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Peptide spectrum matching is the current gold standard
for protein identification via mass-spectrometry-based
proteomics. Peptide spectrum matching compares exper-
imental mass spectra against theoretical spectra gener-
ated from a protein sequence database to perform iden-
tification, but protein sequences not present in a database
cannot be identified unless their sequences are in part
conserved. The alternative approach, de novo sequenc-
ing, can make it possible to infer a peptide sequence
directly from a mass spectrum, but interpreting long lists
of peptide sequences resulting from large-scale experi-
ments is not trivial. With this as motivation, PepExplorer
was developed to use rigorous pattern recognition to as-
semble a list of homologue proteins using de novo se-
quencing data coupled to sequence alignment to allow
biological interpretation of the data. PepExplorer can read
the output of various widely adopted de novo sequencing
tools and converge to a list of proteins with a global
false-discovery rate. To this end, it employs a radial basis
function neural network that considers precursor charge
states, de novo sequencing scores, peptide lengths, and
alignment scores to select similar protein candidates,
from a target-decoy database, usually obtained from phy-
logenetically related species. Alignments are performed
using a modified Smith–Waterman algorithm tailored for
the task at hand. We verified the effectiveness of our
approach using a reference set of identifications gener-

ated by ProLuCID when searching for Pyrococcus furio-
sus mass spectra on the corresponding NCBI RefSeq
database. We then modified the sequence database by
swapping amino acids until ProLuCID was no longer ca-
pable of identifying any proteins. By searching the mass
spectra using PepExplorer on the modified database, we
were able to recover most of the identifications at a 1%
false-discovery rate. Finally, we employed PepExplorer to
disclose a comprehensive proteomic assessment of the
Bothrops jararaca plasma, a known biological source of
natural inhibitors of snake toxins. PepExplorer is inte-
grated into the PatternLab for Proteomics environment,
which makes available various tools for downstream data
analysis, including resources for quantitative and differ-
ential proteomics. Molecular & Cellular Proteomics 13:
10.1074/mcp.M113.037002, 2480–2489, 2014.

Very often, groundbreaking discoveries with a significant
impact on the biotechnological and biomedical fields have
emerged from studying “non-canonical” organisms. For ex-
ample, the study of Thermus aquaticus allowed us to ulti-
mately pave the way to modern molecular biology with the
characterization of that organism’s thermostable DNA po-
lymerase (1). The characterization of the green fluorescent
protein in Aequoria victoria led to a revolution in cellular
biology and to a Nobel Prize being awarded to Osamu
Shimomura, Martin Chalfie, and Roger Tsien. In Brazil, Ser-
gio Ferreira’s work on the venom of the Brazilian poisonous
snake Bothrops jararaca enabled the development of the
first angiotensin-converting enzyme inhibitor drug (Capto-
pril) for the treatment of hypertension (2).

In scenarios such as these, proteomics has the potential to
allow a better understanding of the complexity of biological
systems and the process of evolution than the study of the
genetic code alone. It enables the characterization of molecular
processes according to their protein content, facilitating new
discoveries. In proteomics, the most frequently used strategy
for protein identification is so-called peptide spectrum matching
(PSM),1 or the comparison of experimental mass spectra ob-
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tained by fragmenting peptides in a mass spectrometer to the-
oretical spectra generated from a sequence database. In gen-
eral, the identification process follows from the sequence
whose theoretical spectrum yields the highest matching score
according to some empirical or probabilistic function. Examples
of search engines adopting this strategy are SEQUEST (3),
X!Tandem (4), and Mascot (5).

Back in the 1990s, establishment of a cutoff score for
confident identification relied mostly on user experience; for
example, given a specific charge state, Washburn et al. es-
tablished cross-correlation and deltaCn cutoff values for
SEQUEST in order to allow the selection of a subset of con-
fident identifications from LCQ data. This has since been
termed “the Washburn criterion.” In what followed, target-
decoy databases were implemented to allow for more sophis-
ticated refinements in filtering the data (6). In 2007, Elias and
Gygi published a seminal paper on the target-decoy approach
to shotgun proteomics (7) that ultimately firmed this approach
as a standard and motivated the development of several
statistical filters capable of converging to a list of confident
identifications satisfying a user-specified false-discovery rate
(FDR) with significantly more sensitivity than the conservative
Washburn criterion. Such statistical filters include mixtures of
probabilities (8), quadratic discriminant analysis (9), semi-
supervised learning with support vector machines (10), and
Bayesian logic (11) using a semi-labeled decoy analysis to
account for overfitting (12). With so many advances, the PSM
workflow has become the gold standard, as it is very sensitive
and the least error-prone method when a database is avail-
able with the corresponding proteins. The latter factor limits
the application of PSM to those organisms for which accurate
sequence databases have been established. If a peptide’s
sequence is not contained within the sequence database, it
cannot be identified via the PSM method. However, efforts in
developing error-tolerant PSM approaches such as imple-
mented in Mascot have made it possible to handle minor
sequence modifications constrained by a simple set of rules.
Nevertheless, increasing the search space in the PSM ap-
proach leads to decreased sensitivity (13).

Even though the concept of computer-aided de novo se-
quencing predates that of PSM (14), advances in the quality of
mass spectrometry data and the power of computer hardware
have allowed it to reemerge at the heart of a highly active field.
De novo sequencing is unbiased insofar as it is not con-
strained by a sequence database, and it is therefore comple-
mentary to PSM. However, it has remained the most error
prone of the two methods (15). The challenges of de novo
sequencing notwithstanding, a few recent and notable im-
provements in computer-aided de novo analysis are PepNovo
(16), which combines graph theory with machine learning;
pNovo� (17), which is optimized for high-resolution HCD
data; NovoHMM (18), relying on hidden Markov models for
increased sensitivity; and PEAKS (19), which creates a spec-
trum graph model by performing dynamic programming on

the mass values regardless of the presence of an observed
fragment ion. By considering the complementarities of differ-
ent fragmentation strategies (e.g. collision induced dissocia-
tion, electron transfer dissociation (20), and electron capture
dissociation (21)), computational proteomics scientists have
also demonstrated significant advances in de novo accuracy
(22). In particular, the Bandeira group has continually pushed
the limits and redefined the notion of what de novo sequenc-
ing can do by introducing the spectral networks paradigm
(23–25). Briefly, this strategy can assemble mass spectra into
spectral pairs by joining overlapping spectra obtained from
sample aliquots digested by different enzymes. As a conse-
quence, it reduces noise and significantly improves protein
coverage. Its latest version also combines data from different
fragmentation techniques.

These algorithm developments have improved de novo se-
quencing, shifting the bottleneck to post-sequence process-
ing of data. This is because the output of de novo software is
a long list of highly similar full and partial peptide sequence
and scores. An initial attempt to overcome these limitations
consisted of a tag approach that was a hybrid of de novo
sequencing and database searching: short sequence tags
were derived from tandem mass spectra and used to search
a sequence database (26). In what followed, a modified ver-
sion based on the FASTA homology search tool was pro-
posed for homology-driven proteomics (27). This strategy was
implemented as part of the CIDentify tool, whose novelty was
to account, in the alignment score, for limitations of mass
spectrometry sequencing such as switching between leucine
and isoleucine or other combinations of amino acids having
the same mass. The next steps were taken mainly by the
Shevchenko group through the introduction of the MS-Blast
algorithm, which relies on a different set of scores and uses
the PAM30MS substitution matrix, itself tailored for mass-
spectrometry-based proteomics (28, 29). For a complete re-
view of de novo sequencing and homology searching, we
suggest Ref. 30.

The current de novo post-processing paradigm presents
several limitations that are similar to those of the early PSM
workflow. Output files generally consist of a peptide list with
corresponding scores, demanding an experienced user to
assess trustworthy identifications. If the same peptide is an-
alyzed by different mass spectrometers, different scores
might be generated, which makes data comparison between
different groups a challenging task. In a sense, problems are
similar to those encountered when adopting the early Wash-
burn criterion. Assembling protein information from a list of
peptides is not a simple task, and usually it is not performed
using state-of-the-art de novo tools. Although there are great
tools for doing this at the PSM level, there is still a lack of
similar tools for de novo sequencing.

To tackle the aforementioned shortcomings, and in line with
our strong interest in diversity-driven proteomics (29), we
present a methodology for post-processing de novo sequenc-
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ing data that allows inference of protein identification through
statistical mapping of de novo sequencing results to a protein
sequence database. Our approach begins with the use of
Gotoh’s version of the Smith–Waterman algorithm, based on
affine gap scoring (31) for increased scalability, to align de
novo sequences against those in a target-decoy database.
Then a radial basis function neural network (RBF-NN) is used
to rank results according to alignment score, de novo score,
precursor charge state, and peptide length. Finally, a heuristic
method is used to present protein identification results in a
user-friendly, interactive report. The resulting algorithm was
implemented as the software PepExplorer. In essence, its
goal is somewhat similar to that of post-processing tools such
as DTASelect (9), Percolator (10), and SEPro (11), but with an
extra layer of complexity inherent from de novo sequencing.
PepExplorer can handle the output of several widely adopted de
novo tools, such as PepNovo, pNovo�, and PEAKS, and ac-
cepts a generic format to enable result analysis from a broader
range of tools once results are run through simple parsers.
Similarly, the software accepts a series of database formats for
input analysis. These features are not found in other tools.
PepExplorer is freely available to the scientific community and is
provided with the necessary documentation.

The effectiveness of our methodology has been verified in
two distinct scenarios, the first a real but controlled experi-
ment and the other pertaining to comprehensive profiling of
the plasma components of Bothrops jararaca, a venomous
viper endemic to Brazil, southern Paraguay, and northern
Argentina. The first scenario’s purpose was to validate the
effectiveness of the tool in analyzing a published Pyrococcus
furiosus dataset (11). We note that this organism is recognized
by the proteomics community as well suited for benchmark-
ing, because it allows for the rigorous testing of identification
algorithms at the peptide and protein levels (32, 33). We
modified the P. furiosus sequence database in such a way
that no more peptides were identified via the PSM approach
or another widely adopted error-tolerant search tool, Mod-A
(34). We then found that we could recover protein identifica-
tions using our tool. The B. jararaca scenario has allowed us
to explore uncharted territory, as this organism has an incom-
plete sequence database and we were therefore required to
rely on those of orthologous organisms. In particular, B. jararaca
plasma was chosen because it is a main research model stud-
ied at the Laboratory of Toxinology (FIOCRUZ, Brazil), and
several natural inhibitors of snake toxins have already been
identified/characterized from this biological matrix (35–37).

MATERIALS AND METHODS

Bothrops jararaca Plasma Sample Preparation—B. jararaca plasma
was supplied to the Laboratory of Toxinology (FIOCRUZ, Brazil) dur-
ing the experimental procedures described in the research project,
approved by the Ethics Committee of the Butantan Institute (555/
2008), of the Biomedical Science Institute of the University of São
Paulo (138/2009). This project was also approved by the Brazilian
Institute for Environment and Renewable Natural Resources, a Bra-

zilian Ministry of the Environment’s enforcement agency (IBAMA,
License 01/2009). Protein concentration was determined via bicin-
choninic acid assay (38), and 40 �g were processed to complete
dryness via lyophilization. Next, 20 �l of a 0.25% (m/v) RapiGest SF
(Waters) in 50 mM ammonium bicarbonate solution were added to
solubilize the proteins, which were then heated for 5 min at 100 °C.
Disulfide bridges were reduced with 20 mM dithiothreitol for 30 min at
60 °C and subjected to cysteine alkylation with 68 mM iodoacetamide
for 15 min at room temperature in the dark. Four microliters of a
0.2-�g/�l (in 50 mM acetic acid) porcine trypsin solution (catalog
number V511, Promega) were added, and incubation proceeded for
22.5 h at 37 °C followed by 45 min at 56 °C. The reaction was stopped
by the addition of 2.4 �l of 5% (v/v) trifluoroacetic acid in water. For
RapiGest removal, samples were incubated for 45 min at 37 °C and
centrifuged at 16,000 � g for 10 min at room temperature. The
supernatant was collected and desalted/concentrated with in-house-
made columns packed with Poros R2 resin (Invitrogen), eluted with
60% acetonitrile in 0.1% (v/v) trifluoroacetic acid, and completely
dried using a SpeedVac (Thermo Scientific) vacuum centrifuge con-
centrator. Samples were resuspended in 30 �l of 1% (v/v) formic acid
and submitted to a 10-min ultrasonic bath cycle before analysis via
nano-LC-MS/MS.

Mass Spectrometry Analysis—The sample was analyzed in techni-
cal triplicate via LC-MS/MS. Tryptic digests were separated via re-
versed-phase capillary liquid chromatography coupled to nano-elec-
trospray high-resolution mass spectrometry for identification. For
each sample, 2 �l of desalted tryptic peptide digest were initially
applied to a 2-cm-long (100-�m internal diameter) trap column
packed with 5-�m, 200 Å Magic C18 AQ matrix (Michrom Biore-
sources) and then separated on a 30-cm-long (75-�m internal diam-
eter) column that was packed with the same matrix, directly on a
self-pack 15-�m PicoFrit empty column (New Objective). Chromatog-
raphy was carried out on an EASY-nLC II instrument (Thermo Scien-
tific). Samples were loaded onto the trap column at 2000 nL/min while
chromatographic separation occurred at 200 nL/min. Mobile phase A
consisted of 0.1% (v/v) formic acid in water, and mobile phase B
consisted of 0.1% (v/v) formic acid in acetonitrile. Gradient conditions
were as follows: 2% to 40% B during 162 min; up to 80% B in 4 min;
and maintenance at this concentration for 2 min. Eluted peptides
were directly introduced to the LTQ XL/Orbitrap mass spectrometer
(Thermo, San Jose, CA) for analysis. The source voltage was set at
1.9 kV, the capillary temperature at 200 °C, and the tube lens voltage
at 100 V. Fourier transform MS full and multi-stage MS automatic gain
control target values were set at 500,000 and 200,000, respectively.
MS1 spectra were acquired on the Orbitrap analyzer (300 to 1700
m/z) at a 60,000 resolution (for m/z 445.1200). We acquired tandem
mass spectra from the 10 most intense ions by means of HCD
fragmentation (minimum signal of 10,000 required; isolation width of
2.0; normalized collision energy of 45.0; and activation time of 30 s)
followed by MS2 acquisition on the Orbitrap analyzer at 15,000 res-
olution. The dynamic exclusion option was enabled and set with the
following values for each parameter: repeat count � 1; repeat dura-
tion � 30 s; exclusion list size � 500; exclusion duration � 45 s; and
exclusion mass width � 10 ppm. Charge state rejection was enabled
for unassigned charges and for those equal to 1.

Preparation of Sequence Databases Used for Similarity-driven
Identification and PSM—Reference sequences for P. furiosus were
obtained from UniProt, and those for Reptilia together with Amphibia
are from the NCBI RefSeq; all were downloaded in June 2013. The
sequences obtained from the Reptilia and Amphibia databases were
merged into a single structure and then joined by 127 sequences of
common mass spectrometry contaminants, as well as, for each da-
tabase entry, a reversed version of the corresponding sequence
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(a decoy sequence). The final P. furiosus and Reptilia plus Amphibia
databases had 4347 and 302,287 sequences, respectively.

Three P. furiosus proof-of-concept databases were generated by
repeatedly adding “mutations” and insertions to the sequence
database. These databases are referenced as PFU_Gap25_
Substitution15, PFU_Gap20_Substitution10, and PFU_Gap15_
Substitution8. In the PFU_Gap25_Substitution15 database, for ex-
ample, an amino acid was inserted at every 25th position, and every
15th amino acid was replaced by some other, randomly chosen
amino acid. These databases provide increasing distance from the
original database and thereby presented the algorithms with different
levels of difficulty. As no new proteins were added to obtain any of
them, each of these databases has the same number of sequences as
the initial P. furiosus database. Our goal has been to modify the native
sequences from an organism’s database to simulate the appearance
of different, but phylogenetically close, organisms that would render
PSM useless.

Peptide Spectrum Matches and Quality Assessment—The mass
spectra were exported to the MS2 format (39) from the RAW files
using PatternLab’s RawReader module. The ProLuCID (40) search
engine was used to compare experimentally obtained spectra against
theoretical spectra generated from a sequence database and select
the most similar. Briefly, the search was limited to fully tryptic peptide
candidates, as we imposed only carbamidomethylation as a fixed
modification. The search engine accepted peptide candidates within
a 50-ppm tolerance from the measured precursor m/z and 550 ppm
for the MS2, and we used XCorr and ZScore as the primary and
secondary search engine scores, respectively.

The validity of the peptide spectrum matches was assessed using
the Search Engine Processor (SEPro) (11). Identifications were
grouped by charge state (��2 and ��2), resulting in two distinct
subgroups. For each result, the ProLuCID XCorr, DeltaCN, and
ZScore values were used to generate a Bayesian discriminator. The
identifications were sorted in nondecreasing order according to the
discriminator score. A cutoff score was established to accept an FDR
of 1% based on the number of labeled decoys. This procedure was
independently performed on each data subset, resulting in a false-
positive rate that was independent of charge state. Additionally, an
amino acid sequence at least six residues long was required. Results
were post-processed to only accept matches with less than 5 ppm
and proteins supported by at least two spectral counts. This last filter
led to a 0% FDR in the search results.

De Novo Sequencing—De novo sequencing was performed using
PEAKS Studio 6.0 (Bioinformatics Solutions Inc., ON, Canada). The
parent mass error tolerance was 7 ppm, and the fragment mass error
tolerance was 0.05 Da. Carbamidomethylation of cysteine was con-
sidered as a fixed modification. Acceptable results required an aver-
age local confidence score of at least 70% and a total local confi-
dence score of at least 5 and were exported to a CSV file using the
export option built into the software.

Blind Post-translational Modification Search with Mod-A—Mod-A
was used to search the original and modified versions of the PFU
dataset using its automatic precursor mass detection mode and
allowing for arbitrary modifications in the peptides. The parameter
files used by Mod-A are included in the supplemental material.

PepExplorer Algorithm—The PepExplorer algorithm was coded in
C# 4.5. It has a graphical user interface but can also be executed from
the command prompt, which enables it to work in cluster environ-
ments. The algorithm’s workflow can be summarized in four steps: de
novo result parsing, sequence alignment, result filtering, and result
presentation (Fig. 1). Below we detail each of these steps. All param-
eters can be adjusted using the graphical user interface (Fig. 2).

De Novo Result Parsing—PepExplorer currently contains parsers
for three widely adopted de novo sequencing algorithms: PepNovo,

pNovo�, and Peaks. PepExplorer treats the de novo algorithm with
an abstraction layer that allows for the inclusion of new parsers upon
request. The software also allows one to analyze a list of peptides by
copying and pasting them in the corresponding text box found in the
de novo output box (Fig. 2). However, in this scenario its neural
network runs in a simplified mode and does not consider precursor
charge states, scan numbers, or de novo score quality.

Sequence Alignment—PepExplorer relies on Gotoh’s version of the
Smith–Waterman algorithm (31), built into its core for aligning peptide
sequences against a target-decoy sequence database specified by
the user. The user can specify several alignment parameters, such as
the open gap and extend gap penalties, the number of de novo
sequence results to be considered per spectrum, and a substitution
matrix of choice. For this study these values were 13, 5, 1, and the
PAM30MS matrix, respectively.

These default open gap and extend gap parameters resulted from
a grid search also made available in PepExplorer through the “Ad-
vanced Analysis” menu. This enables the algorithm to explore the
landscape of combinations of these two parameters within user-
predefined bounds and report the combination yielding the greatest
number of alignments under a user-defined FDR. For this work, we
performed the grid search in the PFU dataset allowing both the open
gap and the extend gap penalties to vary from 2 to 30. The grid search
results are available as part of the online supplementary files in the
software’s website.

Result Filtering with the RBF-NN—Each obtained sequence align-
ment is internally treated by PepExplorer as an alignment object
containing the following properties: peptide length, de novo score,
precursor charge, number of gaps, identifier, similarity, and alignment
scores. All these parameters are used for result quality assessment,
together with complementary information relevant to report assembly,
such as scan number, raw file name, and details on the sequence
alignment.

As a first step, these alignment objects are separated into two lists:
those originating from peptide ions with charge state less than or
equal to 2, and those from peptide ions with charge states greater

FIG. 1. A de novo tool is used to generate candidate sequences
from mass spectra. The output from the de novo tool, together with a
target-decoy database, serves as input to PepExplorer. PepExplorer
uses the Smith–Waterman algorithm to align the de novo sequences
against the target-decoy database (1). An RBF neural network is em-
ployed to rank the de novo alignments according to a confidence score
that takes into account the de novo sequencing score, the alignment
score, and the number of amino acids contained in the peptide (2).
Finally, a dynamic report is generated (3).
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than 2. Each of these lists is handled by a different RBF-NN. This
enables convergence to a list of alignment objects satisfying an FDR
that is independent of precursor charge state.

Given a list of alignment objects, the RBF-NN is based on defining
six clusters; to this end, PepExplorer relies on the k-means�� algo-
rithm (41) applied to the normalized values (i.e. between 0 and 1) of
the alignment score, the de novo score, and the peptide length of
each alignment object. We note that k-means�� employs a “careful
seeding” to address the NP-hard problem of minimizing the average
squared distance between points in the same cluster. The “careful
seeding” is performed by choosing the first cluster center randomly
from among the data points to be clustered. Subsequent cluster
centers are chosen from locations coinciding with the remaining data
points with probability proportional to each point’s squared distance
to the closest existing center. The algorithm then continues with the
established k-means optimization procedure. The initial “careful
seeding” is justified by the resultant faster convergence and better
solutions. PepExplorer runs k-means�� 50 times in search of the
best solution.

The RBF-NN is then trained to capture the nonlinear relationship
between target and decoy alignment objects. The network we used was
a single-hidden-layer feed-forward neural network whose three input
nodes forwarded the input signal to the hidden nodes directly, with no
weights. The kernel transfer function used in the jth hidden node was

�j�x� � exp��Px � �jP2

2�j
2 � (Eq. 1)

where �j is the jth cluster center determined by k-means�� and �j is
a width parameter given by the smallest Euclidean distance between
any two cluster centers. The latter is used to better capture the
localness and thus the smoothness and continuity of the fitted func-
tion. The connections from the six hidden nodes to the single output
node are weighted, and the value of the output node is given by

y�x� � �
j�1

6

wj�j�x�, (Eq. 2)

where wj is the connection weight between the jth hidden node and
the output node. During training, y(x) is either �1 or �1, depending
respectively on whether the alignment object in question corresponds
to a target sequence or a decoy sequence (alignment objects map-

ping to sections of sequences found in both target and decoy se-
quences are not considered). The weights of the RBF-NN equations
are determined by means of linear regression using a least-squares
objective function. All identifications are sorted in a nondecreasing
order according to the classification function. Finally, a cutoff score
can be established to achieve an FDR based on the decoy
identifications.

Result Presentation—Results are presented in the form of a dy-
namic, interactive report that allows the user to sort them according
to a criterion of choice and interact with the report by setting param-
eters of interest. The report can quickly adjust to a user-specified FDR
or provide a list of maximum-parsimony alignments, as all alignments
are stored to enable the algorithm to quickly converge to various
settings. Among the threshold parameters we highlight the global
FDR, the minimum alignment count (the closest to spectral count), the
maximum alignment parsimony, the use of distinct RBF-NN for pre-
cursors of different charge states, and the minimum identifier. The
report is provided as two interactive panels, the upper one being
related to protein information and the lower to identification data. The
upper panel provides information such as protein identifier, protein
length, coverage percentage, sequence count, alignment count, and
description. When a protein is selected, detailed information is made
available in the lower panel of all alignments that mapped to it such as
the scan number, file name, de novo score, precursor charge state,
identifier, similarity, number of gaps, alignment score, sequence
found in the database, and sequence provided by the de novo se-
quencing tool (Fig. 3). When a row of interest is selected in this lower
panel, a new window displaying the sequence alignment is made
available. In this window, when a row is selected in the upper panel
with the protein information, a graphical coverage report is displayed
(Fig. 4). This report is integrated with the cloud service of PatternLab
for Proteomics (42), enabling the use of the Infer Domains function to
instantly access predicted on-demand protein domains inferred with
HMMER3 over Pfam-A (43).

RESULTS

PFU Proof of Concept—A Venn diagram showing the over-
lap of the protein identifications from ProLuCID/SEPro,
Mod-A, and PepExplorer on the unmodified PFU database is
found in Fig. 5. We recall that only proteins having two or more
spectral counts were considered.

FIG. 2. The PepExplorer graphical user interface.
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We further manually examined the non-decoy proteins
uniquely identified by PepExplorer; because we individually
analyzed each case, based on spectral quality, alignment
scores, and coverage, we feel comfortable in considering
them as correctly identified, even though they were not found
in our gold-standard search, ProLuCID.

The results of the application of these tools to the modified
versions of the PFU dataset are discriminated in Table I.

All results are made available as part of the supplemental
material or at the PepExplorer website.

Bothrops jararaca Plasma Proteomic Assessment—Pep-
Explorer generated 3862 alignments (1% FDR), correspond-
ing to 1333 peptides mapping to 199 proteins arranged into
86 protein groups. The ProLuCID/SEPro pipeline identified
349 spectra corresponding to 83 peptides mapping to 17
proteins arranged into 12 protein groups (0% FDR). All pro-
tein groups identified by ProLuCID were present in the
PepExplorer results. Moreover, all but five proteins identified
by ProLuCID had their identifiers contained in the PepExplorer
results. These five remaining identifications shared peptides
or had at least 80% identity with one protein provided by
PepExplorer. The detailed lists of identifications, SEPro
files, and PepExplorer files are provided in the supplemental
material.

A 100% overlap between our similarity-driven approach
and a PSM approach might not occur because of the conver-
gence strategy adopted by PepExplorer, as it will opt for
proteins having greater numbers of alignment mappings to

converge to a maximum-parsimony list. When we compared
the average sequence coverages obtained for the same pro-
teins identified by the PepExplorer and PSM approaches, we
found an approximately 64% increase with the former ap-
proach (supplemental Table S1).

Recently, De Morais-Zani and co-workers (44) analyzed the
plasma composition of juvenile and adult B. jararaca snakes
seeking ontogenetic variability. They used an experimental
strategy consisting of two-dimensional electrophoresis sepa-
ration followed by mass spectrometry analysis and protein
identification by PSM, using MASCOT as the search engine.
The authors were able to report eight plasma protein groups,
with one of them possibly due to sample contamination during
collection (�-actin). With the exception of transferrin, all
plasma proteins reported in that study were also detected in
our PSM approach (ProLuCID/SEPro); furthermore, we were
also able to identify other proteins such as fibronectin 1,
	-2-macroglobulin, apolipoprotein B100, fibrinogen � chain,
and small serum protein (supplemental Table S1). One pos-
sible explanation for our extended list of PSM identifications
might be our experimental approach (shotgun proteomics) as
opposed to theirs (two-dimensional electrophoresis).

Finally, when we compared the PepExplorer results (for
proteins displaying a sequence count greater than two) we
were able to identify all the plasma protein families mentioned
above and additional ones, namely, 
 phospholipase inhibitor
type IV, plasminogen, ceruplasmin, IgG Fc-binding protein-
like, complement C4-B-like, inter-	-trypsin inhibitor heavy

FIG. 3. Graphical user interface of the results browser. The results browser is composed of two panels. The upper panel displays
information related to protein identification. When the user clicks on a protein of interest, further details on the peptides and their corresponding
alignments are displayed in the lower panel.
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chains H4- and H3-like, Ig � light chain variable region, cal-
nexin, multiple EGF-like domains protein 6, collagen 	-1(XXIV)
chain, kininogen-1, anionic trypsin-like, fibrinogen 	 chain-
like, Ig 
-1 chain C region, and heparin cofactor 2 (supple-
mental Table S1). Supplemental Fig. S1 exemplifies peptide
identifications provided by PepExplorer that were missed in
the PSM approach.

DISCUSSION

Error-tolerant, similarity-driven tools have as an ultimate
goal the listing of “true” identifications. However, defining
what it means for an identification to be true is far from trivial,

so in general one seeks to define trueness based on how the
sequences in question differ according to some measure
relating to the evolutionary distance between them. Among
the first successful attempts at quantifying an evolutionary
distance, we highlight the point accepted mutation (PAM)
divergence, defined for two given sequences as the average
number of accepted point mutations per 100 amino acids
required in order to convert one sequence into the other
without any insertions or deletions (45). The PAM matrices
are substitution matrices that summarize an expected evo-
lutionary change at the amino-acid level through log-odds
substitution ratios. Theoretically, this approach is designed

FIG. 4. Example of report provided by PepExplorer for each identified protein. A, the graphical report of the protein sequence coverage
shows the extension of the area covered by predicted peptides. B, the result from the domain inferred by the cloud service running HMMER3
over Pfam-A on the fly is shown.
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to compare sequences that are within a known evolutionary
PAM divergence in evolution. Conversely, it is common ex-
perience that PAM matrices are, in general, very effective in
finding “true alignments” that reflect biological phenomena
even though PAM divergences do not always correspond to
true evolutionary distances. In the experiment at hand, we
chose one of the so-called low-order PAM matrices (e.g.
PAM30MS), which theoretically should favor “closer” se-
quences and therefore such true alignments. Future versions
and tools should incorporate strategies for automatically se-
lecting substitution matrices tailored for the problem at hand.
This could ultimately help in determining a subset of se-
quences for maximizing the sensitivity of the algorithm. We
argue that the current version of PepExplorer helps by show-
ing which peptides (and ultimately proteins) can be taken into
consideration confidently enough. However, selecting an ad-
equate substitution matrix remains an issue for the user’s
careful consideration.

The results provided herein can be used to compare three
paradigms for performing spectral identification: PSM, an
error-tolerant/blind post-translational modification approach,
and a similarity-driven approach. The strategies are shown to

be complementary, each having advantages and disadvan-
tages. For example, the PSM approach was found to be the
most sensitive one on the PFU dataset. This happened be-
cause we were dealing with a model organism, and thus fully
(and tightly) relying on the restrictions provided in the se-
quence database would yield the best sensitivity. However, its
performance rapidly degraded as more distractions and mod-
ifications were inserted into the database. Although Mod-A
did not outperform PSM on the original PFU database, it was
able to retain significantly more identifications as more dis-
tractions were inserted in the database. Mod-A most likely did
not outperform the PSM approach on the original PFU dataset
because the latter takes into account many more possibilities,
resulting in a larger search space and sacrificing sensitivity
(13). However, it would not be surprising if Mod-A outper-
formed PSM with higher organisms, as it will tolerate amino
acid substitutions and unanticipated post-translational mod-
ifications. Indeed, taking into account multiple post-transla-
tional modifications can also quickly degrade the perform-
ance of de novo tools, and for this reason Mod-A will always
provide results that are complementary to those of
PepExplorer. Finally, PepExplorer presented the least sensi-
tive results on the original PFU dataset, as de novo ap-
proaches are know to be error prone. However, the alignment
paradigm is able to effectively retain the results as distractions
are included in the database.

Finally, we would like to point out some potential applica-
tions of PepExplorer. Our algorithm is used to pinpoint a
subset of de novo results that are similar to the database at
hand. Yet there can be several de novo results, having a very
high de novo sequencing score, that are not included in the
PepExplorer output. These results should be given special
attention: what PepExplorer discards could actually turn out
to be truly novel molecules, given the high confidence of the
de novo results.

CONCLUDNG REMARKS

PepExplorer is recommended for large-scale shotgun pro-
teomic experiments, that is, those in which a considerable
number of spectra are generated, as in the datasets pre-
sented. Its use is not recommended for analyzing small col-
lections of spectra such as those obtained when analyzing a
two-dimensional gel spot. In such cases MS-BLAST (28)
should be used instead.

FIG. 5. A Venn diagram comparing the protein identification
overlap of ProLuCID, Mod-A, and PepExplorer in the PFU dataset
using the unmodified database.

TABLE I
Performance of ProLuCID, Mod-A, and PepExplorer on the four PFU datasets. The first number represents the number of proteins having at

least two spectral counts identified under a 1% FDR. The number in parentheses is the average sequence coverage

Number of proteins (Average Coverage)

PFU PFU_Gap_25_Substitution_15 PFU_Gap_20_Substitution_10 PFU_Gap_15_Substitution_8

ProLuCID 585 (0.16) 45 (0.04) 7 (0.04) 0
Mod-A 499 (0.16) 63 (0.06) 45 (0.05) 0
PepExplorer 311 (0.17) 190 (0.17) 143 (0.17) 102 (0.17)
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A key realization brought about by modern biotechnology
has been that underneath the myriad unknown organisms lies
great potential (46). Current strategies inspired by this real-
ization include exploring extreme biomes for so-called ex-
tremophiles, a peculiar class of organisms that are generally
responsible for the biosynthesis of molecular components
useful for pharmaceutical or industrial applications. Perhaps
one of the best examples has been the discovery of Thermus
aquaticus and its heat-resistant polymerases, elected by Sci-
ence in 1989 as the “molecules of the year” (47) and which
have since aided in the development of biotechnology tools
and ultimately facilitated the engineering of more effective
drugs. The molecular characterization of venoms has also
resulted in the engineering of new drugs (48). In conclusion,
the literature is full of examples demonstrating the vast rich-
ness of biomolecular components and drug candidates that
are naturally produced by different organisms already existing
in our fauna and flora.

Recent advances in proteomic technologies are signifi-
cantly impacting similarity-driven proteomics and, conse-
quently, the exploration of novel organisms. Recently, Coon
and coworkers benchmarked a new hybrid mass spectrome-
ter, the Orbitrap Fusion (Thermo). The authors mention events
in which they identified up to 19 sequences within less than a
second, enabling them to achieve 90% coverage of the yeast
proteome in one hour (49). Through this, the authors have
raised the bar, in terms of the number of proteins identified
per minute, to 70. High scanning rates coupled with ever-
increasing resolving power are ingredients to boost the per-
formance of de novo sequencing algorithms. As the general
quality of predicted peptides is increasing, we foresee de
novo sequencing playing a key role in the efficient handling of
data from organisms with no available genomic information.

The field of genomics is also constantly going through
significant advances. For example, next-generation sequenc-
ers are enabling the single-cell transcriptome (50) and per-
sonal genomics (51). Indeed, the coupling of “omics” sciences
such as proteomics and metabolomics with next-generation
sequencers will pave the way to true systems biology ap-
proaches, as these strategies are complementary to each
other. The ever-growing amount of data on sequenced organ-
isms, powered by next-generation sequencers, adds to sim-
ilarity-driven approaches, as even more organisms will have
their genomic information available. However, instrument
time, expertise in data analysis, and financial resources are
current bottlenecks for many groups.

Here we described a new methodology for dealing with de
novo sequencing approaches, taking into account rigorous
statistical criteria. We clearly demonstrated its efficiency in a
controlled but real experiment with the PFU modified data-
base and then presented the most comprehensive proteomic
profile of B. jararaca plasma. Efforts such as the present work
are necessary, as they expand the possibilities of what can be
achieved in proteomics and in the study of organism biology.

In the near future we plan to automate the integration of data
between different strategies like PSM and de novo, aiming at
a wider perspective for mass-spectral analyses.

Availability of PepExplorer, the Raw Data, and Results—
PepExplorer and supplementary files, including the B. jararaca
raw data and all the results described in this work, are made
freely available for academic purposes at our website. In order
to view the full PSM results, installation of SEPro is required.
PepExplorer is required for viewing results.
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