated parameter from the PS-weight and the

Uncorrected survival model produce hazard ratios for treatment group of 0.703 and 0.630,

suggesting that patients with a mature AVF at dialysis initiation have only a 30%–37%

lower adjusted hazard rate during the first year of dialysis. This is a noticeable difference in

hazard ratio estimates for the treatment effect between consistent and inconsistent methods,

and would indicate that while the PS-weight and Uncorrected models correctly identify the

protective nature of a fully mature AVF, the benefit is dramatically underestimated. These

results suggest that the complex nature of a dialysis case includes many unobserved factors

affecting mortality, and that these factors are highly correlated with the treatment

1We exclude the geographic controls.
2The 2SRI bootstrapped standard error of the treatment coefficient is 38% larger than the standard error of the coefficient estimated by
the esSurv, similar to the relationship seen in the Monte Carlo simulations, supporting the hypothesis that precision is at least
marginally better in the esSurv estimation method.
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assignment. Indeed, we see a large estimated correlation of error terms (ρ̂ = 0.55) in the

esSurv results and an estimate of the residual’s parameter that is highly statistically

significant in the 2SRI model.

6. Conclusion

The issue of non-random treatment assignment appears frequently in observational health

care data. Given the importance of survival analysis in health research, proper handling of

the bias introduced by selection is an important part of evaluating these nonlinear models.

We provide examples, simulated and real, that demonstrate the danger of ignoring the

selection issue, or of extending common propensity score methods to this non-linear model

when the treatment assignment is endogenous. We provide a solution that closely mirrors

the parameter estimation of the consistent two-stage residual inclusion method, while

offering significant computational and interpretive advantages. Specifically, the esSurv

method enhances computational speed relative to 2SRI by eliminating the need for

bootstrapped errors, reducing average run times from more than 20 minutes per Monte Carlo

replication to 14 seconds per replication in our testing when N=1000. In addition, esSurv

explicitly estimates the correlation of unobservable factors contributing to both treatment

assignment and the outcome of interest, providing an interpretive advantage over the

residual parameter estimate in the 2SRI method. Finally, we find evidence of better

precision in the esSurv method, with 2SRI median standard errors of the estimated treatment

effect ranging from 7% to 11% larger than esSurv standard errors in Monte Carlo

simulations, and a 2SRI standard error of the estimated treatment effect that is 38% larger

than the esSurv standard error in our empirical example.

The application of our model is limited by the use of a fully parametric method that

produces a monotone hazard function. The other consistent method proposed, 2SRI, could

be applied to proportional hazard models that do not require estimation of the baseline

hazard. However, the Weibull hazard model is one of the most widely used parametric

models because of its great flexibility. Hazard rates can increase or decrease over time,

allowing us to model situations as diverse as the increasing mortality associated with general

aging, or the decreasing risk of recurrence of some cancers as the length of remission

increases.
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Figure 1.
Comparison of treatment parameter standard errors [se(γ̂)] in 100-replication Monte Carlo

experiment with N = 5000, α4 = 0.95 (ρ ≈ 0.50): esSurv vs. Bootstrapped 2SRI.
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Figure 2.
Comparison of time until death to days of nephrologist care prior to dialysis initiation.
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Table 1

Error in Treatment Parameter Estimation 100-Replication Monte Carlo Simulations by Strength of Correlation

(Endogeneity)

Median [inter-95% range] treatment parameter estimation error, by correlation scenario

ρ ~50% ρ ~25% None

Endogenous switching survival model

N=1000 0.12 [−0.42,0.77] 0.14 [−0.35,0.62] 0.13 [−0.47,0.65]

N=5000 −0.03 [−0.22,0.20] −0.07 [−0.25,0.18] −0.05 [−0.27,0.18]

N=10,000 0.01 [−0.20,0.22] −0.03 [−0.17,0.18] −0.05 [−0.17,0.15]

Two-stage residual inclusion

N=1000 0.14 [−0.42,0.87] 0.13 [−0.31,0.65] 0.10 [−0.41,0.67]

N=5000 −0.05 [−0.37,0.20] −0.03 [−0.32,0.16] −0.03 [−0.31,0.16]

N=10,000 −0.06 [−0.26,0.19] −0.05 [−0.22,0.16] −0.04 [−0.20,0.15]

Regression weighted by inverse probability (propensity score)

N=1000 1.30 [0.95,1.59] 0.69 [0.20,1.00] −0.04 [−0.48,0.44]

N=5000 1.25 [1.10,1.43] 0.61 [0.43,0.81] −0.01 [−0.21,0.18]

N=10,000 1.23 [1.12,1.33] 0.60 [0.46,0.75] 0.00 [−0.13,0.14]

Regression stratified by propensity score

N=1000 1.26 [0.91,1.52] 0.65 [0.18,1.01] −0.01 [−0.47,0.53]

N=5000 1.20 [1.07,1.32] 0.57 [0.43,0.77] −0.01 [−0.20,0.21]

N=10,000 1.20 [1.08,1.27] 0.59 [0.44,0.72] −0.01 [−0.12,0.15]

Weibull hazard with no endogeneity correction

N=1000 1.07 [0.83,1.33] 0.50 [0.23,0.76] 0.02 [−0.25,0.34]

N=5000 0.99 [0.87,1.08] 0.42 [0.29,0.54] −0.01 [−0.16,0.12]

N=10,000 1.00 [0.90,1.07] 0.44 [0.34,0.52] 0.00 [−0.04,0.03]
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Table 2

Error in Treatment Parameter Estimation 100-Replication Monte Carlo Simulations by Strength of

Instrumental Variable

Median [inter-95% range] treatment parameter estimation error, by strength of instrument (ρ ∼ 50%)

strong IV (baseline) medium IV weak IV

Endogenous switching survival model

N=1000 0.12 [−0.42,0.77] 0.58 [−0.71,2.68] 0.89 [−0.78,2.90]

N=5000 −0.03 [−0.22,0.20] 0.04 [−0.48,0.80] 0.30 [−0.53,1.62]

N=10000 0.01 [−0.20,0.22] 0.11 [−0.30,0.64] 0.20 [−0.32,1.01]

Two-stage residual inclusion

N=1000 0.14 [−0.42,0.87] 0.54 [−1.24,2.29] 0.88 [−1.89,3.49]

N=5000 −0.05 [−0.37,0.20] 0.05 [−0.93,0.96] 0.34 [−0.90,1.57]

N=10000 −0.06 [−0.26,0.19] −0.05 [−0.67,0.50] 0.04 [−0.84,0.74]

Regression weighted by inverse probability (propensity score)

N=1000 1.30 [0.95,1.59] 1.28 [1.00,1.53] 1.29 [1.00,1.54]

N=5000 1.25 [1.10,1.43] 1.21 [1.07,1.35] 1.22 [1.06,1.34]

N=10000 1.23 [1.12,1.33] 1.20 [1.11,1.29] 1.20 [1.11,1.28]

Regression stratified by propensity score

N=1000 1.26 [0.91,1.52] 1.25 [1.00,1.50] 1.25 [0.97,1.52]

N=5000 1.20 [1.07,1.32] 1.19 [1.06,1.29] 1.18 [1.04,1.30]

N=10000 1.20 [1.08,1.27] 1.18 [1.09,1.26] 1.18 [1.09,1.26]

Weibull hazard with no endogeneity correction

N=1000 1.07 [0.83,1.33] 1.22 [1.00,1.50] 1.23 [1.00,1.51]

N=5000 0.99 [0.87,1.08] 1.14 [1.02,1.24] 1.15 [1.03,1.27]

N=10000 1.00 [0.90,1.07] 1.15 [1.06,1.21] 1.15 [1.07,1.22]
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Table 3

Patient Characteristics, End-Stage Renal Disease Example

Arteriovenous Fistula

Mature Maturing

Total n 3,046 2,381

Age, yrs

 Mean 76.2 76.4

 Median 76 76

 67–74 1,291 (42+.4) 999 (42.0)

 75–84 1,443 (47.4) 1,135 (47.7)

 ≥ 85 312 (10.2) 247 (10.4)

Race

 White 2,485 (81.6) 1,864 (78.3)

 African American 424 (13.9) 436 (18.3)

 Other 137 (4.5) 81 (3.4)

Sex

 Men 1,951 (64.1) 1,321 (55.5)

 Women 1,095 (35.9) 1,060 (44.5)

Comorbid conditions

 Atherosclerotic heart disease 1,236 (40.6) 1,102 (46.3)

 Congestive heart failure 914 (30.0) 835 (35.1)

 Cerebrovascular attack (stroke) 385 (12.6) 344 (14.4)

 Peripheral vascular disease 740 (24.3) 594 (24.9)

 Other cardiac disease 680 (22.3) 558 (23.4)

 Chronic obstructive pulmonary disease 501 (16.4) 441 (18.5)

 Gastrointestinal disease 183 (6.0) 157 (6.6)

 Liver disease 38 (1.2) 22 (0.9)

 Dysrhythmia 733 (24.1) 637 (26.8)

 Cancer 401 (13.2) 299 (12.6)

 Diabetes 1,658 (54.4) 1,487 (62.5)

 Anemia 2,140 (70.3) 1,408 (59.1)

 Chronic kidney disease 2,663 (87.4) 1,775 (74.5)

 Hypertension 2,827 (92.8) 2,130 (89.5)

 Cognitive impairment 43 (1.4) 29 (1.2)

 Depression 134 (4.4) 117 (4.9)

 Wheelchair use 443 (14.5) 495 (20.8)

Instrumental variable*

 First nephrologist claim, mean 546.3 459.6

 First nephrologist claim, median 637 555

 < 14 days before dialysis initiation 242 (7.9) 241 (10.1)

Died within 1 yr of end-stage renal disease onset 518 (17.0) 612 (25.7)
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Arteriovenous Fistula

Mature Maturing

Mean time to death (patients who died) 174.4 158.5

Note: Unless otherwise indicated, values are n (%).

*
Number of days before starting hemodialysis that patient first saw a nephrologist.
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