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Abstract

Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal
biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these
events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit
River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We
conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1) track the
development of the 2013 summer south-east shore bloom 2) conduct a spatial survey to characterize the extent of toxicity,
taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing
cyanobacteria (Microcystis, Planktothrix and Anabaena) during a high biomass event, and 3) compare the strains of potential
MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance
of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St.
Clair coastline downstream to the Detroit River’s outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario
Drinking Water Quality Standard (1.5 mg L21) for safe drinking water at most sites, reaching up to five times this level in
some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair
were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic
connectivity among the three systems.
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Introduction

Cyanobacterial harmful algal blooms (CHABs) occur worldwide

and their increasing prevalence has been associated with severe

ecological and economic impacts across the marine-freshwater

continuum [1–8]. Many CHAB genera include species and strains

that can produce toxins and other bioactive compounds that

present a risk to the health of humans and other animals [9].

CHAB genera, including Microcystis, Anabaena and Planktothrix
are well known to have microcystin-producing strains [10] and all

have been found in the Laurentian (North American) lower Great

Lakes.

The Laurentian Great Lakes are a vital global resource,

containing approximately 18% of Earth’s available surface

freshwater [11]. Over the past several decades these systems have

been subjected to many anthropogenic pressures such as the

introduction of non-native species (e.g., dreissenid mussels and

round gobies) and eutrophication. Anthropogenic nutrient loading

has contributed to the shift in phytoplankton community

composition in the lower Great Lakes (Erie and Ontario).

Accordingly, much of the research over the past two decades

has focussed on elucidating the factors that control the dynamics of

phytoplankton communities, primarily on CHABs, in these two

lakes. Explanations have been postulated to include changes in

bottom-up controls such as nutrient availability and light [12–17],

physical factors like wind strength [18] and top-down controls

including pelagic [19] and benthic grazing [20–21]. Furthermore,

differences and dynamics among the genetic strains of cyanobac-

teria within blooms have also been investigated through field and

laboratory experiments. [22–32].

Lake St. Clair lies between Lake Huron and Lake Erie (Fig. 1).

It receives water from Lake Huron via the St. Clair River and

discharges to Lake Erie via the Detroit River, the largest tributary
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to Lake Erie [33]. Lake St. Clair also receives inflow from

wastewater treatment plants and several tributaries, most notably

the Thames River, which drains nearly 6,000 km2 of rich

agricultural land in southwest Ontario. The Thames River flows

into the southeast corner of the lake (Fig. 1) transporting elevated

levels of nutrients to the inshore waters [34,35]. To date, relatively

few studies have focused on the planktonic component of the lower

food web in Lake St. Clair. A few studies have documented the

plankton ecology and community composition prior to the

dreissenid mussel invasion [36–39]. Vijayavel et al. [40] recently

documented the presence of the nuisance benthic cyanobacterium

Lyngbya wollei for the first time along a recreational beach on the

northwest shore of Lake St. Clair. However, despite anecdotal

reports of blooms and MODIS satellite imagery suggesting that

periods of increased biomass along the south-east near-shore

waters occur during the summer months, no study has investigated

the toxicity, taxonomic or molecular diversity of these blooms nor

how they relate to the CHAB events observed in Lake Erie and

even further downstream, in Lake Ontario. We hypothesized that

Lake St. Clair may be an immediate source (i.e. days to weeks) of

potentially toxic cyanobacterial biomass to the western basin of

Lake Erie. Therefore, the goals of our study were to: 1) track the

development of the 2013 summer south-east shore bloom 2)

conduct a spatial survey to characterize the extent of toxicity,

taxonomic diversity of the total phytoplankton community and the

phylogenetic diversity of potential MC-producing cyanobacteria

(Microcystis, Planktothrix and Anabaena) during a high biomass

event, and 3) investigate the genetic connectivity of potential MC-

producers in Lake St. Clair with strains from Lake Erie and Lake

Ontario collected over the past 10 years, including two Great

Lakes Areas of Concern in Lake Ontario that also experience

CHAB events: Hamilton Harbour (43u 179 30.500 N, 79u 499

45.020 W) and the Bay of Quinte (44u 089 47.40 N, 77u 159 510 W).

Methods

Study sites
Lake St. Clair (42u 259 200 N, 82u 399 360 W) is a shallow (mean

depth ,3 m) waterbody with a surface area of 1100 km2 [41,42]

and is the smallest lake in the Laurentian Great Lakes system.

Three Environment Canada sites (135, 136, 139; Fig. 1) along the

south-east corner where the Thames Rivers discharges into Lake

St. Clair were sampled from June through August 2013.

Additionally, during a high biomass event on August 23rd, samples

were collected at 17 locations along a more spatially resolved

survey extending from Mitchell’s Bay (Site MB1) to the outflow of

Lake St. Clair at the mouth of the Detroit River (Site CCGB;

Fig. 1). No provincial or federal permits or permissions were

required to conduct this research as Lake St. Clair is a public

waterbody and is not provincially nor federally protected.

Sample collection
Water samples were collected bi-weekly at sites 134, 136 and

139 from a small, shore-launched boat (Fig. 1). Physicochemical

data were measured at each site using a calibrated water quality

probe (YSI, Yellow Springs, Ohio, USA). The parameters

measured were surface water temperature, dissolved oxygen

concentration, pH, and conductivity. Water samples were

collected using a Van Dorn sampler from a depth of 1 m and

kept on ice until returned to the lab for processing within four

hours. From each site, subsamples were preserved in Lugol’s

iodine solution (1% final conc.) for phytoplankton cell identifica-

tion and biovolume calculation, or filtered to collect material for

cell-bound DNA analysis through a 0.22 mm Sterivex filter

cartridge (Millipore Corp., Billerica, MA, USA) until no more

water could pass through. The filter cartridges were immediately

frozen and stored at 280uC until analysis.

A more extensive sampling protocol was employed for the

spatial survey. The water quality data and the integrated water

samples were collected at each site as described above. In addition,

duplicate water samples for the analysis of dissolved nutrient

(nitrate/nitrite [NO3
2+NO2

2], ammonia [NH3], soluble reactive

phosphorus [SRP], dissolved total Kjeldahl nitrogen [DTKN] and

total dissolved phosphorus [TDP] samples were collected by

filtering lake water through a 0.45 mm647 mm polycarbonate

filter into triple rinsed 20 mL plastic bottles and stored at 220uC
until analysis. Water samples for total Kjeldahl nitrogen [TKN]

and total phosphorus [TP] analysis were collected by filling a triple

rinsed 20 mL plastic vial with whole lake water followed by storage

at 220uC. Before analysis, TP samples were thawed and preserved

with 1% (v/v) H2SO4 then analyzed following persulfate digestion.

All nutrient samples were analyzed at the National Laboratory for

Environmental Testing in Burlington, Ontario using standard

methods [43]. Particulate P [PP] values were calculated using the

equation: [PP = TP – TDP]. Samples for total MCs were collected

by pipetting 1 mL of whole lake water into a low-binding

polycarbonate centrifuge tube and stored at -80uC until analysis.

No protected or endangered species were sampled during any of

these surveys.

Phytoplankton identification and biomass determination
Samples were enumerated using the Utermöhl technique for

algal biomass and taxonomic composition [44,45]. Depending on

sample density, subsamples of 2–5 mL were settled over 24 hours

and counted at 1006 or 4006 using a Leica DM inverted phase

microscope, enumerating a minimum of 100 settling units for the

most abundant taxa. Colonies and filaments were measured

individually and converted to cells using a regression estimate of

average cells per unit biovolume [46]. Cell counts were converted

to biomass (carbon) from average measured cell volumes and taxa

were identified to genus level according to major taxonomic

sources [47–58].

For this study, we restricted our classification of the phyto-

plankton community to broad taxonomic groups as a detailed

taxonomic description of the overall phytoplankton community

will be reported elsewhere (S. Watson et al., in prep). Furthermore,

there is debate over the validity of the traditional Microcystis
morphospecies classification with evidence indicating they are too

genetically similar to be considered separate species [59].

However, other studies have indicated that this conclusion is

premature until more is known about the drivers of the

physiological and morphological diversity of this genus [53].

Therefore, for this study, we limited our identification of potential

MC-producing cyanobacteria to the genus level.

Extraction and analysis of microcystins
Total MCs were extracted from samples using a combination of

physical and chemical lysis techniques. All samples were subjected

to three freeze/thaw cycles before the addition of the QuikLyse

reagents (Abraxis LLC; Warminster, PA, USA) as per the

manufacturer’s instructions. The samples were centrifuged for

five minutes at 2 61036g to pellet cellular debris. The

concentrations were measured using an enhanced sensitivity

microcystin enzyme-linked immunosorbent assay (Abraxis LLC;

Warminster, PA, USA) following the methodologies of Fischer et

al. [60]. This assay is congener-independent as it is sensitive to the

ADDA moiety, which is found in almost all microcystins. These

analyses yielded a detection limit of 0.04 mg L21.

Molecular Diversity of MC Producers in the Lower Great Lakes
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DNA extraction and sequencing
DNA was extracted from the 0.22 mm Sterivex cartridges from

six sites spanning the southern shoreline of Lake St. Clair (Fig. 1)

and from Hamilton Harbour and the Bay of Quinte, Lake Ontario

using the PowerWater Sterivex DNA Isolation Kit (MO BIO

Laboratories, Carlsbad, CA, USA) according to the manufactur-

er’s instructions. DNA concentration and purity was measured

using a NanoDrop lite spectrophotometer (Fisher Scientific Inc.,

Ottawa, ON, Canada). 260/280 ratios between 1.8 and 2.0 were

considered to be acceptable for PCR. All PCR amplifications were

performed using mcyA primers that detect potential microcystin-

producing genotypes in Microcystis, Planktothrix and Anabaena
[61] and have been used in previous Great Lakes CHAB

phylogenetic studies [23,24,29]. PCR conditions were similar to

those described in Hisbergues et al. [61]. Briefly, an initial

denaturation at 95uC for 10 min; 40 cycles of 94uC for 30 s, 59uC
for 30 s, 72uC for 30 s, and a final extension step at 72uC for

5 min were performed. Amplified PCR products were separated

using a 1% (wt./vol.) agarose gel and visualized using ethidium

bromide. Samples presenting bands around 300 bp in length were

selected for TOPO cloning using fresh PCR products.

A mcyA clone library was generated from the amplified PCR

products by insertion into pCR4-TOPO TA vector (TOPO TA

cloning kit Invitrogen/Life Technologies, Burlington, ON, Can-

ada) and transformed into chemically competent One Shot

TOP10 Escherichia coli cells. DNA sequencing was performed

(Genewiz Inc., South Plainfield, NJ, USA) and the resulting

sequences were trimmed and dereplicated using custom PERL

scripts. Sequence alignment and phylogeny was completed using

Mega 5.2 [62]. For a succinct comparison with previous studies,

mcyA sequences generated in this study were clustered at 99%

identity using UCLUST [63]; the most abundant sequence in the

cluster was then used as the reference sequence for phylogenetic

comparison. To compare the reference sequences from this study

Figure 1. Map of Lake St. Clair indicating sampling sites. The underlined sites were the seasonal monitoring sites; starred sites indicate where
DNA was extracted and sequenced for genetic diversity.
doi:10.1371/journal.pone.0106093.g001
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with mcyA sequences from previous studies in Lake Erie [23] and

Lake Ontario [24], a Maximum-likelihood tree was generated

using the Jones-Taylor-Thornton (JTT) algorithm [64] and

bootstrap values were obtained for 1,000 replicates.

Nucleotide sequence accession numbers. Sequences were

deposited in GenBank (accession numbers KJ418279 through

KJ418338).

Results

Physicochemical parameters
Station depths at all three monitoring sites were between 1–2 m

on all sampling dates. Water temperatures at each site were similar

for each date, ranging from 16uC to 26uC (Table S1) and were

within the temperature range for cyanobacterial growth [8, 65–

69]. Similarly, both dissolved oxygen concentration and pH were

fairly consistent among sites on each date but conductivity varied

(Table S1).

For the spatially extended sample series, mean water depth

(6SE) was 3.360.9 m and water temperature, conductivity and

pH were consistent between sites (Table S2). Inorganic nitrogen

(nitrate/nitrite & ammonia) concentrations fluctuated with the

highest concentrations around the river mouth sites (t-test, p,

0.05; Table S2). Soluble reactive phosphorus concentrations were

generally low and were below detection limit at five sites (Table

S2). DTKN and TDP were fairly consistent across all sites (Table

S2). TP concentrations varied across the sampling sites, with

higher concentrations being observed at the river mouth sites

(Table S2). Finally, no correlations were found between concen-

trations of any nutrient and either Microcystis biomass or

microcystin concentration during the spatial sampling survey

(principal component analysis; data not shown). However, any

conclusion based on these data must be tempered by the fact that

they are limited to contemporaneous sampling of nutrients and

phytoplankton on a single date.

Phytoplankton community biomass and composition
Over the entire sampling period, Microcystis biomass varied

from below detection to 4.76103 mg L21 at stations 134, 136 and

139 (Table 1). Microcystis biomass peaked at sites 134 and 136 in

early August (Table 1) whereas at site 139 Microcystis biomass was

either below detection or very low until late August when the

survey was conducted (Table 1). Genera from all the major

freshwater phytoplankton phyla were represented across the

survey sites (Fig. 2). Total phytoplankton biomass ranged from

0.0756103 to 7.96103 mg L21 (Fig. 3). Cyanobacterial biomass

ranged from below detection (site MB1) to 6.86103 mg L21

(Figs. 2 & 3). Despite the fact that Lake St. Clair is generally

considered as representative of Lake Huron water (i.e. low in

nutrients and productivity), at 70% (12 of 17) of the sites sampled,

cyanobacterial biomass comprised .50% of the overall phyto-

plankton biomass (Figs. 2 & 3), averaging 5966% of the total

biomass across all 17 sampling sites. Cryptophytes and chlor-

ophytes were the next two dominant phyla comprising, on

average, 1265% and 1062% of the total phytoplankton biomass

(Fig. 2). All other phyla combined comprised ,20% of the overall

phytoplankton biomass (Fig. 2). For the 17 survey sites, total

Microcystis biomass ranged from below detection limit (sites MB1

and CCGB) to 6.66103 mg L21 at station 138 (Fig. 3). Microcystis
was the only known potential-MC producer observed within the

cyanobacterial community comprising .40% of the cyanobacter-

ial biomass at 81% (13/16) of sites (Fig. 3).

Phylogenetic diversity of potential MC producers and
bloom toxicity

Based on sequenced mcyA amplicons, phylogenetic assessment

of six sites across the southern shore of Lake St. Clair through the

Detroit River (Fig. 1) was consistent with microscopic analysis, and

also pointed to the single genus, Microcystis, as the primary source

of MC production during the 23 August bloom event (Fig. 4).

Toxin concentrations ranged from 0.08 to 7.56 mg L21, with peak

concentrations occurring at site closest to the mouth of the

Thames River (138; Fig. 3). Furthermore, MC concentrations

were strongly correlated with total Microcystis biomass (r= 0.91,

p,0.001; Spearman’s correlation matrix) during the 23 August

spatial survey.

Interestingly, there was little diversity between mcyA amplicons

collected from each site in Lake St. Clair, with all of the amplicons

clustering with previously reported Microcystis aeruginosa mcyA
sequences (Fig. 4). Amplicons from the western basin of Lake Erie

and throughout Lake Ontario were also included in the

phylogenetic analysis. Clustering of the mcyA amplicons sequenced

during this study from Lake St. Clair, Lake Erie and Lake Ontario

at 99% identity revealed six groups; LGL-1 through LGL-6

(Fig. 4). Five of the six groups clustered together and were

comprised of strains from all three systems (Fig. 4). LGL-6, which

contained only strains from Lake Ontario formed a separate

cluster but grouped with strains collected during previous studies

in Lake Erie and Lake Ontario (Fig. 4). The clustering of strains

from Lake St. Clair with strains from the two lower Great Lakes,

suggests genetic connectivity of MC producers throughout these

lower Great Lakes (Fig. 4).

Table 1. Total Microcystis biomass from the monitoring sites in Lake St. Clair during the field season of 2013.

Total Microcystis biomass (mg L21)

Date Site 134 Site 136 Site 139

6-Jun BDL BDL BDL

17-Jun BDL BDL BDL

4-Jul 59 439 49

19-Jul 1849 1332 BDL

3-Aug 2202 4703 BDL

23-Aug 597 3047 1618

BDL = below detection limit.
doi:10.1371/journal.pone.0106093.t001
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Discussion

This study is the first to investigate the spatial molecular and

taxonomic diversity and toxicity of cyanobacterial blooms along

the south shore of Lake St. Clair and the Detroit River. At 8 of the

17 survey sites (47%) the MC concentrations exceeded both the

1 mg L21 guideline level for safe drinking water set by the World

Health Organization as well as the Province of Ontario Drinking

Water Quality Standard (1.5 mg L21), and therefore could pose a

risk to human health. Similarly to near shore regions of the two

lower lakes (Erie and Ontario), our data show that the southern

shore of Lake St. Clair has undergone a phytoplankton

community shift, possibly due to increased nutrient loading and

Figure 2. Percent biomass composition of the total phytoplankton community of the seven major phyla found in Lake St. Clair
during the 23 August survey.
doi:10.1371/journal.pone.0106093.g002

Figure 3. Total phytoplankton (black bars), cyanobacteria (grey bars) and Microcystis biomass (white bars) and total microcystins
(MCs; solid black line) values at each site for the 23 August 2013 survey.
doi:10.1371/journal.pone.0106093.g003
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potential influence from invasive species (e.g. dreissenid mussels).

Indeed, prior to the establishment of dreissenid mussel populations

in Lake St. Clair, cyanobacterial biomass tended to be very low,

even during late August at near shore sites that roughly aligned

with our sites 139, 142, 135, 134 [37–39]. At that time, diatoms

primarily dominated the phytoplankton community, with chryso-

phytes and cryptophytes present at most sites and chlorophytes

present at fewer sites [37–39]. Our results suggest that the

composition of the late summer (August-September) phytoplank-

ton community has changed significantly and is now dominated by

cyanobacteria, with Microcystis dominating the cyanobacterial

community at most sites along the southern coast. Although our

results reflect conditions in only a portion of Lake St. Clair and

describe broad taxonomic groups; a detailed study of the specific

species composition of the offshore and near shore phytoplankton

community is forthcoming (S. Watson, unpublished data).

This is also the first study to investigate if toxic populations of

Microcystis from Lake St. Clair may influence the bloom

populations in the western basin of Lake Erie. Current belief is

that blooms in the western basin of Lake Erie are seeded internally

and derived from overwintering Microcystis cells [39]. However,

much of the focus has been on the potential for toxic strains to

enter Lake Erie via the Maumee River as it is a significant source

of sediment and nutrients to the western basin [25,37,70,71]. The

potential contribution of toxic Microcystis strains from Lake St.

Clair via the Detroit River has not been previously considered.

Importantly, our results show Microcystis strains at the mouth of

the Detroit River that are genetically similar to strains in Lake St.

Clair, strongly suggesting that Lake St. Clair is an active source of

toxic Microcystis strains to the western basin of Lake Erie. It takes,

on average, 19 hours for a parcel of water to travel down the

Detroit River to Lake Erie (via the Amherstburg channel) [72].

Furthermore, even though Microcystis biomass was below

detection limit, using traditional light microscopy, at the mouth

of the Detroit River (site CCGB), this does not mean Microcystis
cells were completely absent from the water column. Genetic

analysis supports this claim as positive mcyA sequences that

clustered with Microcystis spp. were obtained at site 1159, which is

just upstream of the Detroit River mouth (Fig. 1). The Detroit

River discharges into the western basin of Lake Erie at an average

rate of 5800 m3 s21 and accounts for approximately 90% of the

hydraulic load [33]. It is feasible that the high Microcystis biomass

Figure 4. Maximum-likelihood tree of mcyA sequences sequenced from our study (LGL-1-6; bolded) and mcyA sequences from
previous studies in Lake Erie (orange) and Lake Ontario (purple). Numbers in parentheses indicate the number of identical sequences
represented by the named sequence or LGL group. St.C = Lake St. Clair; Ont. = Lake Ontario; Erie = Lake Erie. Bootstrap values of .50% (for 1,000
replicates) are displayed at the branch nodes. The scale bar represents substitutions per site.
doi:10.1371/journal.pone.0106093.g004
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near the head of the Detroit River is diluted due to the high flow

rate and therefore below quantifiable limits in individual samples

(e.g. 1–10 colonies L21); nevertheless due to the sheer volume of

water discharged from the Detroit River (5.86106 liters s21; or .

20 billion liters hr21) it is reasonable to conclude that the total

loading of biomass entering Lake Erie from Lake St. Clair via the

Detroit River is sufficient to impact the toxic Microcystis
populations in the western basin.

The clustering of Lake St. Clair strains with strains collected

throughout Lake Erie and Lake Ontario from previous years

suggests a genetic connectivity among the three lakes. Dyble et al.

[25] found similar results in a comparison of mcyB sequences from

Saginaw Bay, Lake Huron and the western basin of Lake Erie.

They also found similar sequences between the two water bodies,

unfortunately, the sequences reported in Dyble et al. [25] were

generated using a different gene (mcyB) in the MC gene operon

and could not be included in our evaluation. Our study relied on

the mcyA gene for which there is a robust record of sequence data

from both Lakes Erie and Ontario [23,24,29]. However, a bloom

occurring in Saginaw Bay, Lake Huron is unlikely to have any

short-term impact on western basin strain dynamics or toxicity due

to the distance between Saginaw Bay and Lake Erie and the

potential for Saginaw Bay waters to be significantly diluted by

Lake Huron water. Based on these data, it is plausible that the

genetic connectivity observed in our study extends into the upper

Great Lakes (Michigan, Huron and Superior). However, further

research needs to be conducted to fully investigate this.

Source-tracking and diversity of potential MC producers to the

western basin of Lake Erie have been the focus of several previous

studies [22,23,29]. Kutovaya et al. [29] investigated the postulate

that the Maumee River, (Ohio, USA) may be a source of toxic

Microcystis into the western basin of Lake Erie. With a watershed

in excess of 16,000 km2 draining predominantly agricultural lands

in the U.S. Midwest, the Maumee River is a significant source of

sediment and nutrients to Lake Erie’s western basin

[15,29,70,71,73,74], but its role in seeding toxic Microcystis to

the lake was unclear. Results from that study indicated that mcyA
sequences identified from the Maumee River were distinct from

mcyA sequences isolated from the open waters of the western

basin. Kutovaya et al. [29] concluded that Planktothrix spp. were

primarily responsible for MC production in the river whereas

Microcystis spp. were the primary MC producers in the western

basin. Therefore, the Maumee River was an unlikely source of

toxic Microcystis strains, although some doubt surrounds these

conclusions. In contrast, our findings strongly suggest a link

between the toxic Microcystis strains in Lake St. Clair and lakes

Erie and Ontario. Clearly, the ecology of the blooms in Lake St.

Clair must be studied in further detail to better understand how

continued changes in water quality will impact the toxicity, density

and duration of these toxic Microcystis blooms.

Furthermore, our results indicated a broad connectivity among

populations of toxic Microcystis strains in Lake St. Clair, Lake Erie

and Lake Ontario. Previous studies have investigated the genetic

diversity of MC producing phytoplankton within Lake Erie [23]

and within Lake Ontario [24] using the mcyA gene. We were able

to incorporate those sequences into our analysis along with data

from strains we have isolated from Hamilton Harbour and the Bay

of Quinte. Both of the previous studies found Microcystis to be the

primary MC producer in the main basin of the lake, similar to our

results for Lake St. Clair. Both studies also found genetic

differences in populations of mcyA-containing Microcystis collected

from different parts of the system. We found that most mcyA
sequences clustered together with only a small group, LGL-6,

forming a separate cluster with strains from Lakes Erie and

Ontario (Fig. 4). This could be due to conditions in Lake St. Clair

during the bloom, which may have favoured one particular

genotype of toxic Microcystis on the survey date. Clearly, this

requires further investigation and Lake St. Clair should be

sampled at other times to evaluate the genetic diversity toxic

Microcystis community throughout the growing season (May –

October). Although our findings suggest Microcystis is the primary

MC producer in Lake St. Clair, other MC producers may occur at

other times of the bloom season. Nonetheless, during this

particular sampling period, mcyA fragments from Microcystis were

preferentially amplified due to the dominance of Microcystis at this

time and these sequences showed genetic homogeneity.

We also showed that the total Microcystis biomass was positively

correlated with MC concentrations in Lake St. Clair. However, it

has been well documented in many temperate lakes that over the

course of a growing season, MC concentrations do not correlate

with total Microcystis biomass. Rather, the shifts between

subpopulations of toxic and non-toxic Microcystis strains within

a bloom largely control the overall toxicity [75–76]. Therefore, we

cannot extrapolate our findings over the entire growing season as

the environmental conditions during our spatial survey may have

been promoting toxic strains to dominate the Microcystis
population leading to the observed correlation between biomass

and MC concentration, which may not persist over time.

Overall, our study provides the first evidence that blooms along

the south shore of Lake St. Clair are toxic and that MC

concentrations reach levels that may pose a threat to human

health. Furthermore we demonstrated a clear genetic connectivity

between the lower Great Lakes indicating that Lake St. Clair is a

potentially important immediate source of toxic Microcystis strains

contributing to the Lake Erie western basin blooms. As we cannot

address the possibility of the historical influence of toxic strains of

Microcystis from the upper Great Lakes (e.g. Saginaw Bay) into

Lake St. Clair and Lake Erie, future phylogenetic work using the

universal mcyA marker should be conducted to determine if this

genetic connectivity extends into Lake Huron and possibly into

lakes Superior and Michigan. Future studies in Lake St. Clair must

focus on understanding the environmental drivers (e.g. nutrients,

light, temperature) of these toxic strains. More intense and earlier-

forming blooms in Lake St. Clair could further influence the

toxicity of blooms in the western basin of Lake Erie. Furthermore,

mechanistic experiments need to be conducted in all three systems

where Microcystis blooms tend to occur to elucidate any common

environmental drivers. As we observed similarities in the genetic

populations of the MC-producing communities in all three lakes,

common factors are likely responsible for causing elevated toxicity

in each system.
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69. Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, et al. (2008)

Summer heatwaves promote blooms of harmful cyanobacteria. Global Change

Biol 14: 495–512.
70. Wang H, Gruden CL, Bridgeman TB, Chaffin JD (2009) Detection and

quantification of Microcystis spp. and microcystin-LR in western Lake Erie
during the summer of 2007. Water Sci Tech 60: 1837–1846.

71. Chaffin JD, Bridgeman TB, Heckathorn SA, Mishra S (2011) Assessment of

Microcystis growth rate potential and nutrient status across a trophic gradient in
western Lake Erie. J Great Lakes Res 37: 92–100.

72. Derecki JA (1983) Travel times in the Great Lakes connecting channels. GLERL
Open File Report. Ann Arbor: Great Lakes Environmental Research

Laboratory. 12 p.
73. Richards RP, Baker DB (1993) Trends in nutrient and suspended sediment

concentrations in Lake Erie tributaries, 1975–1990. J Great Lakes Res 19: 200–

211.
74. Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, et al. (2013)

Record-setting algal bloom in Lake Erie caused by agricultural and
meteorological trends consistent with expected future conditions. Proc Natl

Acad Sci USA 110: 6448–6452.

75. Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature
and nutrients on the growth and dynamics of toxic and non-toxic strains of

Microcystis during cyanobacteria blooms. Harmful Algae 8: 715–725.
76. Davis TW, Harke MJ, Marcoval MA, Goleski J, Orano-Dawson C, et al. (2010)

Effects of nitrogenous compounds and phosphorus on the growth of toxic and
non-toxic strains of Microcystis during bloom events. Aquat Microb Ecol 61:

149–162.

Molecular Diversity of MC Producers in the Lower Great Lakes

PLOS ONE | www.plosone.org 9 September 2014 | Volume 9 | Issue 9 | e106093


