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Abstract

Angiogenesis is a critical process for tumor growth and metastatic dissemination. There is

tremendous interest in the development of noninvasive methods for imaging tumor angiogenesis,

and ultrasound (US) is an emerging platform technology to address this challenge. The

introduction of intravascular microbubble contrast agents not only allows real-time visualization

of tumor perfusion during an US examination, but they can be functionalized with specific ligands

to permit molecular US imaging of angiogenic biomarkers that are overexpressed on the tumor

endothelium. In this article, we will review current concepts and developing trends for US

imaging of tumor angiogenesis, including relevant preclinical and clinicsal findings.
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Cancer is one of the leading causes of death and, in 2013 alone, as many as 1.6 million new

cases are expected to occur, bearing tremendous costs on the healthcare system. A key

mechanism of cancer development is angiogenesis [1]. Angiogenesis is a process by which

new blood vessels develop to help support the metabolic demands of a growing tumor. This

process is a fundamental step for tumor growth, metastasis and a prediction of behavior for

certain cancers [2-4]. Many tumors, in fact, cannot grow beyond 1–2 mm3 in size without

the angiogenic progression to sufficiently provide oxygen and nutrients to the tumor [5]. The

interplay between proangiogenic and antiangiogenic signaling molecules control and

maintain tumor angiogenesis. Several angiogenic biomarkers and signaling molecules are

present and overexpressed within a tumor. The most characterized and the main molecular

regulator that is present on endothelial cells is the VEGF receptor (VEGFR) [6,7].

Overexpression of VEGFR has been linked to tumor progression and poor prognosis [8].
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Other important biomarkers that play a role in angiogenesis include (but are not limited to)

αvβ3 integrin [9], P-selection [10] and endoglin [11].

Newly formed tumor vessels have inherent abnormal phenotypes, with many gaps between

the endothelial cells, abnormal basement membrane thicknesses and overall tortuous

organization [12]. The intrinsic leakiness of the new vessels results in increased interstitial

fluid pressure causing issues with delivery of drugs and therapeutics due to the slow

diffusion process [13]. Additionally, flow stasis occurs which can lead to hypoxia and

upregulation of angiogenic markers such as VEGF resulting in a cycle of tumor growth [14].

Thus, the difficulty in effectively delivering therapeutic drugs has proven to be a challenge

in the treatment of many cancer types.

The ability to image and quantify tumor perfusion is highly desirable in the clinical

evaluation of cancer changes. Angiogenesis provides a valid opportunity to differentiate

between normal and cancerous tissues [15,16]. Morphologically defining a tumor requires

outlining of the microvessel density (MVD), which has been shown to be an independent

predictor of malignant disease and a useful prognostic tool [15,17,18]. Thereunto, ultrasound

(US) has shown great potential in providing clinically relevant information such as tumor

perfusion, structure and functional feature [19,20]. US has progressed vastly since its

inception and has become one of the most widely used modalities for diagnostic imaging.

This reputation stems from its ease of accessibility, portability, low cost, superior safety,

excellent spatial resolution and real-time imaging capabilities. US has set itself apart from

other modalities in imaging breast [21], liver [22] and other tissues due to these

aforementioned favorable properties [23].

With the advent of microbubble (MB) contrast agents, characterization of tissue perfusion

and vascular volume is possible with the application of a dynamic contrast-enhanced US

(DCE-US) imaging session. MBs considerably improve the sensitivity and specificity of US

imaging [24]. These US contrast agents are gas-filled, lipid-shelled, micron-sized bubbles

that circulate strictly within the vasculature, and have a circulatory lifetime on the order of

minutes. The outer lipid shell stabilizes the inner gaseous core and allows for flexibility in

composition and properties of the MB, including the ability to use targeted molecules

[25,26].

Owing to nonlinear oscillations and acoustic impedance mismatch between the contrast

agent and surrounding blood and soft tissue, MBs produce a unique US signal. Using this

knowledge, we can selectively isolate the MB signal using various techniques to enhance the

contrast agent signal-to-noise ratio. In addition, MBs can boost grayscale echogenicity up to

27 dB [24]. One unique quality of MBs is the deliberate and rapid destruction of these

agents using a short high-intensity pulse sequence. Once MBs are destroyed in a particular

region-of-interest (ROI), the subsequent reperfusion can be visualized using DCE-US

imaging. This US imaging technique is termed MB destruction–replenishment imaging and

the acquired time-intensity curve data (either for a discrete spatial location or a tissue

encompassing ROI) reflects the history and kinetics of MB flow. Since MBs strictly remain

in the vasculature space, tracking MB circulation enables reconstruction of 2D or 3D [18]

spatial representation of blood flow patterns and extract parametric measures of tissue
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perfusion [18,27-30]. Time-intensity curve data have proven to be especially useful and can

be processed to form image maps of various tissues [28,31,32]. More importantly, the

correlation between pathologic vascularity, such as MVD and DCE-US-derived vascularity

measurements can be directly quantified [33,34].

Determining treatment response in oncology is of critical importance. It is also important to

assess how well this tumor response to therapy is progressing, especially at an early time

period, in order to reduce potential side effects. Currently, histological analysis is most

commonly used to assess tumor angiogenesis and therapeutic outcomes. With the recent

characterization of angiogenesis using DCE-US, this invasive process of obtaining

histological data can be supplemented. In this article, we will first explore recent

developments in the field of DCE-US imaging for the visualization and characterization of

tumor angiogenesis in both the preclinical and clinical settings. We then explore the new

field of molecular imaging as it pertains to DCE-US and the noninvasive assessment of key

angiogenic biomarkers.

Preclinical US imaging of tumor angiogenesis

Animal models have an important role in new oncological advances. It is therefore

important to assess the recent preclinical studies that pave the way for DCE-US imaging of

angiogenesis. The plethora of information obtained from preclinical studies not only

showcases the diagnostic value of DCE-US, but also illuminates the molecular events

occurring during angiogenesis and tumor development.

Utilizing functional imaging concepts, the temporal evolution of DCE-US image intensities

from a user or computer-defined ROI can be extracted. For imaging studies, using an

intravenous infusion of contrast media, this otherwise noisy time–intensity curve can be fit

with a mathematical model following an exponential function, where the initial slope

correlates to MB velocity and the plateau represents the fractional blood volume [31].

Conversely, for studies that necessitate a bolus injection of contrast media, a γ-variate

function can be used for fitting to this otherwise noisy time–intensity curve data [35].

Regardless of the injection type, more data-specific parameters can be derived from either

the mathematical model or raw time–intensity curve data, which serve as surrogate measures

of tissue perfusion and vascular function, namely, peak intensity (IPK), time-to-peak

intensity (TPK), area under the curve (AUC), wash-in rate (WIR) and wash-out rate (WOR)

[36,37]. Figure 1 illustrates these time–intensity curve-derived tissue perfusion parameters

following either an infusion or bolus injection of MB contrast agent and DCE-US imaging.

After perfusion parameter derivation, a spatial map of the tumor vessels can be

reconstructed or summarizing statistics can be generated for a given ROI. While these

traditional analyses of time–intensity curve data have been widely described in the literature,

it is important to note that various other mathematical modeling approaches have been

reported in the literature that aim to more accurately describe tumor perfusion and

microvascular properties [38-44].

A rich body of literature has convincingly demonstrated the utility of DCE-US imaging in

the preclinical setting. Of interest, Lucidarme et al. established an angiogenesis murine
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model for imaging research utilizing Matrigel plugs in lieu of the more conventional

xenograft tissue [45]. These Matrigel implants allowed for a translucent, anechoic,

homogenous system that was previously used for modeling cellular events regarding

angiogenesis [46]. These plug implants were injected with basic FGF (bFGF) to induce

angiogenesis [45]. After a bolus injection of MB contrast agent, the group showed that

implants that contained bFGF-induced neovascularity had higher maximum intratumoral

enhancement versus controls that did not get any bFGF [47]. This novel animal model

introduces a stable system that can be imaged several times over the angiogenic time course.

Monitoring angiogenesis and microvascularity patterns with concurrent treatment with

antiangiogenic drugs has been extensively explored by several research groups. Since MB

contrast agents are restricted to the vascular space and function as excellent blood vessel

tracers, DCE-US imaging is a promising modality for characterizing any early neovascular

change in response to these vascular disrupting treatments. To highlight, it has been shown

in a preclinical murine model that cancer treatment with the antiangiogenic drug,

bevacizumab, in conjunction with DCE-US imaging, produced considerable decreases in the

AUC perfusion parameter (a surrogate measure of blood volume), which coincided with

decreases in MVD immunohistologic measures [48]. Given MB contrast agents are excellent

vascular tracers, Yoshida et al. used DCE-US imaging to monitor liver tumor response to

anti-angiogenic treatment (i.e., sorafenib) in a rabbit model [49]. During this study, it was

shown that the TPK perfusion parameter markedly increased in tumors treated with the

antiangiogenic drug, which was attributed to a corresponding decrease in MVD. A

comparable study investigated the feasibility of using DCE-US imaging for depicting early

antiangiogenic treatment response of advanced osteolytic lesions [50]. While no changes in

tumor volume were observed during the 6-day observation time, significantly decreased

values for the IPK, AUC and WOR measurements were found in animals treated with

sunitinib due to microvascular disruption. In another model, Liu et al. focused on vascular

pathology and tumor microvascular perfusion was correlated with histopathology of the

tumors [51]. A characteristic enhancement pattern that began from the tumor peripheral

region was noted and was consistent with immunohistologic maps of tumor

microvascularity. Collectively, these results demonstrate that DCE-US-based microvascular

measurements are in good agreement with immunohistologic-derived results. Further results

suggest that repeated tumor perfusion measurements using DCE-US imaging can effectively

detect early response to anticancer therapy.

The above studies utilized 3D DCE-US imaging strategies for detecting microvascular

distributions. While results were promising, it is known that planar DCE-US imaging is

susceptible to changes in the imaging window due to user and/or subject motion.

Specifically, it was shown that slight changes in transducer orientation (on a millimeter

scale) can produce significant changes in time intensity curve measurements ranging from

6.4 to 40.3% and is dependent on the particular perfusion parameter of interest [18,27].

Since these deviations could complicate measurement reproducibility in a multiday

longitudinal study, development of whole tumor (4D) DCE-US imaging of tumor perfusion

is also underway. To that end, both planar and volumetric imaging probes have been used to

collect this multidimensional spatial data. For those studies using a planar imaging probe,
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the general strategy is to mechanically step a linear array transducer across a ROI, while

collecting temporal sequences of DCE-US images after contrast agent injection [27,52,53].

Conversely, DCE-US imaging using a 4D transducer can be performed for real-time

visualization of perfusion throughout the entire ROI [18,54-58]. Specifically, Hoyt et al.

showed that 4D DCE-US imaging can sensitively detect early breast cancer response to

antiangiogenic therapy in a mouse animal model [55], which was in agreement with other

studies detailed above. Overall, preclinical studies have thus far demonstrated that DCE-US

imaging is a promising modality for both visualizing tumor microvascularity and predicting

early response to drug treatment before any changes in physical size manifest.

Clinical US imaging of tumor angiogenesis

Clinical imaging of angiogenesis can add an adjunct functional measure to the traditional

Response Evaluation Criteria in Solid Tumors (RECIST) assessment. The RECIST model

takes into account morphological factors, such as tumor size to grade tumor response to

therapy [59]. However, several clinical studies have shown that early changes in tumor

perfusion manifest before any physical change in tumor size is observed [60,61]. Therefore,

supplements to the RECIST criteria are needed, whereby morphological features of tumor

phenotype and functional imaging are combined. Functional imaging with MRI and US are

excellent candidates due to their nonionizing radiation, although both face challenges in the

standardization of tumor measurements. Notwithstanding, DCE-US provides a cost

advantage over MRI, which is an important consideration given the evolving healthcare

landscape.

The clinical use of US contrast agents has slowly grown over the last decade with concurrent

advances in US imaging technology and widening regulatory approval. While Definity

(Lantheus Medical Imaging) and Optison (GE Healthcare) are the only MB products

approved by the US FDA for use in the USA, there are other brands such as Sonovue

(Bracco) that are also routinely used in other countries. The use of either of the former MB

brands is indicated for patients with suboptimal echocardiograms to opacify the left ventricle

and to improve delineation of the left ventricular endocardial borders. While these

limitations have hampered DCE-US imaging trials, especially in the USA, there are several

reports that have appeared in the literature that are important to consider as they highlight

the evolving clinical landscape and promising future of DCE-US imaging.

Several early studies detailing the clinical use of DCE-US imaging ranked contrast agent

uptake in the target tumor via a predetermined qualitative scoring criteria [62,63]. While

important for demonstrating feasibility, the subjective nature of the analysis makes

reproducibility a concern for inexperienced readers of imaging data. More recent studies

have employed time–intensity curve analyses to quantitatively measure the kinetic

properties of tumor perfusion [64]. Using such methods, DCE-US was able to differentiate

between malignant and benign breast tumors based on a combination of perfusion

parameters and morphological differences [65]. In a different study, DCE-US was used for

response prediction and early response evaluation in patients receiving anti-angiogenic

(bevacizumab) therapy for metastasized colorectal cancer [66]. Of interest, results from this

study revealed that baseline TPK measures were significantly lower in the group of treatment
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responders compared to nonresponders, which indicates that low baseline TPK measures

may predict tumor response according to RECIST. Furthermore, a strong increase in the TPK

measure was observed during the treatment window for the group of responders and

correlated with the antiangiogenic effect of bevacizumab. The prognostic role of DCE-US

imaging for determining early therapeutic response has been studied for several other cancer

types. In patients with gastrointestinal stromal tumors receiving imatinib (a tyrosine kinase

inhibitor), DCE-US assessed treatment response as early as 7 days in some patients [67].

Patients with hepatocellular carcinoma undergoing treatment with bevacizumab therapy,

showed considerable reductions in tumor vascularity as early as 3 days after treatment

initiation [68]. Metastatic renal cell carcinomas treated with sunitinib showed a decrease in

DCE-US-derived perfusion measures within 15 days [69]. Good and poor responders

showed a significant difference in overall survival and progression-free survival within 3

weeks of treatment initiation in patients with renal cancer [67].

A pivotal study reported by Lassau and colleagues in collaboration with the French National

Cancer Institute helped structure a standardization of DCE-US imaging for measuring tumor

response to drug treatment [70]. As many as 539 patients were enrolled and over 2000

examinations performed on patients with breast cancer, colon cancer, melanoma,

gastrointestinal stromal tumor, and renal cell carcinomas across 19 oncology centers. The

authors of this study illustrated that a good predictor of response is available within 4 weeks

after starting antiangiogenic therapy in a host of tumor types. It is important to highlight

again that the changes in DCE-US-derived perfusion parameters were well before any

morphological variations occurred as required for the RECIST criteria.

Overall, the collective studies detailed above showcase the potential of DCE-US imaging of

angiogenesis in a clinical setting for the purpose of differentiating benign from malignant

tumor types and monitoring tumor response to drug treatment.

Preclinical molecular US imaging of tumor angiogenesis

A more recent innovation in DCE-US imaging is the development of MB contrast agents

targeted to angiogenic biomarkers overexpressed on tumor endothelial cells. While the

acoustic and physical properties of these targeted MBs are similar to the nontargeted

contrast agents described previously, the distinguishing feature is that targeted MBs are

conjugated with ligands (e.g., monoclonal antibodies or peptides) to promote specific

biomarker adhesion. Moreover, MBs that bind and accumulate within the intravasculature

space can be differentiated from freely circulating (unbound) MBs using an array of

strategies. The most common approach is to utilize MB destruction-replenishment imaging

[71,72]. To detail, after systemic injection of the targeted MBs, a sufficient dwell time is

allowed to pass (on order of minutes) so that the MBs can circulate and bind to the target

biomarkers. After an image is acquired using a low-intensity MB-sensitive US imaging

mode (e.g., pulse-inversion harmonic imaging), a short high-intensity pulse sequence is used

to destroy all MBs in the field-of-view and then a second image is collected using low-

intensity US imaging following MB reperfusion. During the initial phase of the imaging

examination, US images depict both bound and systemically flowing MB contrast agents,

whereas after destruction, US images depict flowing MBs only. The intensity difference

Saini and Hoyt Page 6

Imaging Med. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



between these two image sequences represents a surrogate measure of the molecular US

signal (Figure 2). While MB destruction-replenishment is a robust technique for molecular

US imaging, the US pressure necessary for MB destruction may cause unwarranted

biological effects that are still not fully characterized [73-76]. To this end, several

researchers have detailed alternative molecular US imaging strategies for isolating the

targeted MB signal. One common strategy is to use spectral filtering of DCE-US images to

selectively detect bound MBs while suppressing the signal from unbound contrast agents

[77-80]. Alternatively, time–intensity curve data can be fit to a parametric model to

mathematically describe the molecular US signal of interest [81].

The general appeal of molecular US imaging is that it allows detection of specific

overexpressed biomarker targets in order to characterize molecular activities otherwise

inaccessible using conventional US techniques. A direct correlation between receptor

expression and MB binding has been established both in vitro [82] and in vivo [71]. For

molecular US imaging of tumor angiogenesis, several highly expressed biomarkers on

activated endothelium have been targeted, such as VEGFR2 [83-93], αVβ3 integrin

[29,91-99] and endoglin [93,100,101]. Using molecular US imaging to assess the level of

expression of these angiogenic biomarkers, it was shown in a longitudinal study that early-

stage breast and ovarian tumors exhibit higher levels of endoglin expression than both αVβ3

integrin and VEGFR2 [93]. This study confirmed that molecular US imaging allows

noninvasive assessment of angiogenic biomarkers, which can vary during tumor growth.

Leong-Poi et al. was one of the first groups to characterize molecular US imaging of tumor

angiogenesis with targeted MB contrast agents [98]. This seminal in vivo study showed that

αVβ3 integrin-targeted MBs significantly increased US image enhancement over control

nontargeted MBs. Thereafter, several other groups confirmed the efficacy of a VEGFR2-

targeted MB for molecular US imaging of angiogenic biomarkers. Collectively, these studies

further demonstrated that targeted MBs produce an improved US signal-to-background ratio

compared with conventional contrast agents [90,102,103]. Another molecular US imaging

study targeted αVβ3 integrin receptors and showed a similar enhancement pattern [97].

Interestingly, due to higher target receptor density levels in the tumor periphery, the US

signal from targeted MBs was more enhanced in this region, emphasizing the spatial

heterogeneity of the tumor angiogenic process.

To improve the adhesion efficiency of MB contrast agents used for molecular US imaging,

multitargeted strategies have been proposed. A dual-targeted MB directed at both VEGFR2

and αVβ3 integrin produced improved visualization of tumor angiogenesis in a murine

model of ovarian cancer [92]. Results from this study revealed a 2.1- and 1.5-fold increase

in the mean molecular US signal when using dual-targeted MBs versus the VEGFR2 and

αVβ3 integrin-targeted MBs, respectively. Similar molecular US image enhancement

patterns were observed when using a dual-targeted MB to both EGF receptor and

extracellular matrix metalloproteinase inducer (CD147) compared with the single-targeted

MB strategies [104]. As shown by Warram et al., multitargeted MBs produce a synergistic

effect when used for molecular US imaging of tumor angiogenesis [91]. This threefold

increase in biomarker-binding efficiency was attributed to the enhanced performance of the

targeting ligands working in combination to achieve greater binding than the ligands
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working independently. Another advantage of targeting multiple receptors simultaneously is

the improved potential for MB binding when endothelial receptor expression is unknown.

An alternative strategy for enhancing the selective binding of MB contrast agents is to use

acoustic radiation forces to physically displace the circulating MBs toward the endothelial

targets and promote sustained interaction [105]. As shown by Frinkling et al. in a murine

model of prostate cancer, the use of acoustic radiation forces significantly enhanced binding

of VEGFR2-targeted MBs by a factor of 7 at sites of active angiogenesis compared with

targeted MB binding without the use of acoustic radiation force manipulation [106]. Beyond

improved targeting, application of acoustic radiation forces during molecular US imaging

studies may allow reduced contrast agent doses and help minimize potential side effects

[107].

Molecular US imaging of angiogenesis is not only a promising strategy for cancer detection

and disease staging, but also for therapeutic monitoring. To this end, several research groups

have explored the feasibility of molecular US imaging of early tumor response to

antiangiogenic treatment [72,85,99]. An early report by Palmowski et al. used both

VEGFR2 and αVβ3 integrin-targeted MBs to investigate changes in biomarker expression

during antiangiogenic treatment (a matrix metalloproteinase inhibitor, AG3340) of tumor-

bearing animals [85]. Molecular US imaging at baseline and 7 days after treatment revealed

a significantly lower level of targeted MB binding. By contrast, untreated tumors exhibited

significantly increased binding of targeted MBs throughout the same time period. It was

then shown that molecular US imaging of can sensitively detect tumor response to

antiangiogenic therapy (bevacizumab) in animal models within 3 days of treatment initiation

and before any changes in physical tumor size manifest [72,99]. Overall, these encouraging

preclinical results suggest that noninvasive molecular US imaging may be used to determine

the efficacy of antiangiogenic therapy.

Biodistribution studies of targeted MB contrast agents are important for assessing the

temporal and spatial pharmacokinetics. To this end, whole-body distribution studies of

radiolabeled MBs targeted to tumor angiogenesis-related VEGFR2 were performed in

angiosarcoma-bearing animals using in vivo dynamic micro-PET imaging and traditional ex

vivo radioactivity measurements [89]. Results revealed that a majority of the targeted MBs

were rapidly cleared from circulation with minutes of injection. These targeted MBs were

found to be localized within hepatic Kupffer cells and splenic macrophages. Importantly, the

target tumor had significantly more uptake and retention of the VEGFR2-targeted MBS than

adjacent skeletal muscle tissue.

Clinical molecular US imaging of tumor angiogenesis

US is one of the most widespread diagnostic imaging modalities used clinically. While the

clinical significance of contrast-enhanced US is still being defined, the next developmental

iteration of this promising technology involves the translation of molecular US imaging. The

ultimate goal is to noninvasively image genetic and cellular alterations before any visible

morphological or anatomic changes manifest. A vast majority of preclinical studies have

used a streptavidin–biotin complex to conjugate moieties to the MB surface due to both the
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flexibility and high dissociation constant of streptavidin and the commercial availability of

biotinylated-targeting ligands, such as antibodies, peptides or other small molecules. This

approach also represents a practical platform for rapid testing of new targeting strategies in

animal models of cancer. Notwithstanding, because the streptavidin–biotin complex can be

highly immunogenic in human [108], other conjugation chemistries need to be considered

that forgo this link [109].

Several clinically translatable targeted MBs for the purpose of molecular US imaging have

been developed in recent years [81,83,84,86-88,110-112]. The first reported agent for

clinical application was BR55 (Bracco Research, Geneva, Switzerland), which is a

VEGFR2-targeted contrast agent for molecular US imaging of angiogenesis. This targeted

contrast agent was prepared by incorporation of a biospecific lipopeptide into the MB

membrane that binds to the endothelium of prostate [87] and breast [88] cancer. Molecular

US imaging using BR55 was shown to be suitable for characterizing and distinguishing

breast cancers with different angiogenesis and aggressiveness in animal models [83,84]. It

was also shown that molecular US imaging using BR55 was useful for monitoring

antiangiogenic therapy (bevacizumab) in colon cancer-bearing animals [86]. Given these

promising preclinical results, BR55 is currently being evaluated in an exploratory clinical

trial for its ability to identify prostate cancers on the basis of their increased VEGFR2

expression (using a visual score in comparison with histopathology results).

Another clinically translatable MB contrast agent for molecular US imaging of angiogenesis

was developed whereby E-selectin was the target biomarker [110]. For this application, an

E-selectin-specific peptide was synthesized and covalently attached to the MB surface.

Similarly, it was shown that single-chain VEGF can also be covalently conjugated to the

surface of select MB contrast agents for the purpose of molecular US imaging of angiogenic

biomarkers [112]. This targeted MB (Visistar VEGFR2, Targeson Inc., CA, USA) is

available commercially to the research community, in addition to a different MB product

that targets the αVβ3 integrin (Visistar Integrin, Targeson Inc.). Since covalent chemistry

was used to conjugate the respective ligands to the MB surface, molecular US imaging

approaches using these targeted agents could potentially be applied in the clinical setting.

Conclusion

There is a critical need for noninvasive strategies for imaging tumor angiogenesis. Recent

developments in US technology have made fulfilling this objective tenable. In this article,

we summarized contrastenhanced US imaging techniques for describing tumor angiogenesis

and perfusion properties, including preclinical and clinical studies that have been reported in

the literature. Furthermore, the current status of molecular US imaging of angiogenic

biomarkers was reviewed under the same context including emerging trends in targeted MB

design and application.

Future perspective

The last decade has shown tremendous progress in the field of DCE-US imaging at both the

preclinical and clinical frontiers of scientific discovery. US contrast agents are currently
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only approved by the FDA for cardiac applications, but additional procedure

reimbursements are anticipated in the relatively near future. While the more widespread

clinical use of DCE-US imaging will augment diagnostic procedures, a major contribution in

the next 5–10 years is expected to be in the area of monitoring tumor response to anticancer

therapy. These surrogate biomarkers of early tumor response are critically important in order

to help determine early pharmaceutical treatment efficacy before harmful side effects

emerge. Next-generation MBs are being used preclinically for assessing biological processes

at the molecular level and clinically translatable targeted contrast agents are now being

introduced by the scientific community. In 10 years, molecular US imaging certainly has the

potential to improve our ability to make much earlier cancer diagnoses and to further guide

treatment options. While more research and validation studies are needed before these US

technologies can be integrated into routine clinical practice, the future of US imaging is very

promising.
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Executive summary

Preclinical ultrasound imaging of tumor angiogenesis

• Information obtained from preclinical studies not only showcase the diagnostic

value of dynamic contrast-enhanced (DCE) ultrasound (US), but also

illuminates molecular events occurring during angiogenesis and tumor

development.

• After injection of an intravascular microbubble (MB) contrast agent, the

temporal evolution of DCE-US image intensities can be analyzed to provide

information on tumor angiogenesis.

• Preclinical studies have demonstrated that DCE-US imaging is a promising

modality for both visualizing tumor microvascularity and predicting early

response to drug treatment before any changes in physical size manifest.

Clinical US imaging of tumor angiogenesis

• Clinical imaging of angiogenesis can add an adjunct functional measure to the

traditional Response Evaluation Criteria in Solid Tumors (RECIST) assessment.

• The clinical use of MB contrast agents has slowly grown over the last decade

with concurrent advances in US imaging technology and widening regulatory

approval.

• Recent clinical studies showcase the potential of DCE-US imaging of

angiogenesis in a clinical setting for the purpose of differentiating benign from

malignant tumor types and monitoring tumor response to drug treatment.

Preclinical molecular US imaging of tumor angiogenesis

• A more recent innovation in DCE-US imaging is the development of MB

contrast agents targeted to angiogenic biomarkers overexpressed on tumor

endothelial cells.

• Targeted contrast agents that bind and accumulate within the intravasculature

space can be differentiated from freely circulating (unbound) MBs using an

array of strategies.

• Molecular US imaging of angiogenesis is not only a promising strategy for

cancer detection and disease staging, but also for therapeutic monitoring in

preclinical animal models.

Clinical molecular US imaging of tumor angiogenesis

• While the clinical significance of DCE-US is still being defined, the next

developmental iteration of this promising technology involves the translation of

molecular US imaging.

• The ultimate goal is to noninvasively image genetic and cellular alterations

before any visible morphological or anatomic changes manifest.
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• Several clinically translatable targeted MBs for the purpose of molecular US

imaging have been developed in recent years and exploratory clinical trials are

currently underway (or planned) for select agents.
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Figure 1. Representative time–intensity curves
Describes the history of microbubble circulation following administration of either (A) a
continuous infusion or (B) bolus injection of contrast agent. Parametric perfusion measures

indicate, namely, IPK, TPK, AUC, WIR and WOR when applicable.

AUC: Area under the curve; IPK: Peak intensity; TPK: Time-to-peak instensity; WIR: Wash-

in rate; WOR: Wash-out rate.
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Figure 2. Contrast-enhanced ultrasound imaging with microbubble contrast agents
(A) Targeted ultrasound (US) contrast agents (MBs) attached to receptors overexpressed on

tumor endothelial cells after intravenous administration and systemic circulation. A portion

of injected MBs do not attach to the target receptors and freely circulate through tumor

microvascularity. After destruction of all MBs in the tumor volume (both attached and freely

circulating) using a high-intensity US pulse sequence, (B) reperfusion with only freely

circulating MBs occurs. (C) The difference in contrast-enhanced US image intensity before

and after MB destruction is a surrogate measure of attached MBs to the target angiogenic
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biomarkers representing the molecular US signal. I base: Baseline image intensity; Ipost:

Image intensity after MB destruction; Ipre: Image intensity before MB destruction; MB:

Microbubble; tpost: Image time after MB destruction; tpre: Image time before MB

destruction.
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