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Abstract

Neural stem/progenitor cells (NSPCs) have the potential to differentiate into neurons, astrocytes,

and/or oligodendrocytes. Because these cells can be expanded in culture, they represent a vast

source of neural cells. With the recent discovery that patient fibroblasts can be reprogrammed

directly into induced NSPCs, the regulation of NSPC fate and function, in the context of cell-

based disease models and patient-specific cell-replacement therapies, warrants review.

Introduction

Neural stem/progenitor cells (NSPCs) exist at various locations and times throughout

embryonic and adult development. For the sake of this review, we will define NSPCs to be

any self-renewing neural cells capable of differentiation to neurons, astrocytes and/or

oligodendrocytes. During embryogenesis, NSPCs are responsible for the development of the

growing brain; in adults, NSPCs play a role in learning and memory but do not typically

contribute to regenerative repair. Though the various subtypes of NSPCs can be described

by their expression of unique markers, the extracellular signals and intracellular factors

responsible for the regulation of NSPC fate and differentiation frequently overlap.

Aberrations in NSPC regulation can lead to diseases ranging from psychiatric disorders to

neurodegenerative disease to cancer. With the discovery that induced NSPCs (iNSPCs) can

be generated from somatic cells of healthy and diseased individuals, the regulation of NSPC

fate and function is increasingly important; iNSPCs have the potential to serve as a novel

platform for cell-based replacement therapies and drug-based high-throughput screening for

new therapeutics.

Spatial and temporal cues affect NPSC identity

NSPCs are responsible for both embryonic growth and adult neurogenesis. During

embryonic development, NSPCs can be found in the neural crest (NC) and the cortex.

Although the adult brain was thought to be post-mitotic, neurogenesis occurs in the

subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the

hippocampal dentate gyrus in the adult brain 1, 2. Though we will focus on markers that

distinguish NSPC populations (Table 1), a number of genes broadly identify NSPCs,

particularly SRY (sex-determining region)-box 2 (Sox2) 3, 4 and Nestin 5, 6, as well as Pax6,
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which is expressed in anterior NSPC populations 7, 8, including some, but not most, NC

NSPCs 9, 10.

Embryonic Neural Crest Cells

The NC is a multipotent migratory cell population that transiently exists during embryonic

development. Unlike the other NPSCs discussed in this review, NC cells are unique in that

they contribute to the peripheral nervous system (PNS). NC cells originate between the

dorsal ectoderm and neural tube but migrate and differentiate to sensory neurons, Schwann

cells, melanocytes and cells that make up the craniofacial structures such as bone and

cartilage 11. WNT, bone morphogenetic proteins (BMPs) and fibroblast growth factors

(FGFs) are responsible for NC induction, regulating expression of key NC genes including

MSH homeobox 1 and 2 (MSX1/2), paired box 3 and 7 (PAX3/7) and zinc finger protein

1(ZIC1) 12. Together, PAX3 and ZIC1 act in a WNT dependent manner to increase snail

(SNAI1), forkhead box D3 (FOXD3), SOX9 and SOX10 proteins 13. Inhibitor of DNA

binding (ID) proteins are dominant negative antagonists of the basic helix-loop-helix

transcription factors; of these, ID3, a downstream target of c-MYC, is required for the

formation and maintenance of NC cells 14, 15. A few other well-established NC markers

include p75 nerve growth factor receptor, which can be used to purify NC cells 16, 17, and

AP2, a key regulator of NC specification and maintenance 18.

Embryonic stem cell (ESC)-derived NC cells have been reported by several independent

groups 19–21. A single-step, highly efficient method generates NCs from ESCs by combining

small molecule SMAD inhibition and WNT activation 22.

Embryonic Cortical NSPCs

Cortical development begins in the anterior neural tube and is specified by homeobox

proteins such as DLX1, DLX2 and NKX2.1 23. Two types of NSPCs contribute to

embryonic cortical development in vivo: radial glia cells (RGCs) and basal (intermediate)

progenitors (BPs) 24. RGCs produce neurons and glia, and divide at the ventricular surface.

BPs are derived from RGCs, produce only neurons, and divide away from the ventricular

surface. In addition to SOX2 and NESTIN, RGCs express astroglial markers including glial

fibrillary acidic protein (GFAP), glutamate aspartate transporter (GLAST) and brain lipid-

binding protein (BLBP); BPs lack expression of transcription factors that maintain NSPC

self-renewal, such as SOX2 and PAX6 that maintain NSPC self-renewal. RGCs are

maintained by NOTCH signaling 24, 25, and their transition from RGC to BP is associated

with upregulation of Tbr2, a T-domain transcription factor, and downregulation of Pax6 26.

ESCs are robustly differentiated into neuroectodermal precursors 26–28. An early report

suggested that ESC-derived neural rosettes could be converted to a RGC-like population by

treatment with mitogens such as FGF2 and EGF 29. New methods for the differentiation of

ESCs have become increasingly sophisticated, claiming to recapitulate cortical neogenesis in

vitro and form, via a NSPC intermediate, cortical neurons that can be transplanted in vivo to

generate fully mature cortical neurons29–31. Following neural induction in the presence of

two inhibitors of SMAD signaling, the addition of vitamin A efficiently induces a cortical
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progenitor population that can be expanded in the presence of FGF2 and differentiated into

functional cortical neurons following an extended period of corticogenesis.

Adult SVZ Progenitors

SVZ neurogenesis leads to the generation of new neurons, astrocytes and oligodendrocytes

in the olfactory bulb 32. The principal precursors in the SVZ are type B cells, a primarily

quiescent RGC-like population. Type B cells produce type C cells, a type of transit-

amplifying cell that divides rapidly to produce neuroblasts, also known as type A cells

(B→C→A). Type A cells migrate along the rostral migratory stream to the olfactory bulb

where they integrate with existing circuitry 33, 34. Type B cells are characterized by

expression of GFAP, VIMENTIN and NESTIN; proliferating type C cells express Achaete-

scute complex-like 1 (MASH1) and NESTIN; migrating and differentiating type A

neuroblasts express doublecortin (DCX), PSA-NCAM and homeobox protein DLX2

(reviewed by 1, 2). Similar to RGCs, adult SVZ type B cells are maintained by NOTCH

signaling 35. Just an in embryonic cortical development, the fate of adult SVZ progenitors in

vivo is determined by positional information; populations of adult SVZ progenitors appear to

be restricted and diverse in vivo 36, but much more plastic when cultured in vitro 37.

To our knowledge, SVZ progenitors have not yet been generated from ESCs. Primary SVZs,

when cultured, form neurospheres in vitro and are propagated with FGF2 and EGF 28, 38.

Hippocampal SGZ NSPCs

As in the adult SVZ, the hippocampal SGZ is maintained by a population of quiescent RGC-

like cells (reviewed by 1, 2). Often referred to as Type 1 cells, these progenitors have long

radial processes, express GFAP, BLBP, NESTIN and SOX2 and are generally considered to

be the primary progenitors of SGZ neurogenesis 39, 40. Once activated, these cells upregulate

TBR2 and DNA replication licensing factor MCM2, and become a replicative cell

population, sometimes referred to as Type 2 progenitors. These intermediate NSPCs express

DCX and PSA-NCAM, but not GFAP, have only short processes, and in turn give rise to

neuroblasts. Type 2 cells may arise from Type 1 cells through a SOX2 dependent reciprocal

relationship between the two cell types 40. The multipotency of SGZ NSPCs remains unclear

as under certain conditions, hippocampal SGZ NSPCs appear to display significant plasticity

in their lineage choice, both in vivo and in vitro 41, 42.

Primary SGZ progenitors form neurospheres and monolayers in vitro, and like SVZ cells,

are propagated with FGF2 and EGF 28.

Genetic regulation of NSPCs

Though embryonic and adult NSPCs have different characteristics, likely due to differences

in the expression of key proteins described above, it should be noted that NSPCs retain

significant plasticity and can robustly alter lineage choice as a consequence of altered

environmental signals 41, 42. While the mechanism of plasticity remains unknown, it is well

established that external signaling cues regulate many aspects of the replication,

differentiation, migration, maturation and death of NSPCs. Despite their differences, many
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regulator pathways are shared between populations of NSPCs; for example, FGF can be

used as a multifunctional growth factor to expand many types of NSPCs in vitro and in vivo 43–45. The differences between populations of NSPCs may not be inherently intrinsic but instead reflective of their different niche environments.

A number of cell types, including endothelial cells, ependymal cells, astrocytes, microglia

and NSPCs themselves, contribute to the neurogenic niche and help to regulate all aspects of

neurogenesis. Endothelial cells secrete vascular endothelial growth factor (VEGF), which

promotes the replication of both embryonic and adult NSPCs 46, 47. Conversely, spatial

restriction of other growth factors can confer lineage restriction to specific populations of

NSPCs. For example, unique to the SVZ, the ependymal cell layer of the lateral ventricles

secretes NOGGIN, a protein that antagonizes BMP-mediated astrocyte differentiation 48–51.

Astrocytes, both a product of NSPC differentiation and a component of the neurogenic

niche, have been shown to regulate proliferation, fate specification, migration, maturation

and synapse formation during neurogenesis, at least in part through modulating the effects of

factors secreted from blood vessels and ependymal cells 52, 53. A multitude of signaling

pathways regulate these diverse functions. Astrocyte derived WNT signaling influences

NSPC replication and differentiation 53, 54. ROBO receptors regulate the rapid migration of

SLIT1-expressing neuroblasts 55. Astrocyte-derived cholesterol supports synaptogenesis 56,

while astrocyte-secreted extracellular matrix proteins, such as Thrombospondins and Sparc,

modulate synapse formation 57, 58. Astrocyte released glutamate stimulates NMDRs and

regulates the activity-dependent survival of newborn neurons during adult neurogenesis 59.

Under basal conditions, microglia are responsible for phagocytosis of dead neurons 60, while

under inflammatory conditions, reactivated microglia secrete both pro- and anti-

inflammatory molecules 61. Even cell-cell interactions between NSPCs, through EGFR and

Notch signaling, help to maintain the balance between NSCs and NPCs 24, 25, 62.

Although external factors regulate NSPC function, an intracellular network ultimately

directs NSPC self-renewal and differentiation. Several common transcription factors are

required to maintain many NSPC populations in an undifferentiated state; notable among

these are SOX2, PAX6 and TLX. These transcription factors are key targets of cell cycle

regulators, microRNAs and epigenetic factors that are major intracellular regulators of

neurogenesis; many of these regulators act either cooperatively or in opposition.

Loss of cell-cycle inhibitors, including p16, p21, and p53, results in the activation and

subsequent depletion of NSPCs 63–66. For example, p21 directly binds and represses the

enhancer of SOX2 63. SOX1/2/3 have overlapping and redundant activity 67; the

overexpression of any promotes NSPC proliferation, whereas their loss induces cell-cycle

exit and onset of differentiation 3, 68. TLX also maintains NSPCs in the undifferentiated

state 69 by recruiting histone deacetylase (HDAC) to repress the transcription of several cell

cycle genes 70. MicroRNAs are short (~22 nucleotides) non-coding RNAs involved in gene

silencing through translational repression and/or mRNA destabilization. miR-9 was one of

the first microRNAs shown to regulate neurogenesis 71; it functions to decrease NSPC

proliferation and increase neuronal differentiation. Known targets of miR-9 include TLX 72,

FOXG1 73, and HES1 74, as well as key components of the FGF signaling pathway 75.

Mitotic exit of NSPCs is accompanied by a subunit switch in the chromatin-remodeling

SWI/SNF complex mediated by miR-9 and miR-124 76. Similarly, miR-137 decreases

proliferation and promotes differentiation of NSPCs, via targets found primarily in the
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epigenetic machinery 77–79. Conversely, the epigenetic machinery also regulates microRNA

expression. Methyl-CpG binding protein 1 (MBD1) directly represses miR-184; miR-184

promotes NSPC proliferation and inhibits neuronal differentiation 80. DNA methylation at

CpG dinucleotides are bound by a family of methyl-CpG binding proteins (MBDs),

including MBD1, MBD2, MBD3, MBD4, and MeCP2, leading to the recruitment of histone

deacetylase (HDAC) repressor complexes and inactive chromatin structures. MBD1−/−

NSPCs exhibit reduced neuronal differentiation and increased genomic instability 81, which

may be mediated, at least in part, due to the ability of MBD1 to repress FGF2 expression 82.

Thus, we come full circle. Cell cycle regulators repress transcription factors. Transcription

factors and microRNAs regulate the epigenetic machinery. Epigenetic modifiers regulate

key growth factors essential in the in vivo and in vitro NSPC niche (Table 2).

Systems biology approaches to understanding NSPC regulation

Systems biology applies both experimental and computational approaches to explain how

the numerous components of a cellular network interact to regulate molecular and cellular

fate. Two approaches are generally employed. First, computational models simulate the

intracellular interactions of key regulators, such as ligand-receptor dynamics, signal

transduction pathways or transcription factor networks. Second, statistical analyses reduce

large gene expression or protein datasets into principal components critical for regulating

cell fate choice. While these analyses helped to explain ESC fate regulation 91, 92, their

application to NSPCs to date has been limited.

Deterministic computational models, which always yield the same result given the same set

of initial conditions93, have been used to mathematically model signaling pathways

downstream of key growth factors and cytokines in NSPCs. Such work has already led to

insights into both the threshold levels of FGF2 required for NSPC maintenance 94 as well as

the neurotrophin-3 (NT-3) stimulation and downstream MAPK pathway activity required for

neuronal differentiation 95. Because computational models require precise knowledge of the

rate and binding constants of molecular interactions within the network, the lack of

experimentally measured constants in NSPCs has somewhat restricted the application of

these methods at this point in time.

One common outcome of deterministic models is network bistability, a situation where the

continuous change in one input results in a transition between two steady state solutions,

converting a graded input signal into an “all or nothing” biological response. For example,

fluctuations in NOTCH signaling cause oscillations in Hes1 expression 96–98. In NSPCs, this

results in a bistable switch regulating fate decisions between NSPC proliferation and

differentiation; inhibition of NOTCH signaling leads to downregulation of Hes1, ultimately

upregulating proneural genes such as Neurogenin2 (Ngn2) and the Notch ligand Delta-like1

(Dll1), and increasing neuronal differentiation 99. A subsequent study modeled the signaling

cross-talk between the NOTCH, SHH, WNT and EGF signaling pathways in the regulation

of Hes1 100.

The incorporation of stochastic statistical models, which include the effects of noise in

intracellular signaling pathways 93, will greatly improve computational simulations. Similar
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to ESCs, NSPCs are heterogeneous, with cells moving between two or more metastable

states, each defined by specific patterns of transcription factor expression, chromatin

modifications and biases in their differentiation potential 101. For example, ESCs with high

Nanog expression are less likely to differentiate than low Nanog expressing cells 92, an

observation that might be explained by state transitions resulting from stochastic gene

expression 102. Given that variable levels of SOX2, GFAP and HES1 can define distinct

NSPC subpopulations in the SVG and SVZ, the application of stochastic models to NSPC

behavior will be an important aspect of future computational models of NSPC regulation.

The increasing availability of gene expression and proteomic data sets from proliferating

and differentiating NSPCs in vitro and in vivo should facilitate statistical analyses to

elucidate regulatory networks. Gene expression changes during in vitro neural

differentiation of ESCs were used to identifiy a principal component of approximately 4,000

genes that described degree of neural commitment 103. Subsequently, Bayesian network

analysis of ESC neural differentiation found that GFAP upregulates genes in a neural gene

set created through principal component analysis 104. Additionally, the gene expression

profiles of NSPCs derived from human ESCs, human fetal NSPCs, oligodendrocyte

precursor cells and astrocyte precursor cells were compared in order to identify common and

unique characteristics of each examined NSPC population 105. Although ESC NSPC

samples were generated through different methods in multiple labs, Shin et al identified a

distinct ESC NSPC gene expression profile and concluded that ESC NSPCs had limited

overall similarity to fetal NSPCs. They further speculated that the high expression of WNT

molecules in ESC NSPCs may partially explain their broader differentiation potential

relative to fetal NSPCs 105.

Large data sets can also be used to ask specific questions concerning individual signaling

pathways or biological processes. For example, Wang et al superimposed those genes

differentially expressed before and after NSPC differentiation 106 with the protein–protein

interaction network, in order to identify a signaling network regulated by Rho-GDI-γ

(guanine nucleotide dissociation inhibitor) during NSPC differentiation 107. Finally, Fietz et

al identified genes differentially expressed between cortical zones by using mRNA

sequencing of fetal human and embryonic mouse tissue from various cortical zones. Because

the expression pattern also correlated to the relative abundance of RGCs, these genes, the

majority of which involved cell adhesion and the cell-extracellular matrix, were predicted to

promote the proliferation and self-renewal of NSPCs in the developing neocortex 108.

Advances in high throughput experimental techniques are rapidly creating large “omic”

datasets. It is our hope that these will be fruitfully mined by systems biology approaches in

order to improve our understanding of the complicated intracellular mechanisms regulating

NSPC fate.

Discovery of induced NSPCs

The induction of iNSPCs from somatic cells provides a near limitless source of neural cells

for cell-replacement therapies in vivo and cell-based in vitro models of neurological disease.

iNSPC technology provides a fast and robust protocol to obtain proliferative neural
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precursors and generates more homogeneous populations than current induced Neuron

(iNeuron) methods 109–112, all while bypassing time-consuming induced pluripotent stem

cell (iPSC) generation 113, 114. This year, five groups reported the generation of iNSPCs

from fibroblasts 115–118 and a sixth reported iNSPC generation from urine 119. Approaches

for the iNSPC reprogramming generally follow one of two strategies: 1) incomplete iPSC

reprogramming combined with neural growth conditions and 2) overexpression of neural

transcription factors.

Incomplete sets of the original iPSC reprogramming cocktail (OCT4, SOX2, KLF4 and c-

MYC) can reprogram iNSPCs from fibroblasts. Both constitutive expression of SOX2, KLF4

and c-MYC, when paired with transient OCT4 activity 115, as well as overexpression of

OCT4, SOX2 and KLF4 in the presence of another pluripotency gene, ZIC3 116, are

sufficient to generate iNSPCs. For reasons not yet understood, the former method generated

CNS iNSPCs, while the latter generated PNS iNSPCs. iNSPCs were also generated from

exfoliated renal epithelial cells present in urine by transfection with episomal vectors

carrying the reprogramming factors OCT4, SOX2, SV40LT and KLF4, as well as the

microRNA cluster MIR302–367 and a cocktail of small molecules 119. This last report

generated integration-free iNSPCs, demonstrating that iNSPC multipotency can be

maintained without persistent transgene expression.

Combinations of neural transcription factors also can be used to reprogram iNSPCs from

fibroblasts. Overexpression of SOX2, BRN2, NR2E1, BMI1, HES1, HES5 and c-MYC

produced iNSPCs 120, as did a smaller combination of just three factors, SOX2, BRN2 and

FOXG1 117. Most recently, a third group used just SOX2 overexpression to generate

tripotent iNSPCs 118, though this method is markedly less efficient, requiring several rounds

of selection by neurosphere suspensions. Generating iNSPCs with just SOX2 lends itself to

the possibility of patterning iNSPCs to specific identities by inducing with SOX2 in

conjunction with other subtype-specific growth conditions or transcription factors.

To date, the combinations of factors responsible for iNSPC generation represent some of the

most critical genes in the maintenance of NSPC populations in vivo. This is unlikely to be a

coincidence. New methods to permit patterning of specific regional identities of iNSPCs are

critical. We can imagine that at least two possible approaches are feasible: cellular

patterning and environmental signaling. In the first, iNSPC cellular identity is further

specified by overexpression of cell-type specific NSPC transcription factors or microRNAs

unique to the desired identity. For example, genes such as FOXG1 might help to specify

embryonic cortical NSPCs. Alternately, expansion of iNSPCs in growth conditions

supportive of a particular fate may provide reinforcing patterning cures. For example, ESC-

derived NSPCs are typically cultured in vitro with FGF2 to maintain forebrain identity and

with SHH/FGF8/CHIR99021 (a WNT agonist) to maintain midbrain identity 121. By better

considering what distinguishes extracellular niche signals and endogenous transcriptional,

epigenetic and microRNA modulators of cellular identity, protocols for iNSPC generation

will be refined.

Ladran et al. Page 7

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2014 September 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Role of NSPCs in disease

While many neurological disorders are traditionally thought to be diseases of mature

neurons, new lines of evidence now suggest that aberrant NSPC function may contribute to

psychiatric diseases, such as schizophrenia and autism spectrum disorders (ASDs),

neurodegenerative diseases, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD)

and certain brain tumors (Table 3).

Mutations in Disrupted-in-Schizophrenia (DISC1) result in an extremely rare monogenic

form of schizophrenia. It has long been known that dominant negative DISC1 expression

during mouse embryonic cortical development leads to cellular and behavioral phenotypes

consistent with schizophrenia 122–124. Now, it has also been shown that silencing of DISC1

specifically in adult hippocampal NSPCs leads to accelerated dendritic growth, soma

hypertrophy and aberrant neural organization 125, mediated in part by depolarizing GABA

signaling 126. This was an important proof of concept that loss of DISC1, specifically in

adult neurogenesis, can lead to behavioral phenotypes even more severe than those observed

by complete loss of neurogenesis.

A deletion at 22q11 (DiGeorge Syndrome) significantly increases genetic risk for

schizophrenia and ASD. In a mouse model of this disease, significantly reduced expression

of six cell cycle related genes located in the 22q11 region was observed during embryonic

development, in conjunction with reduced NSPC proliferation, aberrant migration and

altered connectivity 127. Notably, of the two populations of embryonic cortical NSPCs

discussed earlier in the review (multipotent RGCs and transit-amplifying BPs), only BPs

were observed to be affected in this 22q11 mouse model.

At onset, ASD is often characterized by excessive brain volume. MRI studies have found

increased cortical white matter in 2- to 4-year-old autistic children, 128–130 and it has been

hypothesized that the surplus of neurons in the prefrontal cortex in ASD131 may be due to

excessive proliferation of NSPCs. Among other roles, Myocyte enhancer factor 2 (MEF2)

regulates the NSPC differentiation and is a key regulator of signaling pathways that play a

role in the pathogenesis of ASD 132, 133. When MEF2 was removed from NSPCs using a

Nestin-Cre-floxed-MEF2C, though the conditional knockout mice had normal NSPC

proliferation and survival, neurons were abnormally organized and showed immature

electrophysiological properties 134. Additionally, these MEF2C null mice showed abnormal

anxiety and decreased cognitive function, recapitulating those observed in the MECP2

mouse model of Rett Syndrome. This demonstrates that loss of an autism risk gene in

NSPCs may contribute to cellular and behavioral phenotypes consistent with this disorder.

Evidence for abnormal adult neurogenesis has been accumulating in both PD and AD. While

α-synuclein protein (α-SYN) accumulation is associated with the death of dopaminergic

neurons in PD, in the SGZ NSPCs, it leads to down-regulation of NOTCH1 signaling,

ultimately leading to increased NSPC proliferation and impaired neuronal differentiation

and maturation 135. This phenotype can be rescued by knockdown of the cell cycle gene

p53, suggesting that p53 moderates the effects of α-SYN on repression of NOTCH1 and

disruption of neurogenesis 135. Similarly, aberrant expression of a number of candidate AD
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genes in NSPCs has been reported to cause aberrant NSPC replication and differentiation in

the adult hippocampus. Apolipoprotein E (APOE) deficiency leads to increased proliferation

of SGZ NSPCs, and ultimately to the depletion of the NSPC pool 136. Knockdown of

Presenilin (PS1) promotes increased differentiation in the adult SGZ, reducing

neurogenesis 137. Finally, over-expression of Amyloid precursor protein (APP) causes

reduced survival and proliferation of SGZ NSPCs 138. These findings imply that

dysregulation of neurogenesis may play a role in neurodegenerative disease pathology 139.

Medulloblastoma (MB) is the most frequent form of malignant brain tumor in children, and

in a subset of cases, the cell type of origin is thought to be NSPCs 140. When microRNA

expression profiles of MB patient samples were analyzed, the target genes of the down-

regulated microRNAs in MB tissue included those involved in NSPC migration, cell

adhesion and development, particularly reelin (RELN) and myelin transcription factor 1

(MYT1) 141. The target genes of the up-regulated microRNAs, conversely, included many

associated with metastatic disease. In addition to regulating healthy NSPCs, described

earlier in this review, abnormal microRNA-regulated networks may be associated with

transformation of normal NSPCs into brain tumor stem cells. This is consistent with the

stem cell hypothesis of cancer, which supposes that cancer can result from the dysregulation

of growth and survival pathways in normal stem and progenitor cells.

It seems likely that aberrant NSPC function may cause or exacerbate a number of

neurological disorders. We hope that the study of NSPCs may lead to insights into the

origins of these disorders and ultimately to therapies by which to correct these

malfunctioning cells and ameliorate the disease phenotypes.

Future clinical uses of NSPCs

While laboratory use of iNSPCs could directly lead to insights into the genetic and cellular

predisposition of a number of human diseases, iNSPCs can also be used as a source of cells

for either cell-based human therapies or drug-based high throughput screens for novel

therapeutics.

Neurodegenerative diseases result from the loss of neurons, either locally (such as the

dopaminergic neurons of the substantia niagra in PD) or globally (throughout the cortex in

AD). Though fetal ventral mesencephalic transplants into PD patients have demonstrated

that transplanted cells survive and integrate into existing circuits 142, 143, these methods have

yet to deliver clinical benefit. With their ability to expand in vitro and to differentiate into

various neural lineages, iNSPCs serve as a promising source for genetically-matched neural

cells for cell-replacement therapies for many neurodegenerative diseases. In 2011, midbrain

dopaminergic neurons were derived from human iPSCs and successfully engrafted into three

animal models of PD 121. Long-term transplantation in the mice and rat models

demonstrated robust survival of the dopaminergic neurons and improvements in movement-

based phenotypes, though subsequent grafts into monkey models demonstrated the

scalability of the process but failed to show phenotypic improvements (Figure 1). A number

of technical concerns need to be addressed, particularly the relatively inefficient integration
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after transplantation. Nonetheless, such progress suggests that iNSPCs are a viable cell

source for regenerative medicine.

In addition to cell-replacement therapies, NSPCs hold great potential as a platform for high-

throughput screening to identify novel drug-based therapies. As a validation for future high-

throughput screens, Marchetto et al demonstrated the ability of two compounds, IGF1 and

genamicin, to ameliorate the neuronal phenotype of Rett syndrome human iPSC-derived

neurons in culture 144. Furthermore, we demonstrated the ability of a clinically utilized

antipsychotic, loxapine, to improve the neural connectivity of schizophrenia iPSC-derived

neurons in culture 145 and Israel and colleagues demonstrated that treatment of AD iPSC

neurons with β-secretase inhibitors led to significant reductions in phospho-Tau levels 146. A

major technical issue is the scalability of both neural differentiation and phenotypic

screening to permit testing of thousands of compounds. Though we are unaware of any high

throughput screening using iNSPCs for neurological diseases to date, a human ESC-based

phenotypic assay successfully screened for small molecules that inhibit neuronal

degeneration induced by activated microglial cells 147. Their phenotypic screen of >10,000

compounds identified approximately 0.3% hits across a number of biological pathways,

providing an excellent proof-of-principle that such screens are both feasible and can yield

meaningful hits (Figure 2).

We predict that iNSPC-based high-throughput screens will soon be routinely performed to

identify novel therapeutics across a range of neurological diseases. Furthermore, by

screening complex genetic diseases using iNSPCs derived from an increasing number of

individuals characterized by heterogeneous clinical outcomes and drug-responsiveness,

iNSPC-based high-throughput screens will identify drugs suitable for individuals with

known treatment resistance and should ultimately realize the potential system for

personalized medicine.

Summary

Until recently, it was thought that adult humans could not generate new neurons. Now, it is

widely accepted that neurogenesis continues throughout adult life, though the role for this

process in health and disease is still being unraveled. Evidence continues to accumulate that

aberrant replication, differentiation or migration of NSPCs can lead to a variety of

neurological conditions, and we predict that NSPCs may one day be a therapeutic target in

the treatment of psychiatric and neurodegenerative disorders.
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Figure 1.
Successful cell transplantation of human ESC-derived dopaminergic neurons into a monkey

model of PD (MPTP lesioned rhesus monkeys). Left, representative graft 1 month after

transplantation, showing expression of the dopaminergic neuron marker Tyrosine

Hydroxylase (TH), with surrounding TH+ fibers (arrows). Right, co-expression of human

specific cytoplasm marker SC-121 (red) and TH (green) in graft.
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Figure 2.
Paradigm of a high-throughput screen for small-molecules capable of neural protection of

ESC-derived motor neurons and astrocytes in the presence of activated microglia. After

screening more than 10,000 small molecules, the 0.3% hit rate included compounds acting

in the activation of the Nrf2 pathway in microglia and astrocytes, direct protection of

neurons from nitric-oxide-induced degeneration and inhibition of nitric oxide production by

microglia. (Adapted from Hoing et al, 2011)
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Table 1

Partial list of NSPC markers helpful in distinguishing NSPC subpopulations

NSPC
Population

Marker References

Embryonic NC MSX1/2, PAX3/7, ZIC1, SNAI1, FOXD3,
SOX9/10, ID3, p75, AP2

Hong et al, 2007 13; Light et al, 2005 14; Bellmeyer et al, 2003 15;
Mori et al, 1990 16; Stemple et al, 1992 17; de Croze et al, 2011 18

Embryonic Cortical DLX1/2, NKX2.1, TBR2 Basak et al, 2007 25; Mizutani et al, 2007 24; Englund et al,
2005 26

Adult SVZ Type B: GFAP
Type A: DCX, PSA-NCAM, DLX2
Type C: MASH1

Doetsch et al, 1996 32; (Reviewed by Ming et al, 2011 1 and
Zhao et al, 2008 2.)

Adult SGZ RGC (type 1): GFAP, BLBP
Progenitor/Neuroblast (type 2): TBR2, MCM2,
DCX

Garcia et al, 2004 39; Suh et al, 2007 40; (Reviewed by Ming et
al, 2011 1 and Zhao et al, 2008 2.)

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2014 September 10.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Ladran et al. Page 22

Table 2

Partial list of extrinsic and intracellular factors regulating NSPCs. (Adapted from and reprinted with

permission from Zhao et al, 2008.)

Factors Proliferation Differentiation Survival References

Extrinsic factors

Growth factors &
neurotrophins

  BDNF + (SVZ) +(SGZ) Henry et al, 2007 83; Scharfman et al, 2005 84

  EGF + Doetsch et al, 2002 37; Aguirre et al, 2010 62

  FGF + Westermann et al, 1990 43; Jin et al, 2003 44; Zhao et
al, 2007 45

  PDGF + + (astrocyte) Jackson et al, 2006 85

  VEGF + + (neuron) Leventhal et al, 1999 46; Cao et al, 2004 47

Morphogens

  BMP + (astrocyte) Nakashima et al, 1999 48; Yanagisawa et al, 2001 49

  Noggin + (neuron) Lim et al, 2000 50

  Notch + - (neuron)
- (glia)

Mizutani et al, 2007 24; Basak et al 2007 25; Aguirre et
al, 2010 62

  SHH + Ahn and Joyner, 2005 86; Banerjee et al, 2005 87;
Machold et al, 2003 88; Palma et al, 2005 51

  WNT3 + Lie et al, 2005 54; Song et al, 2002 53

Intracellular pathways

Transcription factors

  SOX2 + Graham et al, 2003 3; Thomas et al, 2008 4

  TLX + Shi et al, 2004 69; Sun et al, 2007 70

  PAX6 + (neuron) Ericson et al, 1997 8; Zhang et al 2010 7

  Olig2 + (oligodendrocytes) Zhou et al, 2001 89

Epigenetic regulators

  MBD1 + (neuron) Zhao et al, 2003 81; Li et al, 2008 82

  Histone deacetylase + (with TLX) Hsieh et al, 2004 90; Sun et al, 2007 70

Cell cycle regulation

  p16INK4a - Molofsky et al, 2006 64

  p21 - Kippin et al, 2005 66; Marques-Torrejon et al, 2013 63

  p53 - Gil-Perotin et al, 2006 65

microRNAs

  miR9 - + (neuron) Krichevsky et al, 2006 71; Yoo et al, 2009 76

  miR124 - Yoo et al, 2009 76

  miR137 - + Sun et al, 2011 77; Smrt et al, 2010 78; Szulwach et al,
2010 79.

  miR184 + - (neuron) Liu et al, 2010 80
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