Input:
|
data ,
|
number of training data ; number of test data ; |
number of layers ; number of epochs ; |
number of units in every hidden layer ; |
number of groups in every convolutional hidden layer ; |
hidden layer ; |
convolutional hidden layer ; |
parameter space ; |
biases , ; momentum and learning rate ; |
Output:
|
deep architecture with parameter space
|
1. Greedy layer-wise unsupervised learning |
for
; ;
do
|
for
do
|
for
do
|
Calculate the non-linear positive and negative phase: |
if
then
|
Normal calculation. |
else
|
Convolutional calculation according to Eq. 6 and Eq. 7. |
end if
|
Update the weights and biases: |
|
end for
|
end for
|
end for
|
2. Supervised learning based on gradient descent |
|