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Precise regulation of gene expression programs during embryo development requires 
cooperation between transcriptional factors and histone-modifying enzymes, such as 
the Gcn5 histone acetyltransferase. Gcn5 functions within a multi-subunit complex, 
called SAGA, that is recruited to specific genes through interactions with sequence-
specific DNA-binding proteins to aid in gene activation. Although the transcriptional 
programs regulated by SAGA in embryos are not well defined, deletion of either 
Gcn5 or USP22, the catalytic subunit of a deubiquitinase module in SAGA, leads to 
early embryonic lethality. Here, we review the known functions of Gcn5, USP22 and 
associated proteins during development and discuss how these functions might be 
related to human disease states, including cancer and neurodegenerative diseases.

Keywords:  ATAC complex • cancer • development • differentiation • Gcn5 • histone 
acetylation • neurodegenerative disease • PCAF • SAGA • stem cells • Usp22

Histone acetylation has long been linked to 
active gene transcription. This modification 
is actively regulated by the opposing actions 
of histone acetyltransferases (HATs) and 
deacetylases, which target a number of highly 
conserved residues in the amino-terminal tail 
regions of the histones. Gcn5 was identified 
as the first transcription-related HAT in 
1996 [1], and since that time, we have learned 
much about its biochemical partners and its 
biological functions.

In yeast, Gcn5 is integrated into SAGA 
and ADA complexes [2,3], and the major sub-
units and structures of the Gcn5-containing 
complexes are highly conserved across evolu-
tion [4,5]. In metazoans, Gcn5 is also part of 
a second, distinct complex, termed ATAC 
[6]. This article will focus on recent advances 
made towards defining Gcn5 functions 
during mammalian development, as well 
as the role of particular SAGA and ATAC 
components in human diseases.

Structure & composition of SAGA
Several excellent reviews of SAGA composi-
tion and structure have been written recently, 

therefore we will provide a brief description 
here [7–9]. SAGA is organized into several 
functional submodules (Figure 1), including 
a histone acetylation center that contains 
Gcn5 (HAT) together with the Ada proteins, 
and a deubiquitination (DUB) module that 
contains Ubp8, in addition to Sgf73, Sgf11 
and Sus1 or their mammalian orthologs 
(Table 1) [10–12]. The best-characterized sub-
strates for SAGA include several acetylation 
sites in H3 and a ubiquitylation site in H2B. 
SAGA also contains two modules essential 
for its architectural integrity and its inter-
actions with transcriptional machinery: the 
TAF module and the SPT module (Table 1). 
The composition of SAGA (also referred to 
as STAGA or TFTC) is largely conserved in 
mammalian cells (Table 1) [4,13–19]. In addi-
tion, Gcn5 is incorporated into a distinct but 
related complex, called ATAC, which is dis-
tinguished by its Ada2a subunit [20,21]. The 
functions of ATAC are less well defined than 
those of SAGA, but studies in flies and mice 
indicate ATAC is important for acetylation 
on H4K12, 16 [22,23], mitotic progression [24] 
and normal embryo development [21]. PCAF, 
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which is highly related to Gcn5 [25], is a component 
of another multi-subunit complex similar to SAGA 
(Table 1) [26]. The increased complexity of mamma-
lian SAGA and related complexes reflect their involve-
ment in several diverse processes, including embryonic 
development, stress responses, cell growth, genome 
integrity, signaling pathways and metabolic control.

Developmental functions of Gcn5 & PCAF
Gcn5 and PCAF are highly similar (75% identical at 
the protein level) [25] and they are incorporated into 
similar complexes (Table 1) [26]. However, deletion of 
Gcn5 or PCAF has very different consequences in 
mice, indicating these proteins may have different 
functions in vivo.

Deletion of Gcn5 (Gcn5l2, renamed as Kat2a) 
results in early embryonic lethality in mice. Gcn5-null 

embryos show severe growth retardation by 8.5 days 
post coitum, as well as defects in maintenance of 
mesodermal lineages due to increased cell death. By 
contrast, deletion of PCAF (Kat2b) causes no obvi-
ous abnormal phenotypes [36,37]. This difference in 
phenotype may be partially due to differential expres-
sion levels and patterns of Gcn5 and PCAF during 
mouse development [25,36]. However, deletion of both 
Gcn5 and PCAF results in a more severe phenotype 
than loss of Gcn5 alone, indicating that PCAF does 
have some functions redundant to those of Gcn5 early 
in embryogenesis [36]. Gcn5 and PCAF also have 
redundant functions in mouse embryonic fibroblasts, 
which are distinct from those of the CBP/p300 HATs 
[38]. Although mice heterozygous for the Gcn5-null 
allele exhibit no defects, mice heterozygous for both 
Gcn5 and p300 have a more severe phenotype than 

Figure 1. Schematics of mammalian Gcn5-containing complexes and their functions and implications in diseases. The modular 
structure and composition is based on a model of yeast SAGA [12]. In contrast to SAGA, the physical relationships between subunits in 
ATAC are less well defined. This figure only summarizes the presence of subunits, not their arrangement within ATAC. POLE3, POLE4 
and MAP3K7 are included per [20]. The modules are indicated by the following color codes: red, HAT module; blue, DUB module; 
orange, SPT module; grey, TAF module; and green, ATAC-specific unit. The disease implications are based on studies using mammalian 
cells or mouse model systems, as well as from human patient samples, as described in the text. 
DUB: Deubiquitination; HAT: Histone acetyltransferase; TF: Transcription factor.
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p300-single hetero zygotes, indicating these HAT 
family proteins also have both shared and distinct 
functions during development [39].

Normal Gcn5 expression levels and activity are 
both required for proper development. Combina-
tion of a hypomorphic allele of Gcn5 with a deletion 
allele in mice to reduce expression below 50% causes 
homeotic transformations in the skeleton, as well as 
exencephaly [40,41]. Mice homozygous for a catalyti-
cally inactive allele of Gcn5 die in mid-gestation with 
severe neural tube closure defects [42]. The longer 
survival time of the Gcn5-hat mutants relative to the 
null mutants suggests that Gcn5 has functions early in 
development that are independent of its HAT activity. 

At least part of the increase in severity of phenotype in 
the Gcn5-null mice may be due to loss of USP22 and 
other DUB module components from SAGA upon 
loss of Gcn5, which gives rise to telomere defects, 
genome instability and increased cell death [33].

Use of a conditional allele of Gcn5 that is deleted 
upon exposure to Cre recombinase allows definition 
of Gcn5 functions at particular stages of development 
or in particular tissues and lineages. For example, 
Nestin-Cre-mediated deletion of Gcn5, specifically in 
neural progenitor cell populations, results in a 25% 
reduction in brain mass with a microcephaly pheno-
type similar to that observed in Nestin-Cre-driven 
knockouts of c-Myc or N-myc [43–46]. Gene expression 

Table 1. Components of SAGA and related complexes in yeast and human.

Component Yeast Human

ySAGA [2–3,5,7,12,27–30] yADA [2,3] hSAGA [7,13,14,16–18,20,31–33] hPCAF [26,34] hATAC [20,21]

HAT module Gcn5 Gcn5 GCN5  GCN5/hPCAF

    PCAF  

 Ada2 Ada2  ADA2A/B  

   ADA2B   

    ADA2A

 Ada3 Ada3 ADA3 ADA3 ADA3

 Sgf29 Sgf29 SGF29 SGF29 SGF29

  Ahc1    

  Ahc2    

     ATAC1 (ZZZ3)

2nd HAT center     ATAC2

DUB module Ubp8  USP22 ?  

 Sgf73  ATXN7 ?  

 Sgf11  ATXN7l3 ?  

 Sus1  ENY2 ?  

TAF module Taf5  TAF5L TAF5L WDR5

 Taf6  TAF6L TAF6L MAP3K7†

 Taf9  TAF9 TAF9

 Taf10  TAF10 TAF10 DR1 (NC2b)

 Taf12  TAF12 TAF12 POLE3†

SPT module Tra1  TRRAP TRRAP POLE4†

 Spt8‡     

 Ada5/Spt20  p38IP/SPT20  MBIP

 Spt7  STAF65g  YEATS2

 Spt3  SPT3 SPT3  

   SAP130 SAP130  

 Ada1  STAF42   
†These factors were identified by [20] but not by [21]. 
‡Yeast has an alternative SILK complex that contains all SAGA components except for Spt8 [35].
?: These components have yet to be reported as part of the hPCAF complex; DUB: Deubiquitination; HAT: Histone acetyltransferase.
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analysis indicates that about a sixth of the genes 
whose expression is affected by the loss of Gcn5 are 
N-myc targets, and Gcn5 is required for maintenance 
of histone acetylation at these target genes [46]. These 
findings indicate that Gcn5 is a key transcriptional 
cofactor for N-myc in neural progenitor cells in the 
developing brain.

The capability of embryonic stem (ES) cells to 
self-renew and differentiate makes them an excellent 
model for studying development in vitro. Gcn5-null 
ES cells survive and appear to grow normally, except 
for a delay in progressing through the G2/M phase 
of the cell cycle [47]. When stimulated to differenti-
ate, Gcn5-null cells form endoderm, ectoderm and 
mesoderm within embryoid bodies, indicating they 
are capable of differentiation. However, expression of 
transcription factors essential for ES cell identity such 
as Oct4 and Nodal is prematurely lost at early stages 
of differentiation when Gcn5 is absent, suggesting that 
Gcn5 is required for maintaining ES cells in a pluripo-
tent, self-renewing state [47]. Gcn5 may also be impor-
tant in other stem cell-like states. For example, Gcn5 
acetylates H1.4K34 in induced pluripotent stem cells, 
and this modification strongly marks both carcinoma 
in situ and invasive seminoma nuclei, both of which 
are precursors of type II testicular germ cell tumors 
[48]. H1.4K34ac is also dynamically regulated dur-
ing spermatogenesis with the highest expression levels 
detected in immature germ cells (spermato gonia) and 
meiotic spermatocytes [48]. Gcn5, therefore, may also 
be important for normal sperm development.

Usp22 functions in differentiation 
& development
Usp22 is also essential for mouse embryonic develop-
ment [49]. Usp22 and its yeast ortholog, Ubp8, are 
best characterized in terms for their activity towards 
H2B, but they also have other substrates [33,50,51]. The 
lethality of Usp22-null mice was linked to deubiquity-
lation and stabilization of the Sirt1 deacetylase, which 
in turn suppressed p53-mediated apoptosis. Although 
another group did not see any effects on Sirt1 lev-
els upon depletion of Usp22 [49,52]. The full range of 
Usp22 functions during mouse development are not 
yet clear.

In mouse ES cells, Usp22 represses the transcrip-
tion of the pluripotency factor Sox2, thereby promot-
ing differentiation [53]. Loss of Usp22 occupancy at 
the Sox2 locus is associated with elevated levels of 
H2Bub and increased transcription of Sox2. Atxn7l3, 
another component of the DUB module, and Sirt1, 
also associate with the Sox2 locus, providing a novel 
example of a HAT complex component that recruits 
a deacetylase to repress transcription of a target gene.

Developmental functions of ATAC
ATAC was first identified in flies [22], and a highly simi-
lar mammalian complex was subsequently defined [20]. 
ATAC contains a second HAT protein, Atac2, which 
is specific for lysines in H4, in contrast to Gcn5, which 
targets H3 and H2B. Atac2-null mice die early in 
gestation with a phenotype that resembles, but is less 
severe than, that of Gcn5-null embryos [21], as might 
be expected since Gcn5 loss affects both ATAC and 
SAGA. ATAC localizes to different regulatory elements 
and regulates target genes that are distinct from those of 
SAGA [54,55]. ATAC also acetylates nonhistone proteins, 
and in human cells, ATAC controls mitotic progression 
by acetylating cyclin A [24]. Additional studies are 
needed to understand how Gcn5 functions are propor-
tioned between the SAGA and ATAC complexes and to 
define the full range of ATAC functions.

Disease connections
The genetic studies above clearly indicate that Gcn5 
and USP22 have important roles during development, 
which may presage important functions for these pro-
teins in human diseases. So far, findings from a num-
ber of laboratories indicate that Gcn5 and SAGA might 
contribute to both neurodegenerative diseases and to 
cancers.

Neurodegenerative diseases
The neural tube defects observed in the Gcn5-hat 
mutant mice and in mice bearing hypomorphic alleles 
of Gcn5 suggest that Gcn5 or SAGA may be particu-
larly important in neural functions. Indeed, a compo-
nent of the SAGA DUB module, Atxn7, is implicated 
in a human neural degenerative disease, spinal cerebel-
lar ataxia type 7 (SCA7). Polyglutamine expansions in 
ataxin7 (polyQ-Atxn7) are associated with SCA7, which 
is characterized by both cerebellar and retinal degen-
eration. Mouse models of SCA7 bearing polyQ-Atxn7 
alleles confirm that the polyQ expansions contribute to 
the pathogenesis of the disease [56]. Reduction of polyQ-
Atxn7 expression restores motor function and prevents 
cerebellar synaptic reorganization in a conditional mouse 
model [57], suggesting a causative role for polyQ-Atxn7 
in the development of SCA7. PolyQ-Atxn7 incorporates 
into SAGA [19,58,59] and has been reported to inhibit 
Gcn5 HAT activity, resulting in a dominant-negative 
effect on SAGA transcriptional activity as a coactiva-
tor of photoreceptor genes regulated by the cone-rod 
homeobox transactivator in SCA7 transgenic mice [19]. 
Another group reported that polyQ-Atxn7 altered the 
recruitment of SAGA to photoreceptor genes, leading 
to changes in chromatin structure and deregulation of 
these genes, contributing to a subsequent progressive 
loss of rod photoreceptor function [60].
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Gcn5 depletion in SCA7 mice accelerates cerebellar 
and retinal degeneration, even though cerebellar dele-
tion of Gcn5 in the absence of polyQ-Atxn7 caused 
only mild ataxia [61]. These findings indicate that loss of 
Gcn5 may contribute to the time of onset and severity 
of human SCA7, but is not sufficient to drive disease 
formation. Loss of Gcn5 impairs the deubiquitinating 
activity of Usp22 [33], which partners with Atxn7 in 
the DUB module. Gcn5 loss, then, may exacerbate the 
SCA7 phenotype by compromising Usp22 functions. 
PolyQ-Atxn7 may also inhibit USP22 activity in vivo. 
Additional USP22 mouse models are needed to deter-
mine if loss of DUB activity leads to neurodegeneration 
as seen in SCA7.

PCAF appears to have important neural functions as 
well. Even though PCAF-null mice are viable without 
any overt physical phenotypes [36,37], subsequent studies 
have revealed behavioral alterations in these mice. At 
a young age, PCAF-null mice exhibit impaired short-
term memory, with deficits in learning abilities, spatial 
memory and recognition memory. As the animals age, 
contextual long-term memory becomes affected as well 
[62]. These memory deficits are likely due to morpho-
logical changes observed in the hippocampus, a region 
in the brain that is crucial for multiple forms of mem-
ory [63,64]. PCAF-null mice also develop an exaggerated 
response to acute stress, indicating that PCAF may 
have a role in controlling emotional states. Interestingly, 
PCAF involvement in stress response seems to vary 
among different mouse genetic backgrounds [65], sug-
gesting PCAF-null mice could be potentially valuable 
for research into genetic variables that affect emotional 
behaviors and disorders [66,67]. Moreover, mice lacking 
PCAF develop a resistance to amyloid toxicity [65], such 
as is associated with human dementias. Although a role 
for PCAF has not yet been confirmed in human cog-
nitive diseases, these observations indicate that modu-
lating acetyltransferase activity may offer a new way to 
develop therapies for dementias.

Cancer implications
Several studies using different cell model systems 
have demonstrated the involvement of Gcn5, USP22 
and several other SAGA components in processes that 
are closely linked to the hallmarks of cancer, includ-
ing DNA damage repair, cell cycle regulation and 
post-translational regulation of both oncoproteins and 
tumor suppressors.

DNA damage response & maintenance of genome 
integrity
Chromatin compaction can be a barrier to DNA repair 
[68]. Various factors that modify histones or remodel 
nucleosomes facilitate repair [69], including Gcn5.

A large-scale screen for DNA damage-responsive his-
tone modifications in human cells revealed that H3K9ac 
and H3K56ac are rapidly and reversibly reduced in 
response to DNA damage [70]. The reduction of these 
two modifications might be caused by enhanced activi-
ties of histone deacetylases, or by histone eviction cou-
pled with degradation in response to DNA damage. 
Gcn5, known to deposit the acetyl mark on H3K9, was 
reported to also acetylate H3K56 in human cells [70]. 
Another group, however, found that H3K56Ac is medi-
ated by p300/CBP [71], and that H3K56Ac forms foci 
at sites of DNA damage in human cells. These different 
observations might reflect different dosages of DNA-
damaging reagents used by the two groups. In any 
case, these data indicate that these HATs are important 
to the DNA damage response, whose failure leads to 
genomic instability that is central to carcinogenesis [72].

Other studies also indicate that Gcn5 is involved in 
multiple types of DNA repair. After UV-induced DNA 
damage, Gcn5 is recruited to damage sites by direct asso-
ciation with E2F1, and acetylation of H3K9 by Gcn5 
facilitates nucleotide excision repair [73]. In response to 
γ-irradiation-induced double-strand breaks, cross-talk 
between serine-139 phosphorylation in H2AX (form-
ing γ-H2AX) and Gcn5-mediated H3 acetylation aids 
the recruitment of SWI/SNF complexes to facilitate 
double-strand break repair [74].

Gcn5, Usp22 and SAGA are also important to main-
taining the integrity of telomeres. Shelterin proteins 
protect telomeres from inappropriate recombination. 
Two shelterin components, TRF1 and Pot1a are regu-
lated by Usp22, which limits their ubiquitination and 
subsequent turnover by the proteasome. Loss of Gcn5 
leads to depletion of Usp22 and the DUB module 
from SAGA, compromising Usp22 activity, leading to 
telomere fusions [33].

Regulation of cell growth, proliferation & survival
Several connections have been made between Gcn5, 
SAGA and the regulation of cell growth and prolifera-
tion. For example, SAGA has been defined as a co-acti-
vator for the c-Myc oncoprotein in a number of in vitro 
cell systems [75–77]. TRRAP, STAF65g and GCN5 itself 
have been reported to interact directly with Myc, thereby 
recruiting SAGA to Myc target genes [75,77]. The cata-
lytic activity of Gcn5 is required for activation of Myc 
target genes [77,78]. Gcn5 and other HATs acetylate the 
Myc protein, increasing its stability [79]. Mouse model 
systems indicate that Myc induces widespread changes 
in chromatin structure, including increased acetylation 
[80], and that Gcn5 and N-Myc share a number of tran-
scriptional targets [46]. Myc often cooperates with other 
transcription factors, including E2F1, for full activation 
of its target genes. A recent study of non-small-cell lung 
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cancers revealed that GCN5 is highly expressed in these 
tumors, compared with matched normal tissues, and 
that it specifically potentiates lung cancer growth by 
directly promoting the expression of E2F1, cyclin D1 
and cyclin E1 in an E2F1-dependent manner [81].

The Sgf29 component of SAGA contains tandem 
Tudor domains that serve as ‘readers’ for H3K4 di- or 
tri-methylation (H3K4me2/3). These interactions are 
required for recruitment of the SAGA complex and H3 
acetylation at target gene promoters [82]. Interestingly, 
studies in rat hepatoma cell lines indicate that Sgf29 
acts downstream of Sry and promotes c-Myc-mediated 
gene transcription and malignant transformation [31,83], 
providing yet another link between SAGA functions 
and Myc.

Gcn5 and PCAF also acetylate the p53 tumor sup-
pressor at Lys320, and this acetylation promotes activa-
tion of p53 target genes such as p21 [84]. The involve-
ment of Gcn5 in the functions of both the Myc oncogene 
and the p53 tumor suppressor indicate that it may both 
promote and inhibit cancer growth.

Usp22 has strong links to oncogenesis. Usp22 was 
first identified in microarray screens as part of an 11-gene 
‘death from cancer’ signature for highly aggressive, ther-
apy-resistant tumors [85]. This signature includes the 
Bmi1 polycomb group protein, and several Bmi1 target 
genes, suggesting that this molecular signature is related 
to stem cell-like characteristics [86]. Usp22 was later 
shown to act as an oncogene [87], regulating cell cycle 
progression, proliferation and apoptosis [50,81]. Increased 
expression of Usp22 has now been associated with poor 
prognosis in several additional cancers, including liver 
cancers, colorectal cancers, breast cancers, esopha-
geal squamous cell carcinoma and oral squamous cell 
carcinoma [88–90]. If an increase in Usp22 DUB activ-
ity can be linked to these cancers, then DUB inhibi-
tors may provide attractive prospects for new therapy 
development.

Developmental signaling pathways linked to 
malignancies
Aberrations in signaling pathways that are essential to 
embryonic development or to stem cell properties are 
often observed in cancer. These altered pathways may 
help to sustain populations of cancer-initiating cells 
(i.e., cancer stem cells), which share many characteris-
tics with ES cells [91,92]. Components of Gcn5 complexes 
and PCAF may be involved in these signaling pathways. 
PCAF, for example, is required for Hedgehog-Gli-
dependent transcription that drives cell proliferation in 
medulloblastomas and glioblastomas, and silencing of 
PCAF reduces the tumor-forming potential of neural 
stem cells [93]. ADA2a and ADA3 are required for acet-
ylation of b-catenin, which promotes transcriptional 

functions of b-catenin in lung and colon cancer cell 
lines [94].

Involvement in metabolic energy pathways 
in cancer
Normal cells depend primarily on mitochondrial oxida-
tive phosphorylation to generate the energy needed for 
cellular processes. By contrast, most cancer cells switch 
to aerobic glycolysis, even in the presence of oxygen, to 
meet the soaring need for energy to support increased 
proliferation and growth [95]. Such reprogramming of 
energy metabolism is termed the ‘Warburg effect’ [72]. 
Under hypoxia, HIF-1α upregulates glycolytic enzymes 
to promote glycolysis, whereas p53 inhibits glycolysis 
and increases oxidative phosphorylation by activating 
TIGAR and SCO2 gene expression. PCAF mediates dif-
ferential recruitment of HIF-1α and p53 to the promot-
ers of TIGAR and/or SCO2 genes, thereby tuning the 
energy needs of the cells to different environmental con-
ditions [96]. Although it is not yet clear whether PCAF 
is a rate-limiting factor for the glycolysis switch dur-
ing tumor growth, these findings indicate that PCAF 
may provide an attractive target for controlling tumor 
growth and survival.

Conclusion & future perspective
Gcn5, Usp22 and a few other subunits of SAGA have 
been linked directly or indirectly to neurodegenerative 
diseases and to cancer. The essential developmental 
functions of Gcn5 and Usp22 in mouse indicate these 
factors may also be important for preventing human 
birth defects, such as exencephaly. PCAF has also been 
linked to cancer, as well as to energy metabolism, cog-
nitive capacities and psychological behaviors. Clearly, 
understanding the full range of functions of these 
factors, and development of ways to modulate those 
functions, is important to human health.

One area that needs further investigation is defini-
tion of the relative distribution of Gcn5, in time and 
in space, between SAGA and ATAC during mam-
malian development, and the exact roles of these two 
complexes in embryogenesis. If Gcn5 levels are limit-
ing in vivo, then changing the balance of its association 
between these complexes might have significant conse-
quences for developmental programs. Loss or gain of 
individual subunits of the SWI/SNF ATP-dependent 
chromatin remodeler complex, for example, leads to a 
switch in lineage commitment during development [97]. 
Would the same be true for SAGA and ATAC? If so, 
might that also impact the functions of Gcn5 in cancer 
or other diseases?

Another open question is whether alterations in levels 
or activity of Gcn5, PCAF or Usp22 are sufficient to 
impact cancer development. Would inhibition of Gcn5, 
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for example, reduce the oncogenic properties of c-Myc 
overexpression? Is overexpression of USP22, such as 
is seen multiple human cancers, enough to initiate or 
drive cancer formation? It will also be important to 
determine how Gcn5 and USP22 functions are linked 
in cancer and in other diseases, such as SCA7.

Finally, the connections observed between PCAF 
and SAGA components and neural processes are fasci-
nating, and may foreshadow discovery of a greater role 
for these proteins in both neural development and neu-
ral functions in adults. It is not clear, for example, how 
polyQ-Atxn7 affects the activity of USP22, or whether 
such effects contribute to SCA7. Another question is 
whether Gcn5 might affect cognitive abilities or emo-
tional state as does PCAF, and if so, whether these two 
HATs are involved in the same or separate pathways.

Although we have learned a lot about the biochemi-
cal activities of these HATs over the last 18 years, we 

obviously still have a lot to learn about their biological 
functions. This knowledge will not only advance our 
understanding of chromatin regulation, but will also 
advance our understanding of human disease pathways.
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Executive summary

SAGA in transcription
•	 Gcn5 is the first transcription-related histone acetyltransferase (HAT) to be described, linking SAGA to gene 

transcription.
•	 SAGA is organized into functional modules and harbors both HAT (Gcn5) and deubiquitination (Usp22) 

activities, and the modularity of SAGA is conserved from yeast to humans.
•	 Identification of the second enzymatic activity of SAGA, the deubiquitinase Usp22, broadens the substrates of 

SAGA and revealed new roles of SAGA in gene regulation, as well as other processes.
Functions of SAGA in mammals & implications in human diseases
•	 Both Gcn5 and Usp22 are essential for mouse embryogenesis, indicating these factors may also be important 

for preventing birth defects in humans.
•	 Several subunits of SAGA are involved in pathogenesis of neurodegenerative diseases, for instance, polyQ 

expansion in Atxn7 causes spinal cerebellar ataxia type 7, and Gcn5 deletion accelerates the disease 
progression in spinal cerebellar ataxia type 7 mice. This provides potential new targets for the development of 
therapeutic strategies for such diseases.

•	 SAGA interacts with transcription factors such as Myc to regulate gene transcription, cell growth and survival. 
Several key subunits are indicated in such processes, including TRRAP, Usp22 and Gcn5. The close interactions 
with Myc link SAGA to an array of human cancers that are driven by this oncoprotein.
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