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Abstract

Finding gene functions discussed in the literature is an important task of information

extraction (IE) from biomedical documents. Automated computational methodologies

can significantly reduce the need for manual curation and improve quality of other

related IE systems. We propose an open-IE method for the BioCreative IV GO shared task

(subtask b), focused on finding gene function terms [Gene Ontology (GO) terms] for dif-

ferent genes in an article. The proposed open-IE approach is based on distributional

semantic similarity over the GO terms. The method does not require annotated data for

training, which makes it highly generalizable. We achieve an F-measure of 0.26 on the

test-set in the official submission for BioCreative-GO shared task, the third highest

F-measure among the seven participants in the shared task.

Database URL: https://code.google.com/p/rainbow-nlp/

Introduction

Mining biomedical literature aims to reduce manual labor

and provide enriched information that can empower ad-

vances in medical research and treatments. Lu et al. (1)

demonstrated that there is an increasing interest to use

text-mining techniques for curation workflows. Currently,

literature curation is challenged by a lack of automated an-

notation techniques, particularly for Gene Ontology (GO)

annotations (1). In medical informatics alone, the number

of indexed articles has increased by an average of 12%

each year between 1987 and 2006 (2, 3), with close to 20

million articles indexed in PubMed in 2013. With an

increasing number of publications detailing complex

information, the need to have reliable and generalizable

computational techniques increases rapidly.

Finding gene functions discussed in literature is crucial

to genomic information extraction (IE). Currently, tagging

the gene functions in published literature is mainly a man-

ual process. Curators find gene function evidence by re-

viewing each sentence in relevant articles and mapping the

results to standard ontologies, and, specifically for this

problem, to the GO (4), a controlled vocabulary of gene

functions. The BioCreative IV GO workshop (5) aims to

automate gene function curation through computational

methods. With a focus on gene functions, it includes two

subtasks: (i) retrieving GO evidence sentences for relevant
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genes and (ii) predicting GO terms for relevant genes. We

focus on subtask b, which finds the related gene functions

(GO terms) in a set of genes discussed in an article. More

detail about the shared task and the corpus can be found in

Auken et al. (6). This task is similar to BioCreative I sub-

task 2.2, which was held in 2004 (7). Blaschke et al.

(7) summarized the results for BioCreative I. For subtask

2.2, the highest precision was reported to be 34.62% (8).

BioCreative IV GO subtask 2 includes an annotated corpus

to enable measurement of recall and F-measures. Couto

et al. (9) used an information retrieval technique to find

related sentences and GO terms. Chiang et al. (8) com-

bined sentence classification with pattern mining. Ray

et al. (10) proposed a solution based on probabilistic

model and naı̈ve Bayes classifier. Most of the participants

in the previous related task focused on information content

and statistical models combined with machine learning.

Here, we propose an unsupervised method based on distri-

butional semantic similarity that can be easily applied for

different types of texts and ontologies.

We decided to apply an unsupervised method to see

how well semantic similarity methods without any ma-

chine-learning or engineered features could perform com-

pared with existing methods. If the performance is on par

with the supervised methods, then we can benefit from un-

supervised technique to leverage the performance of the

supervised methods. In addition, finding gene functions

discussed in a document seems a good application for

semantic similarity, enabling comparison of different se-

mantic similarity methods. None of the previous work in

BioCreative I used semantic similarity methods, including

vector- or graph-based methods. Our proposed technique

is completely unsupervised, based solely on semantic simi-

larity without training on the provided data set; this char-

acteristic makes the method unlikely to overfit the data set

and generalizable to the extraction of any major concepts

mentioned in a document. The proposed method achieved

the third highest F-measure among the seven participants

in the shared task.

Material and methods

Our method is based on distributional semantic similarity

of sentences to GO terms. We use semantic vectors pack-

age (11) implementation of latent semantic analysis (LSA)

(12) with random indexing (13) to calculate semantic simi-

larities. GO terms’ semantic vectors are created based on

GO names defined in GO; one semantic vector is created

for each term in the ontology. Stop words are removed

from GO name, and they are generalized by Porter stem-

ming (14).

Figure 1 shows the overall flow of our proposed

method. After creating GO semantic vectors, the objective

is to find whether a sentence is related to a gene. We do

this by using lexical patterns and generalizing the sentence

and gene symbol (e.g. removing the numbers and

Figure 1. This diagram shows the high-level flow of the proposed system. The left column shows the steps to create semantic vectors for each GO

term. The right column displays the steps for finding GO terms in a document.
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nonalphabetic characters). If ‘Sentence Gene Matcher’ pre-

dicts that a sentence is related to a gene, then we calculate

its semantic similarity to all GO terms using already gener-

ated semantic vectors. The articles are provided in BioC

format (15) in which sentences, passages and the types of

passages (heading, paragraph, etc.) are identified. The ‘Go

Finder’ module finds all related GO terms to the sentence

and generates the triplet of sentence, gene and GO term.

Finally, the shared task expected output format is gener-

ated by ‘BioC output generator’. In the next section, we

explain the ‘GO Finder’ module in more detail.

Semantic similarity

LSA with random indexing is used for calculating semantic

similarity. LSA is a vector-based semantic similarity method

that applies dimension reduction on document-term matrix

before calculating cosine similarity of two terms.

The original proposed LSA algorithm uses singular value

decomposition (SVD) for dimension reduction (12). This is

a computationally expensive algorithm. Random indexing

(13) technique has shown to be as effective as SVD but with

linear complexity (16, 17). The semantic vectors are created

for all GO terms regardless of their position in the GO

graph. For creating document-word matrix, we consider

each GO concept as a document and use the name field

(‘GO term’) in GO for extracting terms of the node. A se-

mantic vector is created for each concept in the ontology.

For extracting terms from GO names, they are preprocessed

by removing stop words (e.g. ‘the’, ‘a’), and then the ex-

tracted terms are generalized by Porter stemming (14).

‘GO Finder’ module

GO Finder finds related GO terms for each sentence. We

define G as a set of top m GO terms with highest semantic

similarity to the sentence. D is the set of top n GO terms

with high similarity to the abstract of the related article.

The following function returns top k similar GO terms for

a given query:

TopSimilarGO query; kð Þ

¼ fx jx 2 GOTerms ^ j fy 2 GOTerms j

Simðx;queryÞ < Simðy;queryÞg j < kg

And G and D sets are

GðsentenceÞ ¼ TopSimilarGOðsentence;mÞ
D abstractð Þ ¼ TopSimilarGO abstract;nð Þ

If a sentence is predicted to have the gene mention, the

predicted GO terms for the sentence and gene are the

conjunction of top similar GO terms to the sentence (set G)

and top similar GO terms to the related abstract (set D):

GeneGOðgene; sentence; abstractÞ

¼ fGðsentenceÞ \ DðabstractÞg if HasGene

ðsentence; geneÞ else fg

A GO term with the highest semantic similarity to the

sentence in the GeneGO set will be chosen as the final GO

annotation for each gene in the sentence. For example, if a

sentence top m( = 2) similar GO terms are {g5, g10} and the

abstract top n( = 5) GO terms are {g4, g8, g5, g2, g9}, then

the final predicted GO terms for the sentence related to the

gene will be {g5}. The tuning parameters m and n control

precision and recall.

Table 1 summarizes the number of sentences in the

training set that were detected by ‘Sentence Gene Matcher’

as relevant to a gene and also annotated to have a gene

function. The table shows that ‘abstract’, ‘front’ and

‘title2’ sections of each document are the most important

sections that can include gene function. The passage types

appearing in Table 1 are taken exactly from the corpus.

Table 2 shows an example for each passage types from

publications in the train set. We found that the first sen-

tences of paragraphs have information about GO terms,

but including all sentences in a paragraph will significantly

reduce the precision. Therefore, we limit searching for the

gene functions to the mentioned sections of the article. We

choose one set of values for m and n, for ‘Front’, ‘Abstract’

and ‘Title2’ (mFAT, nFAT), and choose a different set for

the first sentence of the paragraphs (mParagraph,

Table 1. The table summarizes the number of sentences in

the training set, which was detected by ‘Sentence Gene

Matcher’ as relevant to a gene and also annotated to have a

gene function

Passage type With gene function Total %

front 26 67 39

title_2 149 797 19

abstract 225 1253 18

paragraph 1700 20 703 8

fig_title_caption 17 412 4

fig_caption 99 6009 2

table_title_caption 0 47 0

title_1, title_3, title_4 0 26 0

The different passage types are ‘front’ for the title of the article, ‘title_1’

refers to section headings like ‘Introduction’, ‘title_2’ is the section subhead-

ings that sometimes describes the specific topic/finding of the section, ‘title_3’

and ‘title_4’ are more deeper levels of section headings, ‘abstract’ is the

abstract content, ‘fig_title_caption’ is the title of a figure caption and

‘fig_caption’ is the caption of the figure, ‘table_title_caption’ is the caption of

a table.
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nParagraph). Figure 2 illustrates the process of generating

output with an example. Next section shows detailed ana-

lysis of the impact of the tuning parameter on precision

and recall.

Evaluation method

The evaluation method is explained in detail by Mao et al.

(5). The GO terms predicted by the system are compared

with gold standard to calculate precision, recall and F-

measure. In addition to exact match, hierarchical preci-

sion, recall and F-measure are used to evaluate the systems.

In the hierarchical evaluation method, all of the ancestors

of an annotated GO term in gold standard and system out-

put are used to calculate the precision and recall.

Hierarchical measures are calculated using the following

formula below, where Predictedexpanded and Goldexpanded

are system output and gold standard annotations expanded

with the ancestor of selected GO terms in the ontology.

P ¼
jPredictedexpanded \Goldexpandedj

jGoldexpandedj
;

R ¼
jPredictedexpanded \Goldexpandedj

jGoldpredictedj

Results and discussion

Tuning parameters

To achieve the highest F-measure, the tuning parameters

(m and n) need to be adjusted accordingly. We use two sets

of values for m and n; one set for the first sentence of each

paragraph (mParagraph and nParagraph) and another for

FAT passage types (mFAT and nFAT). To find the best tun-

ing parameters, we evaluate the system with different val-

ues for a particular parameter while values of other

parameters are constant. The experiment is repeated for all

four parameters. Figure 3 shows variation of performance

when tuning parameters change. Overall when parameters

increase, precision increases and recall decreases. We tried

to find the values that yield maximum F-measure.

Figure 3a depicts precision, recall and F-measure change in

respect to mFAT changes. As mFAT increases, precision de-

clines and recall increases.

The maximum F-measure is achieved for mFAT = 9.

Therefore, we assign mFAT to 9, and try to find the best

value for mParagraph. Figure 3b shows the change of per-

formance based on change of mParagraph and best result

achieved for mParagraph = 15. Figure 3c shows variation

of performance when nFAT varies, and Figure 3d shows

performance change when nParagraph is changed while

other parameters are constant. The best F-measure of

0.294 is achieved for mFAT = 9, mParagraph = 2,

nParagraph = 15 and nFAT = 75.

When mParagraph varies, the change in F-measure is

not as significant as when mFAT varies. In addition, recall

is almost constant for mFAT >2. This shows that consider-

ing more than two GO terms for each sentence in FAT sec-

tions does not help us much and can only decrease the

precision. On the other hand, considering only one top GO

term for the first sentence of each paragraph gives the max-

imum boost to the recall.

Results comparison

Having the tuned parameters, we compare the perform-

ance of the proposed intersection approach with alterna-

tive systems (without intersection algorithm or limit on

section types). In addition, we compare the contribution of

the first and the last sentences of paragraphs. Table 3

shows the performance of different settings. The first

Table 2. This table lists description of different passage types appeared in the corpus along with an example for each type

Passage type Description Example

Front The title of the document Activation of ASK1, downstream MAPKK and MAPK isoforms during

cardiac ischaemia

Abstract The content of abstract section of the article p38 MAPK is activated potently during cardiac ischaemia, although the

precise mechanism by which it is activated is unclear. We used the isolated

perfused rat heart…

Title_1 Section title ‘Introduction’, ‘Results’, ‘Discussion’

Title_2 Subsection title. Nuclear Translocation of Fussel through Medea

Title_3 Subsubsection title. An inline heading that

appears at the beginning of a paragraph.

RNA interference by feeding

GC analysis

Title_4 An inline subheading that appears at the

beginning of a paragraph.

Materials

Image Analysis

Title_3 and Title_4 are similar, but we maintain the naming from the corpus to keep it consistent with the data.
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experiment tests how much the intersection approach im-

proves the results in comparison to just finding semantic

similarity of each sentence. The first four rows in Table 3

do not use intersection and simply use the most similar GO

term to each sentence. The last five rows in Table 3 use the

intersection method. The best recall (0.518) is achieved by

not using intersection and not limiting scope to any specific

part of the document; however, the precision is low.

Figure 3. (a) Top-left diagram depicts precision, recall and F-measure change in respect to mFAT (‘Front’, ‘Abstract’ and ‘Title’) changes when other

parameters have constant values (mParagraph = 1, nFAT = 100, nParagraph = 15). (b) Top-right diagram shows the change of performance based on

changes of mParagraph when mFAT = 9, nFAT = 100, nParagraph = 15. (c) Bottom-left diagram shows the change of performance when nFAT varies

and mFAT = 3, mParagraph = 1, nParagraph = 15. (d) Bottom-right diagram shows the change of performance when nParagraph varies and mFAT = 3,

mParagraph = 1, nFAT = 100.

Figure 2. This flowchart shows the process of finding GO terms for each gene in a given document by an example. The example sentence category is

‘front_2’ (FAT sections). With the exception of the value for n and m parameters, the process is the same as FAT for sentences in paragraphs.
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Limiting the scope to paragraph and FAT improved the

precision slightly (þ0.009) and decreased recall (�0.020).

Similarly, including only Paragraph section improved pre-

cision and reduced recall a little (þ0.010 precision, �0.025

recall). When only the FAT section is included, the preci-

sion increased significantly and recall also dropped sharply

(þ0.199 precision, �0.246 recall). This yields a higher

F-measure than including paragraph or all sections. In

short, when we limit the scope, the precision increases and

recall decreases. We see the same pattern with intersection

approach, but precision remains high in comparison with

no-intersection approach. When we compare intersection

and no-intersection approaches including all sections

(Table 3, row 1 and row 5), it shows that intersection re-

duces recall by 0.213 but increases the precision by 0.186.

In another experiment, we found that limiting search to

first sentence of paragraph sections can improve the preci-

sion significantly. The last four rows of Table 3 compare

the performance when different parts of the paragraph are

included; they show that including the first sentence yields

the best F-measure and precision.

In Table 4, we compared four settings for creating se-

mantic vectors: (i) using only the GO terms, (ii) using GO

term and definition, (iii) using GO term and synonym and

(iv) using GO term, definition and synonym. Using only

terms to create vectors achieves the best results. This

may be mainly to the similarity of GO terms, and more

description inclusion causes the vector to easily return in-

correct GO term with higher similarity.

Conclusion

We proposed an unsupervised approach to extract gene func-

tions from documents. The proposed approach only uses GO

terms’ names for creating semantic vectors. We tried using

GO terms description, but it does not help. Using a more

fine-tuned vocabulary set for each GO term may result in

more accurate vectors and may increase the performance of

this method. In addition, using term–term semantic similarity

for expanding sentence terms can be evaluated. We used an-

notations for finding the important passage types, evaluating

the method and finding the best settings for the parameters.

The main advantage of using unsupervised open-IE technique

is that it can easily be generalized and applied to similar rela-

tion extraction problems. The results from this method can

be used as a baseline for supervised systems. In the future, we

plan to combine this approach with supervised techniques.

The source code and outputs of each experiment are avail-

able in https://code.google.com/p/rainbow-nlp/.
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Table 3. This table shows performance of different settings on dev-set

Precision Recall F-measure

No intersection/All sections included 0.082 0.518 0.141

No intersection/ParagraphþFAT 0.091 0.498 0.155

No intersection/Paragraph 0.092 0.493 0.155

No intersection/FAT 0.281 0.272 0.276

Intersection/All section 0.268 0.305 0.285

Intersection/Paragraph last sentenceþFAT 0.346 0.245 0.287

Intersection/Paragraph all sentencesþFAT 0.316 0.278 0.296

Intersection/Paragraph last and first sentencesþFAT 0.348 0.261 0.299

Intersection/Paragraph first sentenceþFAT 0.366 0.252 0.298

For intersection approach, the tuning parameter values are mFAT = 9, mParagraph = 2, nParagraph = 15 and nFAT = 75.

Random index algorithm random function’s seed was fixed to ‘1234’.

Table 4. Four settings for creating semantic vectors are compared in this table: (i) using only the GO terms,

(ii) using GO term and definition, (iii) using GO term and synonym and (iv) using GO term, definition and

synonym. For all experiments in this table, FAT and Paragraph (only first sentence) sections are considered

Precision Recall F-measure

Create vectors with GO terms only 0.366 0.252 0.298

Create vectors with GO termsþdefinitions 0.247 0.229 0.238

Create vectors with GO termsþdefinitionsþ synonyms 0.227 0.196 0.210

Create vectors with GO termsþsynonym 0.197 0.189 0.193
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