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Abstract

Time domain fluorescence molecular tomography (TD-FMT) provides a unique dataset for

enhanced quantification and spatial resolution. The time-gate dataset can be divided into two

temporal groups around the maximum counts gate, which are early gates and late gates. It is well

established that early gates allow for improved spatial resolution and late gates are essential for

fluorophore unmixing and concentration quantification. However, the inverse problem of FMT is

ill-posed and typically underdetermined, which makes image reconstruction highly susceptible to

data noise. More specifically, photon counts are inherently very low at early gates due to high

absorption and scattering of tissue, resulting in a low signal-to-noise ratio and unstable

reconstructions. In this work, an Lp regularization-based reconstruction algorithm was developed

and tested with our wide-field mesh-based Monte Carlo simulation strategy. We compared the

early time-gate reconstructions obtained with the different p (p ∈ {1/16, 1/8, 1/4, 1/3, 1/2, 1, 2})

from a synthetic murine model simulating the fluorophore uptake in the kidneys and preclinical

data. The results from a 3D mouse atlas and a mouse experiment show that our L1/4 regularization

methods give the best performance for early time gates reconstructions.

Fluorescence molecular tomography (FMT) is a promising optical imaging modality that

enables 3D quantitative determination of fluorophore distributions in small animals [1,2].

The most common techniques for FMT are based on continuous wave (CW) excitation,

frequency domain (FD) excitation, and time domain (TD) excitation [3]. CW systems, which

represent the vast majority of systems employed in FMT, are easy to implement

experimentally but do not allow sensing fluorescence lifetimes. Conversely, FD and TD

measurements offer the potential of lifetime quantification and discrimination for

multiplexed fluorescence reconstructions. However, FD measurements are restricted to the

limited number of modulation frequencies that can be acquired. On the other hand, a single

TD measurement provides all the modulation frequencies via the Fourier transform. It also

brings the CW information by integrating all temporal information. TD measurements can

directly quantify the intrinsic fluorophore lifetime by fitting acquired fluorescence time
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curves to an exponential decay model. As a result, TD measurements provide the most

comprehensive information that allows separating multiple markers based on lifetime

contrast and offers enhanced quantification and spatial resolution compared to CW/FD

measurements [4–6].

For optical tomography, the time-gate (TG) data type derived from temporal point spread

function (TPSF) has been used for image reconstruction in functional optical tomography

[7] and FMT [8–10]. The TG dataset can be divided into two groups around the maximum

counts TG, which are early TGs (the rising portion of TPSFs) and late TGs (the decaying

portion of TPSFs) [6]. The photons collected at early TGs are less affected by the scattering

effect compared to the bulk of diffused photons collected. As scattering is inevitably

associated with blurring and loss of resolution, FMT based on early TGs has been proposed

as an attractive strategy to improve spatial resolution [11,12]. However, photon counts are

inherently very low at early gates since the measurement at early TGs rejects more than 90%

of all the photons transmitted through the tissue. Hence, reconstruction strategies harnessing

early TGs are highly susceptible to the unavoidable noise and numerical errors [13], which

leads to reduced accuracy and sensitivity. Moreover, the inverse problem of FMT is ill-

posed and typically underdetermined. These factors make reconstruction-based early time

gates difficult and lead to unstable reconstructions with large image artifacts.

Regularization methods have been devised to mitigate ill-posed and underdetermined

inverse problems. The most common regularization technique employed in optical

tomography is the L2 regularization [14,15], which is easy to implement and provides robust

reconstructions. However, the method over-smoothes the reconstructed images and artifacts

surrounding the expected target when the inverse problem is highly ill-posed. Another class

of approaches is to use compressive sensing regularization techniques based on sparsity

constraint.

Sparsity regularizations, such as L1 and Lp regularizations, have been applied to diffuse

optical tomography and demonstrated to provide better performance than L2 regularization

in terms of resolution and contrast recovery [16–19]. However, these approaches have not

yet been applied to the TG data type. As early TGs improve resolution, and hence increase

sparsity in the image space, Lp regularization is an excellent choice for improved

reconstructions. In this work, we apply Lp regularization, with p ∈ {1/16, 1/8, 1/4, 1/3, 1/2,

1, 2}, for early TGs FMT, and validate the reconstruction performance on a synthetic murine

model and preclinical experimental data cross-validated with microCT.

We employed a wide-field mesh-based time-resolved Monte Carlo (mMC) light propagation

model to compute early gate Jacobians for 3-D reconstruction of the fluorescence contrast

[20]. The time-gated Jacobians were computed using the forward-adjoint MC method for

computational efficiency [21]. A linear relationship between the measured fluorescence b at

each detector position for each illumination source and the unknown effective quantum yield

x of the fluorophore can be obtained as

(1)
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where A is an m-by-n Jacobian matrix that establishes the relationship between the

measurements and the unknowns. Compressive sensing based on the Lp (0 < p ≤ 1) norm is

used to solve the following optimization problem:

(2)

and λ is a regularization parameter. In order to solve the optimization problem expressed in

Eq. (2), we employ the reweighted Lp method expressed in [22] and reformulate it as (when

0 < p < 1)

(3)

where ε is a small positive number to avoid any components of x being zero. ε was set to

10−10. Therefore, we can convert the nonconvex minimization problem into an iterative

convex minimization problem in Eq. (3). In our case, that is, at the kth iteration we solve

(4)

where λ(0) is chosen from L-curve analysis, which is a plot of the Lp norm of the regularized

solution (‖x‖p) versus the Euclidean norm of the corresponding residual (‖Ax − b‖2) [Fig.

1(a)]. By applying the iterative shrinkage-thresholding algorithm (detailed discussion can be

found in [23]) to the minimization problem of Eq. (4)), we can derive the analytical solution

as follows:

(5)

where the function “shrink” is defined as shrink(z, α) = max{z − α, 0} · sgn(z), and μ is a

sufficiently small step size. μ is set to 0.0001. This approach only involves matrix-vector

multiplications and component-wise shrinkage operations at each iteration. Therefore, it is

highly computationally efficient. For p = 1, the iterative shrinkage-thresholding algorithm

[23] was directly applied to the optimization problem. For comparison, the Pseudoinverse

Tikhonov regularization method (L2 norm) was also used in this work. The iteration number

is 20,000 for L2 and all Lp (0 < p ≤ 1) norms in numerical simulation, and 1000 for mouse

experiment.

To mimic a preclinical tomographic scenario, the Digimouse mesh model was employed

with 4198 nodes and 22,907 tetrahedron elements. The optical properties were set to μa =

0.3 cm−1, , g = 0.9, and n = 1.37. The time profiles were recorded with a 300 ps

gate width and 20 ps time shift between the gates to replicate the typical dataset acquired by

our wide-field time-domain fluorescence imaging system [24]. 64 sliding half-space

illumination patterns with 64 point detectors were simulated within the abdomen section (x,

50–70 mm; y, 8.5–28.5 mm; 400 pixels for each pattern). The detectors were evenly spanned
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over the region of interest with a 2.857 mm separation. A 5% rising gate (early gate) was

selected for reconstruction. Gaussian noise was added to the simulated measurement with a

signal-to-noise ratio of SNR = 10 dB, which is more challenging than the one customarily

employed in the field [12]. We simulated two typical scenarios in preclinical imaging:

organ-level imaging (kidneys) and probe uptake in small regions (3 mm diameter inclusions

located at the center of each kidney). The objects were labeled with fluorescent markers

(effective quantum yield 1, τ = 0.8 ns). Both cases represent different levels of sparsity in

image space and, hence, allow for assessing sparsity regularization over the typical imaging

scale encountered in FMT. For this study, we investigated all p ∈ {1/16, 1/8, 1/4, 1/3, 1/2,

1} as well as L2 norm.

We employed four metrics to objectively assess the reconstructions quality, including root

mean square error (RMSE), contrast-to-noise ratio (CNR), volume error (VE), and

localization error (LE). First, the RMSE is a measure of the difference between

reconstructed and expected values, defined as

(6)

where K denotes the total number of nodes. Xrecon(i) is the reconstruction value on the ith

node and Xtrue-shift(i) is the shifted ground truth with the same 3-D centroid to Xrecon(i).

Second, the CNR is a measure of image quality, indicating whether the reconstructed results

can be distinguished from the background. To calculate CNR, two regions, which are the

nodes of interest (NOI) and nodes of background (NOB), were derived from the

reconstructed image. NOI is defined by the location and size of the shifted ground truth.

NOB is defined by the remaining nodes of the shifted ground truth. The CNR can be

calculated by

(7)

where  and  are the mean reconstructed values in NOI and NOB. WNOI and

WNOB are the number of the nodes in NOI and NOB, respectively. σNOI and σNOB are the

standard deviations in NOI and NOB.

Third, the VE is defined as the difference of expected and reconstructed volume divided by

the volume of the ground truth, and LE is the Euclidean distance between the 3D centroid of

the reconstructed object and the expected object. In general, a high-quality reconstructed

image possesses RMSE, VE and LE values close to 0 and a large CNR value. To obtain a

global metric, we computed a total error defined as

(8)

Table 1 summarizes all objective metrics derived from the in silico reconstructions and for

all p considered. In all cases investigated, the two objects were successfully reconstructed.
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As shown in Table 1, L2 gives the worst CNR and VE, L1 gives worse CNR, VE and LE

values than Lp regularization (0 < p < 1). Thus, Lp regularization (0 < p < 1) outperforms

L2- and L1 based methods. As indicated in VE, smaller values of p lead to smaller

reconstructed objects than the expected result, such as L1/8 and L1/16 in the case of kidneys

and L1/16 in the case of small inclusions, due to overconstraining. For each p, the computed

total errors are provided in Fig. 1(b). For both kidneys (organ level) and small inclusions,

L1/4 regularization leads to the minimal total error. Figure 2 provides the 3-D visualization

of the reconstructions for kidneys and small inclusions for p ∈ {1/16, 1/4, 1, 2}. The two

reconstructed kidneys based on L1 and L2 regularization are larger than the ground truth. For

both kidneys and small inclusions, L1/4-based reconstruction yields objects with similar size

to the ground truth. Conversely, L1/16 provides smaller reconstructed objects, as shown in

Table 1. Hence, the best reconstructions from organ level to small inclusions imaging were

obtained using the L1/4-norm.

To validate these findings in an experimental setting, a mouse implanted with a 13-mm-long

and 1-mm-diameter tube placed in the thoracic cavity was imaged under both wide-field

FMT and microCT. The tube contained a solution of 14 pmol of IRDye 800CW in 1 µL

ethanol. 64 sliding bar-shaped illumination patterns (each pattern was represented by 594

pixels) were projected onto a 33 mm × 18 mm area on the abdomen. 97 point detectors with

a 0.5 mm2 area acquired both transmitted excitation and emission photons over a 4.6 ns time

window at 40 ps resolution. microCT images of the mouse were nonconcurrently registered

with the optical data to obtain a ground truth of the 3D location of the capillary. The

geometric information about the surface of the region of interest (40 mm × 31 mm) was

extracted to generate a homogeneous model with 92,713 elements and 15,581 nodes and was

further utilized for the mesh-based weight matrix calculation. The entire model was assigned

with the average background properties from spectroscopic fitting of the excitation

measurements (μa = 0.3 cm−1 and ). The early gate at 5% of its maximum value

was selected as the reconstruction data type. Similar to the in silico study, reconstructions

using Lp regularization methods were performed and compared. As shown in Fig. 3, L1/4-

norm provides the smallest total error (TE = 0.3560), closely followed by the L1/3-norm (TE

= 0.3612). The L2 norm led to a TE = 577, which yields a much worse result than Lp (0 < p

≤ 1). Figure 4 shows the 50% isovolume 3D reconstructions for the fluorescent capillary

using Lp regularization, p ∈ {1/4, 1, 2}. The L1/4 reconstruction renders a 3D fluorophore

biodistribution that matches closely with the ground truth as obtained via microCT. For

example, the diameter of the tube as estimated by FMT was 1.4 mm with L1/4, which is very

close to the true capillary size of 1 mm. The L1 norm was overestimating the capillary

diameter by 108% whereas the L2 overestimated it by 335%.

In conclusion, we proposed a Lp (0 < p ≤ 1) regularization-based reconstruction algorithm

for early gates FMT and validated this method via 3D mouse atlas in silico study and mouse

experiment. The results show that the L1/4 regularization method leads to more accurate

solutions than the L1 regularization method for early TGs and it can improve the spatial

resolution dramatically over the commonly employed L2 norm. In the case of experimental

data, L1/4 norm yields a very accurate reconstruction (8.8 mm in length, 1.4 mm in diameter)

compared to the ground truth. This is even more significant considering that the acquisition
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protocol was limited to a few patterns in transmission without rotation of the subject [25].

These results lay the foundation for establishing quantitative 3D tomographic imaging for

lifetime multiplex studies with high resolution. In fact, the combination of early TGs and

late TGs in a hierarchical reconstruction scheme [26], in which early-TG reconstructions are

employed as a spatial template for subsequent late-TG quantitative reconstructions, can

enable high-resolution and a quantitatively accurate lifetime for in vivo tomographic

performance. Therefore, this work, combining with wide-field FMT strategies [10,24] and

NIR lifetime probes, is poised to facilitate in vivo whole-body lifetime-based tomographic

imaging at a high acquisition speed (a few minutes), especially for in vivo FRET imaging

[27].
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Fig. 1.
(a) L-curve analysis (log–log) to select λ = μλi

(0) for L1/4 regularization. (b) Total errors for

reconstructed kidneys and small inclusions with different Lp regularizations, p ∈ {1/16, 1/8,

1/4, 1/3, 1/2}.
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Fig. 2.
3D visualizations for in silico reconstructions. (a) The 3D reconstructions for kidneys using

Lp regularization with p ∈ {1/16, 1/4, 1, 2}. (b) 3D reconstructions for small inclusions

using Lp regularization with p ∈ {1/16, 1/4, 1, 2}. A 50% threshold was used for visualizing

L2, L1, L1/4, and L1/16 regularization-based reconstructions. Here the red regions denote the

ground truth, and the blue regions are the reconstructed results.
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Fig. 3.
Total errors for the experimental data for Lp regularizations p ∈ {1/16, 1/8, 1/4, 1/3, 1/2, 1}.

TE for L2 (TE = 577) is not shown in the curve.
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Fig. 4.
50% isovolume of 3D reconstructions based on L2, L1, and L1/4 regularizations using

experimental data. The coronal plane at y = 21.5 mm and the axial plane at z = 6.5 mm were

used for cross-section validation.

Zhao et al. Page 11

Opt Lett. Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Zhao et al. Page 12

T
ab

le
 1

Su
m

m
ar

y 
of

 A
ll 

O
bj

ec
tiv

e 
M

et
ri

cs
 D

er
iv

ed
 f

ro
m

 S
im

ul
at

ed
 K

id
ne

ys
 (

K
d)

 a
nd

 S
m

al
l I

nc
lu

si
on

s 
(S

I)
 w

ith
 a

ll 
L

p 
C

on
si

de
re

d

C
N

R
R

M
SE

V
E

(%
)a

L
E

(m
m

)

L
pb

K
d

SI
K

d
SI

K
d

SI
K

d
SI

L
2

5.
8

10
0.

7
0.

9
10

7,
 1

36
31

3,
 4

28
0.

8,
 0

.4
0.

3,
 0

.5

L
1

6.
3

15
0.

7
0.

8
26

, 2
1

22
0,

 3
18

1.
8,

 2
.3

2.
7,

 4
.0

L
1/

2
6.

5
17

0.
8

0.
7

−
10

, 6
25

, 4
6

0.
6,

 0
.6

1.
8,

 1
.5

L
1/

3
6.

5
17

0.
8

0.
7

−
12

, −
1

11
, 1

2
0.

5,
 0

.5
2.

3,
 0

.3

L
1/

4
6.

5
20

0.
8

0.
7

−
11

, 1
11

, 1
2

0.
5,

 0
.5

2.
3,

 0
.3

L
1/

8
6.

4
18

0.
8

0.
7

−
13

, −
7

1,
 1

2
0.

5,
 0

.6
2.

3,
 0

.2

L
1/

16
6.

3
19

0.
8

0.
8

−
14

, −
7

−
12

, 1
2

0.
6,

 0
.5

2.
3,

 0
.5

a (r
ig

ht
 o

bj
ec

t, 
le

ft
 o

bj
ec

t)
.

b L
p 

w
ith

 5
0%

 th
re

sh
ol

d.

Opt Lett. Author manuscript; available in PMC 2015 January 15.


