Skip to main content
. 2014 Sep 10;9(9):e107122. doi: 10.1371/journal.pone.0107122

Table 1. Algorithm of HDBN.

Input:
data Inline graphic, Inline graphic
number of training data Inline graphic; number of test data Inline graphic;
number of layers Inline graphic; number of epochs Inline graphic;
number of units in every hidden layer Inline graphic;
number of groups in every convolutional hidden layer Inline graphic;
hidden layer Inline graphic;
convolutional hidden layer Inline graphic;
parameter space Inline graphic;
biases Inline graphic, Inline graphic; momentum Inline graphic and learning rate Inline graphic;
Output:
deep architecture with parameter space Inline graphic
1. Greedy layer-wise unsupervised learning
for Inline graphic; Inline graphic; Inline graphic do
for Inline graphic do
   for Inline graphic do
  Calculate the non-linear positive and negative phase:
   if Inline graphic then
    Normal calculation.
   else
    Convolutional calculation according to Eq. 6 and Eq. 7.
   end if
  Update the weights and biases:
   Inline graphic
   end for
end for
end for
2. Supervised learning based on gradient descent
Inline graphic