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Abstract

The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization
within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP
signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as
stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing
hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok)
are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro,
we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a
multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal
of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh,
and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that
promotes to wing hair formation, a function that is antagonized by Mwh.
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Introduction

Planar Cell Polarity (PCP), the polarity within the epithelial

plane, is a characteristic of many epithelia in vertebrates and

invertebrates and is established under the control of the non-

canonical Wnt/Frizzled (Fz)-PCP signaling pathway. In verte-

brates, PCP signaling is evident in the alignment of hair follicles

[1,2] and stereocilia in the inner ear [3], and required for limb

growth [4]. Non-canonical Wnt signaling also regulates directional

cell migration and intercalation during convergence and extension

(C&E) during vertebrate gastrulation and kidney development [5–

8] and aberrant PCP signaling thus can lead to severe birth defects

(reviewed in [9,10]). In Drosophila, PCP signaling controls cell

fates and orientation of ommatidia in the facet eye as well as the

formation and orientation wing hairs (trichomes; reviewed in [11–

14]).

A set of core PCP factors including the transmembrane proteins

Fz, Flamingo (Fmi; aka. Stan), Van-Gogh (Vang, aka. Stbm), the

adaptor proteins Dishevelled (Dsh), and Prickle are required for

PCP establishment in all tissues (reviewed in [11–13]). Their

interplay during PCP establishment leads to their asymmetric

localization within cells with Fz and Dsh localizing to the distal

and Vang and Pk localizing to opposite proximal vertex of

hexagonal wing cells. These asymmetries are thought to act as cues

interpreted by downstream effector genes for the establishment of

polarity dependent structures [11–13]. In particular, each wing

cell initiates the growth of a single trichome, an actin and tubulin

rich wing hair [15,16] at the distal vertex at around 30 hrs after

puparium formation (APF) [15–18]. About 17 hrs later, the

trichome has developed into a cuticle ensheathed, rose-thorn

shaped spike filled with a highly organized actin and microtubule

fibers [19] that points towards the distal wing tip. In core PCP

mutants, a wing hair typically forms in the center of a cell and

shows aberrant polarity.

Planar cell polarity effector (PPE) genes, such as inturned (in),

fuzzy (fy), and fritz (frtz), act downstream of the core PCP genes. In

contrast to core PCP mutants, in PPE mutant wings, an average of

two independent trichomes are initiated at various positions in the

apical periphery of a wing cell (‘multiple hair cell’ (MHC)

phenotype) [18]. A distinct phenotype with four hairs per cell is

seen in multiple wing hair (mwh) mutants, some of which appear to

be smaller secondary hairs splitting from larger ones [18]. Epistasis

analyses and colocalization studies suggest that a complex of In,

Frtz, and Fy localizes to proximal, apical cell vertices in a core

PCP gene dependent manner and prevents local hair initiation
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and/or promotes distal hair initiation [18,20,21]. Specifically,

PCP effector genes recruit and/or activate Mwh via direct

interaction with In [22] leading to proximal enrichment of Mwh

trailing off towards the distal end of cells [21,23]. mwh encodes a

protein that resembles formins in that it contains a Rho family

GTPase binding domain followed by a formin homology 3 domain

with a potential for dimerization, but lacks a FH2 domain able to

catalyze actin polymerization. Mwh may inhibit ectopic actin

filament formation either directly, or by interfering with Rho

GTPase activation of formins, or formin mediated actin polymer-

ization [21,23]. Consistent with this, growing actin pimples are

initially seen all over the apical surface of a mwh mutant wing cell

[21]. At around 34 hrs APF, Mwh relocalizes to the base of the

forming prehair, where it prevents the formation of secondary

trichomes [23].

Fz-PCP signaling also leads to the activation of Rho family

GTPases such as RhoA, which in turn activates Rho kinase (Rok)

to ensure proper cytoskeletal responses required for trichome

formation in the wing and ommatidial rotation in the eye in

Drosophila or directed cell migration during C&E in vertebrates

[24–26]. In particular, loss of rok causes the appearance of

multiple hairs per cell, albeit these trichomes still form at distal

vertices and their appearance is thus mechanistically distinct from

the action of other PPE genes such as fy or in [26]. The best-

known substrate of Rok is Myosin II light chain regulatory kinase

(MRLC, sqh), phosphorylation of which is required for myosin

activity. Indeed, based on genetic interaction assays, it has been

postulated that a proper balance between actin/myosin activities is

essential for the formation of a single wing hair, as Myosin II can

affect actin bundling [26].

To date, it is unknown how the In/Fy and Mwh PCP effectors

cooperate with Rok during wing hair formation. We thus

performed a genome-wide molecular screen for novel Rok

substrates and identified CG10732 (now called Combover; Cmb)

as a novel substrate of Rok. Overexpression of Cmb causes the

formation of MHCs, a phenotype that was dominantly enhanced

by removal of a gene copy of rok. In addition, the MHC

phenotype of Cmb overexpression is enhanced by the fy/in group

of PPE genes and mwh. We show that Cmb binds to Mwh and that

mutation of cmb suppresses mwh in double mutants. We propose

that Cmb is a novel PCP effector, the first one known to act

downstream of mwh in wing cells during trichome formation.

Results

Combover (Cmb)/CG10732 is a novel direct substrate of
Rok

To identify novel effectors of Planar Cell Polarity signaling, we

performed a genome-wide, gel-shift based screen for Rho kinase

substrates [27,28]. Briefly, pools cDNA clones of the Drosophila

Gene Collections 1&2 were in vitro translated and internally

labeled with [35]S-Methionine and incubated with the catalytic

fragment of Rok (Rokcat) in the presence of unlabeled ATP.

Candidate substrates were identified based on a reduced mobility

on Anderson gels [28]. Compared to untreated control, incubation

with Rokcat induced a gel-shift of in vitro translated clone

GH01088 coding for CG10732-PB (Fig. 1A; blue arrows in

Fig. 1C indicate the Rok dependent slow-migrating form of

CG10732-PB). Importantly, incubation of the kinase reaction with

calf intestinal alkaline phosphatase (CIP) strongly reduced the gel-

shift (Fig. 1C, lane 3), indicating that the retarded gel migration is

dependent on a (direct or indirect) phosphorylation event.

CG10732 is thus a novel and uncharacterized potential target of

Rho kinase phosphorylation.

Searches in Flybase [29] showed that CG10732, which we

named Combover (Cmb), encodes four predicted splice isoforms

(RA-RD). The open reading frame of the short isoform (PB) being

contained within the longest one (PA; Fig. 1A). Isoforms cmb-RC
and cmb-RD lack 96 bp or 99 bp towards the end of Exon 5 of

cmb-RA (corresponding to Exon 4 of cmb-RB), due to removal of

an extra intron possibly leading to in frame deletions of 32 and 33

aa, respectively. In contrast to the existence of cmb-RA and cmb-
RB that is strongly supported by genomic data, the existence of

cmb-RC and cmb-RD is only moderately supported [29]. Neither

isoform contains known protein domains beyond a potential

coiled-coil domain similar to SMC (structural maintenance of

chromosomes) proteins (not shown) [30]. To assess when cmb
evolved, we performed a database search using the BLAST

algorithm against model metazoan sequences (see Fig. S1). cmb is

present across a wide range of insect orders, with the only notable

absence in the pea aphid Acyrthosiphon pisum (Fig. 1B and S2;

alignments in Figs. S3 and S4). We identified a cmb ortholog in the

crustacean Daphnia magna as well as in the tick Ixodes scapularis.
We did not retrieve orthologs of cmb in any non-arthropod

metazoan, thus suggesting that cmb evolved in the common

ancestor of the Euarthropoda (i.e. chelicerates, myriapods,

crustaceans and hexapods). Phylogenetic analyses revealed that

the cmb gene exists as a single ortholog in many dipterans (i.e. flies

and mosquitoes), however many culicomorph ( = mosquito) species

have duplicated cmb paralogs, including up to three distinct

paralogs in C. quinquefasciatus and A. aegypti (Fig. S2A and B).

Our analysis revealed that cmb has been maintained in the

genomes of a wide range of dipterans, and that cmb evolved in the

last common ancestor of all arthropod clades.

We then confirmed that Cmb was a direct substrate of Rok

in vitro. As full-length Cmb-PB was not soluble, we expressed

overlapping GST-Cmb fragments (Fig. 1A) in E. coli and tested

purified fusion proteins in kinase assays in the presence of

[32P]cATP. Gst alone, Gst-BB (aa 384–580 relative to Cmb-PB),

and Gst-SX (aa 496 to stop) were not phosphorylated by Rokcat

(Fig. 1D, lanes 1, 2, 4; note autophosphorylation of Rokcat [31]).

However, the N-terminal ES fragment of Cmb-PB (aa 1–495) was

directly phosphorylated by Rokcat (Fig. 1D, lane 4), leading to the

prediction that the Rok phosphorylation site(s) lie within the first

382 amino acids of Cmb-PB (Fig. 1A). Gst-ES thus was thus

subject to phosphorylation by cold ATP and the phosphorylation

sites mapped by mass spectrometry. Relative to the start codon of

Cmb-PB, T46, T026, S300, T368, and T370 were identified with

T368 being phosphorylated at very low levels. Except for S300, all

sites are followed by Proline, uncommon for Rok phosphorylation

sites that are usually preceded by a positively charged amino acids

at position [–1] or [–2] (see [32–36]). We mutated these five

candidate sites to Ala and introduced an additional mutation

(T372A) as it is a third Thr in a [TP]3 repeat together with T368,

and T370. The mutated Gst-ES6A fusion protein was then tested

in direct kinase assays. Fig. 1E shows that compared to Gst-ES

(middle set), most phosphorylation of the phosphorylation by

Rokcat is lost in the Gst-ES6A mutant (right panel; Fig. 1F shows

quantification of the triplicates shown in Fig. 1E) indicating that

the major phosphorylation sites of Cmb were correctly identified

and that Cmb is a novel Rok substrate in vitro.

A role of Combover in actin wing hair formation
In order to assess the physiological role of combover, we

mutagenized the gene using homologous recombination tech-

niques [37,38]. Briefly, we replaced 1023 bp of Exon 3 including

the start codon and roughly half of Exon 4 of cmb-RB (equivalent

to Exon 4 and half of Exon 5 of the other isoforms; Fig. 2A) with a
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Figure 1. Cmb is a Rho kinase substrate. (A) Schematic of the PA and PB Cmb isoforms as annotated in Flybase. Clone GH01088 is a full-length
clone corresponding to cmb-RB identified in the Rok target screen. Grey bars indicate GST fusions of Cmb-PB used to map phosphorylation sites in
direct kinase assays in vitro, and Cmb-NT, Cmb-CT, and Cmb-Int indicate fragments used in two-hybrid and co-immunoprecipitation experiments.
Phosphorylation sites identified by mass-spectrometry are numbered relative to Cmb-PB. Direct phosphorylation results of the Cmb Gst fragments
are indicated towards the right. (B) Summary of the presence and/or absence of cmb and mwh genes in model arthropod genomes (see also Figure
S2; phylogenetic reconstruction shown is based on [62–64]). mwh and cmb likely evolved in the last common ancestor of euarthropods (as
represented by an ortholog in the tick Ixodes scapularis). The Diptera clade has been collapsed (see Figures S1 and S2). (C) Treatment of in vitro
translated Cmb-PB (clone GH01088) with the catalytic fragment of Rho kinase (Rokcat) causes the formation of a slower migrating form of Cmb on an
Anderson gel (compare blue arrow position with black one in lanes 1 and 2). The gel shift is due to phosphorylation, as it is reverted upon treatment
with alkaline phosphatase (CIP; lane 3). Note that for unknown reasons (such as translation initiating at an internal methionine), two Cmb bands are
seen upon in vitro translation of Cmb in reticulocyte lysates. (D) Phosphorylation of Cmb by Rok is direct. Indicated purified fragments of Cmb fused
to Gst were incubated with Rokcat in the presence of [32] P-cATP and separated on a 12% SDS PA gel. Only GST-ES (lane 3) is a substrate of Rok. Top
panel is an autoradiograph of the Coomassie stained gel in the lower panel. Arrow show Rokcat autophosphorylation (Rok) and indicated GST-fusion
proteins. (E) Kinase assays in triplicate of indicated Gst fusion proteins. The upper panels show autoradiographs of the Coomassie stained gel below.
In Gst-ES6A, the five phosphorylation sites (see A) identified by mass-spectrometry were mutated to Ala (in addition, T372 was mutated as well, as it
lies with in a [TP]3 repeat with T368 and T370). (F) Quantification of kinase assay shown in E. Error bars indicate standard deviation; T-test: ***p,
0.0001.
doi:10.1371/journal.pone.0107311.g001
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white gene marker. The allele obtained was homozygous viable

(see below). The mutation was verified by inverse PCR using

primers of the White cassette and genomic primers outside of the

homology arms (not shown) and by directly assessing the deletion

with primers specific for cmb (see Fig. 2A). While cmb primers

were able to amplify the expected fragment of 945 bp from wild-

type (w1118) genomic DNA, no product was obtained from DNA

of homozygous cmbKO flies (compare lanes 1 and 2 of Fig. 2B), as

predicted for successful deletion. Control amplification of an

unrelated locus confirmed the integrity of the DNAs (Fig. 2B, lanes

4, 5).

To further characterize the cmbKO mutant, we generated an

antiserum against the ES fragment of Cmb-PB. cmb-RA and cmb-
RB encode predicted proteins of 1657 amino acids (aa) and 809 aa

with calculated molecular masses of 189 kDa and 89 kDa,

respectively. Western blot analysis of lysates of w1118 3rd instar

larvae revealed two predominant proteins recognized by the

antiserum of about 190 and 110 kDa (as calculated by their

relative migration to markers) that were absent from cmbKO lysates

(Fig. 2C; aTubulin was used as loading control, lower panel).

Although the smaller isoform migrates at a higher apparent

molecular mass than predicted by conceptual translation, the

absence of both bands in the mutant show that the cmbKO allele is

a protein null allele of cmb.

As cmbKO flies are viable and showed no gross anatomical

defects, we assessed if cmb loss caused PCP phenotypes similar to

loss of rok. Trichome polarity in the wing was normal and we

found no multiple hair cell phenotype (compare wild-type wing

area shown in Fig. 2E with cmbKO wing in Fig. 2F). Similarly,

sections of adult eyes of homozygous cmbKO flies were normal,

with no PCP defects (Fig. S5).

We next created transgenic flies overexpressing each Cmb

isoform under UAS control to assess gain of function (GOF)

phenotypes. Overexpression of either Cmb isoform under the

control of sevenless-Gal4, usually an excellent driver to induce

PCP defects in the eye [39–41], had no effect (Fig. S5C, D).

However, overexpression of cmb-RA and cmb-RB in several

independent transgenic lines under the control of en-Gal4
(compare en.Gal4 control wing in Fig. 3A with en.cmbRB4

and en.cmbRA3 in Fig. 3B and C, respectively) or nubbin-Gal4
(not shown) caused the formation of a multiple hair cell phenotype

similar to loss of rok (and other PCP effectors) [18,26]. These data

Figure 2. cmbKO is a protein null mutant. (A) Genomic locus of cmb/CG10732 showing the RA and RB isoforms that are well supported by
genomic data. 1023 bp of genomic DNA (red) was replaced with a White+ marker by homologous recombination to generate the cmbKO allele. The
deleted fragment includes the start codon of the PB isoform. Arrows indicate approximate location of the PCR primers used to verify the deletion. (B)
Analytical PCR shows that cmb specific primers amplify a 945 bp fragment from w1118 control DNA (lane 2), but not from homozygous cmbKO DNA
(lane 1). Control primers amplify the expected 532 bp fragment from both DNAs showing their integrity (lanes 4, 5). Lanes 3, 6: No DNA controls. (C)
Western blot analysis of 3rd instar larval lysates separated on a 12% SDS-PA gel shows that, in contrast to a w1118 lysate (left lane), neither Cmb-PA nor
Cmb-PB (arrows; predicted MWs 189 kDa and 89 kDa, respectively) are detected in lysates of homozygous cmbKO flies. The minor form running above
Cmb-PB may be a modified form and was not detected in all preparations. aTubulin was used as loading control (lower panel). (D–F) Wing hairs and
their orientation of cmbKO flies are normal. Compare enlarged wing area of a w1118 wing (E) with a cmbKO wing in (F; area corresponds to blue box in
D). Scale bar is 50 mm.
doi:10.1371/journal.pone.0107311.g002
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thus suggest a function of Cmb in actin hair initiation or

modification of actin myosin contractility. The frequency of

ectopic hairs varied strongly between UAS-Cmb lines and

conditions (not shown), suggesting strong dosage sensitivity.

To assess the specificity of the Cmb GOF phenotype and to

assess if there may be a physiological relevance for the in vitro
phosphorylation of Cmb by Rok, we tested genetic interactions

between rok and Cmb overexpression. As shown for rok1 and rok2

alleles in Fig. 3D, E, removal of one gene dose of rok significantly

enhanced the MHC frequency of cmb-RA overexpression (quan-

tified in Fig. 3H). Similarly, cmb-RA overexpression is enhanced

by a deficiency uncovering rok (Fig. 3F, quantified in Fig. 3H).

Wings of flies heterozygous for rok look wild-type (data not shown).

These results suggest that rok exerts a negative effect on

overexpressed Cmb in vivo.

The multiple hair cell phenotype of Cmb overexpression
is enhanced by PPE genes

To further define a potential connection between Cmb and

PCP effectors, Cmb was overexpressed in the Drosophila wing in a

heterozygous mutant background for members of the PCP effector

family. Intriguingly, the MHC phenotype of cmb-RA overexpres-

sion is dominantly and statistically significantly enhanced by

removal of one gene dosage of mwh1, mwh6, frtz3, fy2, fy3, or in1

(Fig. 4A–F; quantified in Fig. 4G and 3H) as well as by

heterozygosity for deficiencies uncovering each of these loci

(quantified in Fig. 4H; control wings of PPE heterozygotes look

normal; data not shown). This clearly suggests that while

Combover is not essential for trichome formation, nevertheless it

can affect actin wing hair formation, possibly being negatively

regulated by the planar cell polarity effector protein family.

Combover physically interacts with and is regulated by
the PCP effector Multiple Wing Hairs

To assess the mechanistic basis of the genetic interactions, we

tested whether Cmb would physically interact with PPE genes in

yeast two-hybrid assays. Due to the size of Cmb, we tested

interactions of Fy, Frtz, In, and Mwh bait proteins for interaction

with the N- and C-terminal halves of Cmb as prey (see schematic

in Fig. 1A). Interestingly, the N-terminal half of Cmb-PA

interacted with Mwh in this assay under stringent selection

conditions on medium simultaneously lacking Ade and His

(Fig. 5A and 5B). In addition, growth correlated with the

activation of the lacZ gene, a third reporter present in the two-

hybrid tester strain. Neither Fy, Frtz, or In interacted with Cmb

(Fig. 5A), also suggesting the Cmb-Mwh interaction is specific.

To independently confirm the interaction in a different system,

we transfected HEK293 cells with GFP tagged Cmb-PA, Cmb-PB,

or Cmb-Int, a fragment consisting of the N-terminal half of Cmb-

PA overlapping with Cmb-PB (Fig. 1A) together with Myc-tagged

Mwh. Immunoprecipitation with anti-GFP antibodies efficiently

co-precipitated Mwh (lanes 1–3 in Fig. 5C; note that Mwh is

expressed as a doublet in HEK293 cells), but not a Myc-tagged

control protein (Dazap1, lanes 5–7 in Fig. 5C). Importantly, GFP-

Tbx1 did not pull-down Myc-Mwh (Fig. 5C Lane 4), indicating

that Cmb specifically interacts with Mwh not only in yeast two-

hybrid assays, but also in lysates of transfected cells.

Figure 3. Overexpression of Cmb causes a MHC phenotype which is dominantly enhanced by alleles of rok. (A–C) Compared to control
(A), overexpression of either isoform of Cmb (RB and RA in (B), (C), respectively) under the control of en-Gal4 causes the formation of multiple hairs
cells specifically in the posterior compartment. (D–F) This MHC phenotype is dominantly enhanced by the removal of one gene dose of rok (rok1 (D),
rok2 (E)), or a deficiency uncovering rok (Df(1)FDD-0331226; F). (G) Schematic of wing indicating the approximate areas shown in panels A–F (blue box)
and the second posterior wing cell scored for quantification (rose). (H) Quantification of MHC phenotype of Cmb overexpression in second posterior
wing cell and enhancement by indicated alleles. 29uC. Depicted are mean and SEM; T-tests (*p,0.05; ***p,0.001); n$5. Scale bars are 20 mm.
doi:10.1371/journal.pone.0107311.g003
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The Fy/In group of PCP effectors form a complex that is

required for the proper localization and probably the restriction of

Mwh activity to the more proximal side of early developing pupal

wing cells [21–23]. Furthermore, the MHC phenotype of Cmb

overexpression is enhanced by reduction of fy, in, frtz, and mwh
(Fig. 4). Our physical and genetic interaction data suggested that

Cmb contributed to trichome formation, a function that might be

antagonized by PPE genes. If so, we hypothesized that loss of cmb
might suppress the phenotype of mwh mutants. We thus

recombined the cmbKO mutation with an amorphic mwh1 and a

hypomorphic, temperature sensitive mwh6 allele [18,23,42] and

assessed the phenotypes of homozygous double mutants raised at

25uC. Indeed, loss of cmb suppressed the phenotype of mwh1 and

mwh6 alleles, as well as mwh1/mwh6 transheterozygotes (compare

Fig. 6A–C with D–F). Quantification of the multiple hair cells in

the second posterior wing cell (Schematic in Fig. 3G) showed that

the suppression from a mean of 752640 MHCs to 517635 for

mwh1, of 697644 MHCs to 413639 for mwh1/mwh6, and of

488613 MHCs to 260612 for mwh6, respectively, is statistically

significant (Fig. 6G), thus supporting a model in which Cmb has

an role in actin wing hair formation and is directly regulated by

the PCP effector Mwh through a protein-protein interaction

in vivo.

Localization of Cmb in pupal wing discs
In order to restrict wing hair formation to the distal end of cells,

In and Frtz are localized to the apical, proximal side of developing

wing cells prior to hair formation in a process that is controlled by

the core PCP signaling module [20,21,23]. Similarly, Mwh is

enriched at the proximal edge of wing cells [21,23]. We thus

stained pupal wing discs with our Cmb antibodies. Unfortunately,

our antiserum does not detect endogenous Cmb in tissue samples

(Fig. 7A, A’). en.cmb-RB and en.cmb-RA driven protein is

localized apically in posterior wing cells at 30 hrs APF prior to

wing hair formation (Fig. 7A, D). We noticed that the expression

level of the transgenes was somewhat variable between different

cells. In cells expressing Cmb at lower levels, it appears cortically

enriched. At 36 hrs APF, once wing hairs started forming, Cmb

protein remains distributed in a grainy pattern in the apical region

of wing cells (Fig. 7B, B’ for cmb-RB and not shown) and is largely

excluded from more basal regions of cells (Fig. 7 C for cmb-RB).

Apical restriction of both isoforms is also evident in Z-sections

(Fig. 7E, F). We do not find Cmb localized to the actin hair itself

(Fig. 7B). Significantly, the ectopic hairs form at the distal vertex

(Fig. 7B) and no obvious difference in Cmb localization is seen

between cells that show one or multiple hairs due to overexpres-

sion of Cmb (Fig. 7B, B’ and B’’). To express Cmb at lower levels

and to address if Cmb can localize asymmetrically in cells, we

Figure 4. Cmb genetically interacts with PCP effectors. (A) en.cmb-RA overexpression phenotype. (B–F) The MHC phenotype of en.cmb-RA is
dominantly enhanced by the removal of one gene dose of mwh1 (B), mwh6 (C), fy3 (D), in1 (E), and frtz3 (F). (G–H) Quantification of MHC phenotype of
cmb-RA overexpression in second posterior wing cell (see Fig. 3G for schematic) and enhancement by indicated alleles (G) and deficiencies
uncovering those loci (H). Baselines are variable between the different experiments and quantification in (G) corresponds to experimental series
shown in B, D–F; quantification of the mwh6 interaction is shown in Fig. 3H. Graphs show means and SEM; T-tests, reduced Bonferroni correction (*p,
0.05; **p,0.01; ***p,0.001); n$5. 29uC. Scale bars are 20 mm.
doi:10.1371/journal.pone.0107311.g004
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induced ‘flip-out’ clones expressing cmb-RA under control of the

actin-Gal4. While we find apical cortical enrichment of Cmb-RA,

there is no evidence for proximal-distal asymmetry (Fig. 7G, G’;

expressing cells are labeled in blue in G). In conclusion,

(overexpressed) Cmb is localized apically in pupal wing cells and

is cortically enriched in cells that appear to express lower protein

levels and thus overlaps with areas where Mwh (and other PCP

effectors) localize.

Discussion

Rho kinase, a member of the AGC kinase family which also

includes PKC and Akt (for review see [43,44] was originally

identified as a RhoA effector reorganizing the cytoskeleton by

promoting the formation of actin stress fibers [45]. In Drosophila,

Rok was shown to act downstream of Fz and Dsh in the non-

canonical Wnt/Planar Cell Polarity pathway causing ommatidial

rotation and structural defects in the eye and multiple hairs cells in

the wing [26]. Here, we have identified Combover/CG10732 as a

novel substrate of Rok. We created a cmb protein null allele lacking

both Cmb protein isoforms (Fig. 2C) that is homozygous viable.

Homozygous cmb mutants display no visible phenotype in the

wing or in sections of the adult eyes (Figs. 2 and S5). As a

reduction or an excess of actin polymerization can cause MHCs,

we assessed the overexpression phenotype of Cmb. Indeed,

overexpression of either Cmb isoform caused a multiple hair cell

phenotype that is strongly dominantly enhanced by rok and the fy/
in/mwh PCP effectors, validating our in vitro screening approach

to identify PCP effectors. Importantly, the cmb mutation

suppresses the MHC phenotype of mwh in double mutants. Our

Figure 5. Cmb interacts physically with Mwh. (A) Summary of yeast two-hybrid interaction assays between PCP effector candidates (baits) and
Cmb N- and C-terminal parts (CmbNT and CmbCT, respectively; c.f. Fig. 1A). Only Mwh, but not In, Fy, or Frtz interacts with Cmb. (B) Yeast two-hybrid
results of transfections with indicated plasmids. Upper panels show growth under conditions selective for the presence of the plasmids only (Traf.).
Lower panels: additional stringent selection for interaction (Str.: -HIS; -ADE) furthermore showing interaction via LacZ staining, a third maker present
in the yeast strain. Only yeast cells containing the Mwh bait and the CmbNT prey, but not the controls grew under conditions selective for interaction.
(C) Cmb specifically coimmunoprecipitates Mwh from Lysates of HEK293 cells. Indicated GFP-tagged Cmb constructs (lanes 1–3, and 5–7; see Fig. 1A
for schematics) or Tbx1 (lanes 4, 8; negative control) were cotransfected with Myc-tagged Mwh (lanes 1–4) or Myc-Dazap1 (lanes 5–8; negative
control) and immunoprecipitated with anti GFP antibodies. Upper panels show immunoprecipitations, lower panels show lysates probed with
antibodies recognizing the tags of the indicated proteins. Note that Cmb-PA transfers very inefficiently onto membranes.
doi:10.1371/journal.pone.0107311.g005
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data thus indicate that Cmb, while not essential for wing hair

formation, nevertheless promotes trichome formation in vivo.

Rok phosphorylates unconventional sites on Cmb
It has been noted that known phosphorylation sites of Rok

targets such as ERM proteins, Vimentin, Myosin regulatory light

chain, or Adducin, often follow the consensus site [R/K]XX[S/T]

or [R/K]X[S/T] [32–36]. Of the five Rok sites we have identified

in our in vitro kinase assays followed by MS analysis, only S300 is

preceded by a basic residue at position [–2] (RT[S]). In all other

cases, no basic amino acid is found at position [–1] or [–2].

However, T46, T206, T368, and T370 are all followed by a

Proline, more typical of MAP kinase phosphorylation sites [46].

Nevertheless, mutation of these sites strongly reduced Cmb

phosphorylation in vitro (Fig. 1E).

In rok mutants, multiple hairs form at the distal end of wing cells

[26]. Similarly, overexpression of either Cmb isoform causes

MHCs that originate at the distal end of cells (Fig. 7B), distinct

from the in/fy group of PCP effectors and mwh, which form MHCs

around the periphery of the cells (note that in mwh mutants, actin

patches are initially even formed all over the apical cell surface)

[18,21]. Importantly, reduction of rok activity by the removal of

one gene dose (by two different alleles or a deficiency) increases the

number of MHCs (Figure 3), suggesting an inhibitory effect of Rok

on Cmb. It was suggested that Myosin II, which is concentrated at

the site of prehair initiation and whose activity is regulated by Rok

via phosphorylation of its regulatory light chain (MRLC), must be

within an optimal range to properly bundle actin and to ensure the

formation of a single hair [26]. Consistent with the genetic

interaction between cmb and rok, it is possible that in addition to

regulating MRLC, Rok might also inhibit a potential hair

promoting activity of Cmb (see model in Figure 8), although we

cannot exclude that Rok/MRLC activity acts in parallel to the

effect Cmb exerts on wing hair formation.

Cmb as a PCP effector during wing hair formation
mwh and the in/fy group of PCP effectors all have been

implicated in restricting actin hair initiation to the distal vertex of

the cells by inhibiting proximal hair assembly [18,20,21,23,47].

Core PCP signaling ensures proper proximal localization of In,

Frtz, and Fy proteins (and thus inhibition of prehair formation) to

the proximal end of wing cells [18,21,23] leading to the formation

of a single wing hair on the distal side.

cmb-RA or cmb-RB cause the formation of MHC phenotypes

upon overexpression with several wing drivers. Importantly, this

overexpression phenotype is enhanced by the removal of one gene

dosage of the PCP effectors fy, frtz, in, and mwh as well as

deficiencies uncovering those loci. These genetic interactions

suggest cmb could exert a positive effect on hair initiation, although

such a function would play a supportive or redundant role as

neither a lack or ectopic trichomes are found in cmb mutants.

Significantly, we showed that Cmb physically interacts with

Mwh in yeast two-hybrid and coimmunoprecipitation assays

(Fig. 5). Interestingly, while we were unable to identify vertebrate

homologs of cmb, we found orthologs of both cmb and mwh outside

of the insects in the genomes of the crustacean Daphnia magna
and of the tick Ixodes scapularis (Figs. 1B, S1, S2; see also [21,23]).

Ixodes is a member of the Chelicerata, the most basally-branching

Figure 6. cmb suppresses mwh in double mutants. The multiple hair cell phenotypes of mwh1 (A), mwh1/mwh6 transheterozygotes (B), or mwh6

(C) single mutants, are significantly suppressed in corresponding double mutants with cmbKO (D–F). Wing areas depicted correspond to the blue box
in Fig. 3H. (G) Quantification of number of MHCs in the second posterior wing cell (Fig. 3H) of indicated genotypes. Note that all allelic combinations
of mwh are suppressed by concomitant loss of cmb. Graphs show means with SEM; T-tests, Bonferroni correction (*p,0.05; **p,0.01; ***p,0.001);
n$5. Scale bars are 20 mm.
doi:10.1371/journal.pone.0107311.g006
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Figure 7. Cmb localization. Pupal wing discs expressing en.cmb-RB or en.cmb-RA (green) in the posterior compartment (posterior is down, distal
to the right in all panels). Actin is shown in red; greyscale pictures show indicated single channels. (A) Endogenous Cmb (anterior, above
compartment boundary indicated by a yellow dotted line) is not detected by our antibody. At 30 APF prior to hair initiation, cmb-RB overexpressed in
the posterior compartment localizes apically in a punctate pattern. (B–C) At 36 APF, after hair initiation, en.cmb-RB localizes apically (B, B’) but is
largely absent from more basal confocal sections (C, C’). Note the multiple wing hairs due to Cmb overexpression emerge on the distal side (C’’). Cmb
is not present in the wing hairs. (D) en.cmb-RA localizes apically in 30 hr APF wing discs and appears cortically enriched in cells that express at a
lower level. (E, F) Optical Z-sections of 36 hrs pupal wing discs shows strong apical enrichment of cmb-RB (E, E’) and cmb-RA (F, F’; note that the
dorsal and ventral wing layers are seen, with their basal sides touching and their apical sides facing away from each other, respectively). (G) Flip-out
clones (marked by UAS-GFP in blue in G) expressing cmb-RA under the control of actin-Gal4 show that while cmb-RA appears cortically enriched, it is
not asymmetric with respect to the P/D axis. Scale bars are 2 mm.
doi:10.1371/journal.pone.0107311.g007
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euarthropod clade that split from the remaining arthropod groups

in the Cambrian [48]. The presence of mwh and cmb in Ixodes
may be indicative of an ancient protein-protein interaction that

has been retained throughout arthropod evolution. Because both

Ixodes and Daphnia lack wings, the Mwh/Cmb interaction likely

performed different, possibly additional function in the ancestral

arthropod. Consistent with this, mwh mutants cause other

cuticular hair defects in other regions of the Drosophila body

[49]. Alternatively, the Mwh/Cmb interaction evolved much later

than the appearance of both of these genes in the genome of the

ancestral arthropod. The roles of and interactions between Cmb

and Mwh proteins in more non-insect arthropods needs to be

further explored.

The presence of both mwh and cmb orthologs in the genomes of

members of all holometabolous insect orders may indicate that the

Mwh and Cmb interaction is also conserved in this insect clade.

The retention of these two genes in members of the more basally-

branching hemipteran orders, however, is less conserved. The

conservation of mwh and cmb in Holometabolata may be due to

their shared mode of wing development, i.e. via internal wing

imaginal discs. This is in contrast to the mode of wing

development in hemimetabolous insects by which the wings

develop as buds outside of the body. Further study into the

association of wing development and Mwh/Cmb interactions in

other insect orders is needed to elucidate these findings.

Interestingly, PCP effector mutations generally enhance each

other. For example, the hypomorphic frtz3 allele is enhanced by

weak alleles of in or fy in double mutants [47]. Analogously,

removal of a gene dosage of mwh in a fy or in background,

enhances their MHC phenotype [50]. In contrast, the MHC

phenotype of mwh mutants was (partially) suppressed in mwh cmb
double mutants, as significantly fewer cells formed additional hairs.

This interaction is likely specific, because we find it with the

temperature sensitive mwh6 allele [18] and with the spontaneous

mwh1 allele, two alleles of independent origin unlikely to carry a

similar second site mutation and thus further supporting the

physiological function of Cmb as a PCP effector. To our

knowledge, cmb is the only gene reported so far to suppress

mwh. Importantly, as mwh1 and cmb both are null alleles (cmbKO

lacks expression of both protein isoforms, Fig. 2; [23]), this result

suggests that Mwh acts upstream of and normally antagonizes

Cmb and that the derepression of Cmb thus may contribute to the

MHC phenotype of mwh mutants (Fig. 8).

Unfortunately, our Cmb antibodies do not detect endogenous

Cmb protein in the developing pupal wing. Nevertheless, Cmb

expressed in the posterior compartment of the wing under the

control of en-Gal4 localizes apically in a punctate pattern. In cells

that appear to express at a lower level (seen particularly for Cmb-

RA in Figure 7D, G) Cmb is enriched at the circumference of the

cells, but shows no proximo-distal enrichment. Although we

cannot exclude that Cmb localization is an overexpression artifact,

this appears unlikely, because we would expect Cmb to fill the cells

rather than to localize specifically apically (Fig. 7G). Importantly,

Cmb likely localizes to the area of wing cells where Mwh is

present, as Mwh known to be initially enriched apically towards

the proximal side [21,23], further supporting our model that a

positive effect of Cmb as a novel PCP effector on wing hair

formation may be restricted by Mwh.

Materials and Methods

Ethics Statement
This study was carried out in accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health. The antibody generation

protocol was approved by the Institutional Animal Care and Use

Committee of the Albert Einstein College of Medicine (Protocol

number 20130514).

Fly strains
mwh1, mwh6, in1, fy2, fy3, frtz3 are described in Flybase

[23,47,51,52]. Df(3L)Fpa2 (mwh), Df(2L)ED611 (fy),

Df(2L)ED7762 (frtz), Df(3L)BSC667 (in), Df(1)FDD-0331226
(rok) were obtained from the Bloomington stock center. rok1,
Frt19A and rok2, Frt19a were a kind gift of Dr. L. Luo (Stanford

University). Constructs for transgenic flies were injected by

Rainbow Transgenic Flies and Genetic Services.

For adult wing analysis, wings were incubated in 0.1% Triton-

X100 in PBS for at least one hour and subsequently mounted in

80% glycerol in 1xPBS. Multiple hair cells (MHCs) were counted

on a minimum of 5 wings was utilized. Statistical analyses were

performed using R version 3.0.2 (2013-09-25).

Plasmids
All PCR products used for cloning were sequence verified.

pCS3_Myc_Dazap1 was a kind gift of Dr. F. Marlow, Einstein.

pCS_Tbx1_GFP was a kind gift of Dr. B. Morrow (Einstein).

pFastBacHisC was constructed by inserting Fast_bac_his_upper

and Fast_bac_his_lower into the BamHI/HindIII sites of

pFastBac1 (Life Technologies). pCRIITopo_rok was made by

cloning the Rok open reading frame as a PCR product amplified

with drok_Upper_BglII and drok_lower_BamHI into pCRIITopo

(Invitrogen). pFastBacRGSHis_rokCat was made by cloning a

BglII/EcoRI fragment of pCRIITopo_rok into the BamHI/

EcoRI sites of pFastBacRGSHis. pFastBacRGSHis_rokCat was

transformed into DH10BAC cells and Baculovirus was produced

according to the instructions of the manufacturer (Invitrogen). 1l of

SF9 cells (106 cells/ml) was inoculated at a MOI of 1 and Rokcat

was expressed for 72 hrs at room temperature in a spinner flask.

Cells were incubated in 40 ml lysis buffer (50 mM Tris, 150 mM

NaCl, 10% glycerol, 3 mM b-mercaptoethanol, 10 mM imidaz-

ole, pH 8.0 supplemented with 1x Complete protease inhibitors

(Roche)) for 10 minutes on ice and sonicated. The lysate was

centrifuged for 20 min at 10,000 g and the supernatant incubated

with 2 ml 50% NiNTA agarose (Qiagen) for 1 hour. After 3

washes with 10 ml lysis buffer, the protein was eluted with 3 ml

lysis buffer containing 300 mM imidazole and the eluate dialyzed

Figure 8. Model of Cmb function. Based on the genetic interaction
data we suggest that Rok may antagonize a positive role of Cmb on
wing hair formation. Mwh is enriched on the proximal side of wing cells
by the Fy/In group of PCP effectors where it prevents hair initiation. The
suppression of the MCH phenotype of a mwh null allele by a cmb null
mutant further suggests that the role of Cmb on hair formation is
antagonized by Mwh.
doi:10.1371/journal.pone.0107311.g008
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against lysis buffer (without protease inhibitors and imidazole).

Protein concentration was estimated to be 300 ng/ml using BSA

standards on a Coomassie stained gel.

To generate the cmbKO knock-out allele, left and right homology

arms were amplified by PCR from Bac clone RP98-17E13

(DGRC, CHORI, CA) using primers CG10732_left_for_KpnI,

CG10732_left_rev_SacII and CG10732_right_for_BglII,

CG10732_rarmLong_rev_AvrII, respectively and cloned into

pSCA_KanAmp (Agilent). After sequence verification, the left

arm was cloned as KpnI (blunt)/SacII fragment into the NotI

(blunt)/SacII fragment pRK2 [37], followed by insertion of the

right arm as BglII/AvrII fragment into the corresponding sites to

give pRK2_CG10732_final. The knock-out mutant of cmb was

made according to [37]. The integrity of the cmbKO allele was

verified by inverse PCR (not shown) and by PCR analysis using

primer Cmb KO Verification F and Cmb KO Verification R

(predicted product size 945 bp; Fig. 2A). To control for DNA

integrity, primers EY10165_1 and EY10165_2 were used to

amplify a fragment of CG7177 of 532 bp.

pGEX4T3_ES (Gst-ES) was generated by isolating the EcoRV/

Sal fragment from pOT2_CmbRB (DGC clone GH01088) and

cloning it into the SmaI/SalI sites of pGEX4T3. pGEX4T2_SX

(Gst-SX) was made by isolating the SalI/XhoI fragment of

pOT2_CmbRB and cloning it into the SalI site of pGEX4T2.

pGEX4T2_BB (Gst-BB) was generated by isolating BamHI

fragment (blunt) from pOT2_CmbRB and cloning it into

pGEX4T(SmaI) vector.

pSCA-K/A-CmbRA_Nterm and pSCA-K/A-CmbRA_Cterm

were made by cloning PCR products amplified from oligo-dT

primed total ovarian cDNA using CG10732_RA_For and

CG10732_RA_Nrev, and CG10732_RA_Cfor and

CG10732_RA_rev, respectively, into pSca-KA (Agilent). pSCA-

K/A-CmbRA was then assembled in a triple ligation from pSCA-

K/A-CmbRA_Nterm (DraIII/EcoRV), pOT2_CmbRB

(EcoRV/DraIII), and pSCA-K/A-CmbRA_Cterm (DraIII frag-

ment; note that the different DraIII sites have different spacer

sequences and could thus only ligate in one way). A gateway entry

clone for CmbRA was made by inserting a XbaI (blunt)/BglII

fragment of pSCA-K/A-CmbRA into the EcoRV/BamHI sites of

pENTR_3C. A CmbRB entry clone was generated by cloning a

PCR product amplified with CG10732RB_For and

CG10732RB_Rev primers into the pCR8 Gateway entry vector.

pCS3_GFP and pTFW versions of CmbRA and CmbRB were

made by Gateway recombination according to the instructions of

the manufacturer (Invitrogen, CA) [53,54]. pCS2_GFP_Cmb-Int

was made by isolating the internal Cmb BspEI fragment from

pCS3_GFP RB and inserting it into the BspEI site of pCS2-

EGFPC1. pCS2-EGFPC1 was made by cloning EGFPC1 as NheI

(blunt)/BamHI (blunt) fragment into the XhoI (blunt)/BamHI

(blunt) sites of pCS2(105). pCS2_Myc6_Mwh was made by

inserting a NdeI (blunt)/SalI (blunt) fragment of pGBKT-Mwh

[22] into the XhoI site (blunt) of pCS-MT.

Site directed mutagenesis of the Rok phosphorylation sites of

Cmb (T/S-.A) was performed in successive rounds by using

pGEX4T3_ES and the QuickChange mutagenesis kit (Agilent)

with primers that are detailed below. T46A, T206A, S300A are

tagged with CfoI, BsaXI and BfaI sites, respectively. The T368A

T370A, T370A cluster is tagged with a MsiI site (note that even

though T370 was not identified as a Rok sit in vitro, it was

mutated, as it corresponds to the last Thr in a [TP]3 repeat.

Cmb two-hybrid pGADT7_CmbNT and pGADT7_CmbCT

prey constructs were made by cloning the N- and C-terminal

halves of CmbRA as PCR products amplified from pScaKA_Cm-

bRA with CG10732-NdeI-F1 and CG10732-XmaI-R1, and

CG10732-NdeI-F2 and CG10732-XmaI-end-R2, respectively, as

NdeI/XmaI fragments into pGADT7. pGBKT constructs of mwh
and fy were made by cloning PCR products amplified with DBD-

mwh5 and DBD-mwh3, and pGBKT7-59Fy and pGBKT7-39_Fy,

respectively, as NdeI/EcoRI fragments into pGBKT7. Analo-

gously, frtz was cloned into the EcoRI site of pGBKT7 after

amplification using primers 59frtz-hybrid and 39fritz-hybrid, and

in was cloned into NheI/BamHI of pGBKT7 after amplification

with Inturn-th5 and Inturn-th3.

Antibody production and Western analysis
Gst-ES was expressed and purified by the Macromolecular

Therapeutics Development Facility of Einstein. Briefly, after

purification over a Gst-Sepharose column, Gst was cleaved off

with His6-tagged Thrombin and further purified over a Ni-column

and by size-exclusion chromatography. 100 mg ES fragment was

injected per boost into Guinea pigs by Covance. For Western

analysis, lysates of 7 3rd instar w1118 and cmbKO larvae were

prepared as the HEK293 cells for Co-IP were and separated on a

12% SDS PAGE gel, transferred to PVDF membrane and probed

with #1051 anti Cmb at a dilution of 1:5,000. Signals were

detected with a rabbit anti-Guniea pig antibody (Invitrogen) at a

dilution of 1:10,000 and imaged after ECL treatment (Promega).

Kinase assays
For gel shift assays, 0.5 ml miniprep DNA of pOT2_CmbRB

(DGC clone GH01088) were in vitro translated in the presence of

[35] S-methionine in a 10 ml reaction using the TNT coupled

transcription-translation system (Promega) according to the

instructions of the manufacturer. The translation was then diluted

with 40 ml 1.25x kinase buffer (5x kinase buffer: 125 mM HEPES

pH 7.2, 15 mM MgCl2, 5 mM EDTA; unless phosphatase assays

were performed, 5x kinase buffer also contained 25 mM b-

glycerophosphate and 5 mM Na3VO4). 5 ml of this dilution was

incubated for 1 h with 5 ml 2x kinase mix (1 ml 5x kinase buffer,

1 ml 5 mM ATP. 0.1 ml 100x Cycloheximide (Sigma), 0.5 ml

Rokcat and, if required, 10 u calf intestinal alkaline phosphatase

(Roche). The reaction was stopped by the addition of 5 ml 5x SDS

loading dye and boiling for 5 min at 95uC. Kinase reactions were

separated on a 12% Anderson gel [28].

Gst proteins were expressed as described [40,41]. Radioactive

kinase assays consisted of 250 ng of purified GST-tagged protein,

4 ul 5x Kinase buffer, 1.5 ul of 1 mM ATP, 0.5 ul of 32P

cATP(3000 ci/mmol), 0.5 ul of Rokcat in a total volume of 20 ml.

The assay was incubated at 25uC for 1 hour and the reaction was

stopped by the addition of 5 ul of SDS Loading dye followed by

denaturation for 5 minutes at 95uC. The assay was then separated

on a 12% SDS- PAGE gel. After staining gels with Coomassie

Blue, gels were scanned for quantification of total protein

amounts, dried and exposed on a Fuji FLA9000 phosphorimager

to quantify the extent of phosphorylation.

For phosphopepetide mapping, similar kinase assays were

performed using 1 mM cold ATP (final concentration) and

samples were alkylated with iodoacetamide [55]. Phosphopeptide

mapping via LC/MS was carried out as described [55].

Phylogenetic analyses
Putative orthologs of Cmb were identified by BlastP searches of

GenBank as well as other arthropod genome repositories (see Fig.

S1) using the sequence of the Cmb-RA isoform. To deduce the

phylogenetic position of cmb among putative heretofore uniden-

tified dipteran cmb orthologs (see Fig. S2A and B), a multiple

sequence alignment of Cmb-RA against the deduced amino acid

sequences of Dipteran orthologs was performed using T-Coffee
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(v6.85) [56,57] using the following pair-wise alignment methods:

the 10 best local alignments (Lalign_pair), an accurate global

alignment (slow_pair) [56,57]. This alignment was used to

construct a maximum likelihood tree using the PhyML program

(v3.0 aLRT) [58] using the WAG substitution model assuming an

estimated proportion of invariant sites (of 0.018) and 4 gamma-

distributed rate categories to account for rate heterogeneity across

sites, with the gamma shape parameter being estimated directly

from the data (gamma = 1.306) [59]. Internal branch support was

assessed using the aLRT test (SH-Like).

A similar strategy was used to deduce the phylogenetic position

of cmb among other identified putative arthropod orthologs (see

Figs. S1 and S2C) using the WAG substitution model assuming an

estimated proportion of invariant sites (of 0.007) and 4 gamma-

distributed rate categories to account for rate heterogeneity across

sites [59]. The gamma shape parameter was estimated directly

from the data (gamma = 2.195). Reliability for internal branch was

also assessed using the aLRT test (SH-Like). All phylogenetic

analyses were performed using Phylogeny.fr [60]. All trees were

edited and visualized using Geneious [61]. All alignments are

available by request.

Protein interactions
Two-hybrid assays were performed using the Clontech system

according to the instructions of the manufacturer (see also [40]).

Co-immunoprecipitations were done with a modified version of

the technique used in [41]. Briefly, HEK293 cells were transfected

with 5 mg of pCS3_GFP_CmbRA, pCS3_GFP_CmbRB,

pCS3_GFP_CmbInt or pCS_GFP_TBX1 together with 5 mg

pCSMyc6_Mwh or pCS3_Myc_Dazap1 using Polyethylenimine

(PEI). The cells were collected after 48 hours and washed with ice

cold 1xPBS and lysed in in 500 ul of Buffer A (20 mM Tris,

100 mM NaCl, 1% Nonidet-P 40, 1 mM EDTA, 1 mM EGTA

and 1:200 concentration of 1 mM Benzamidine, 10 mM Leupep-

tin, and 1 mM Pepstatin) and rotated at 4uC for 15 minutes.

Lysates were centrifuged at 1000 g for 15 minutes two times with

the supernatant being retained after each step. The supernatants

were incubated with 1 ug of mouse anti-GFP antibody (Roche) for

four hours at 4uC. 30 ul of 50% Protein G beads were added and

followed by overnight incubation at 4uC. Immunoprecipitates

were washed 3x with cold Buffer A and suspended in 15 ul of 2x

Laemmli buffer. Samples were run on a 12% SDS gel and western

blot analysis was performed using standard protocols.

Immunohistochemistry
Flip-out clones were generated using actin.stop.Gal4 with

UAS-GFP as lineage tracer. 30 and 36 hpf Pupal wing discs were

dissected and stained by following a standard procedure [20]. The

discs were fixed in 4% Paraformaldehyde, washed with 1xPBS,

incubated with the primary antibody overnight at 4uC, washed

with 1xPBS/0.3% TritonX100, and incubated with a fluorescently

labeled secondary antibody, washed and mounted in Prolong gold

antifade reagent with DAPI (Invitrogen).

Oligonucleotides
Fast_bac_his_upper GATCGCTGCAGCTGGATCCGG-

GAATTCACGCGGCTCCCATCACCATCACCATCACGG-

TTA

Fast_bac_his_lower AGCTTAACCGTGATGGTGATGGT-

GATGGGAGCCGCGTGAATTCCCGGATCCAGCTGCAGC

drok_Upper_BglII TATAGATCTATGCCAGCTGGACGA-

GAA

drok_lower_BamHI TATGGATCCTTTCAGCGATGAAT-

TGGC

CG10732_left_for_KpnI TATGGTACCCGATGGGCCTT-

TGTTTGTAT

CG10732_left_rev_SacII ATACCGCGGGGGGCAAGAAT-

TAAAGGATTT

CG10732_right_for_BglII TATAGATCTCGATGTTACGA-

GCGAACTGA

CG10732_rarmLong_rev_AvrII TATCCTAGGACCTCAG-

TGTGGACCTACCG

Cmb KO verification F CTGCAGGAGAAACTGC

Cmb KO verification R CTGACCTCGTCGTTGCTC

EY1065_1 TCACCGCCGATAACACTTGTG

EY1065_rev CACTGGCTCTGCCGTTCCACT

CG10732_RA_for TATAGATCTGCCACCATGGCGCC-

GCCGCCCAAG

CG10732_RA_Nrev TCGGTTGATATCTGCTATTCAGG

CG10732_RA_Cfor GAGGGAGCAGCTGGTGGA

CG10732_RA_rev ATATCTAGACTATTCGAGACTGAC-

GTCCTG

CG10732 _RB_For TATGGATTCATGGTGCACGAAAT-

CAAC

CG10732_RB_Rev CTCGAGTTACCTGCGGAAGTTGTC

T46A_10732F CTACACAGCGTCTTGGAAGCGCC-

CACGCCCGATACCACG

T46A_10732R CGTGGTATCGGGCGTGGGCGCTTC-

CAAGACGCTGTGTAG

T370AClu_10732F CTTGCCCCAGCACCCGCCCCCAT-

GAGACAGCGG

T370AClu_10732R CCGCTGTCTCATGGGGGCGGGT-

GCTGGGGCAAG

S300A_10732F CGTAGTGAGGAAAGAACTGCCGTGGA-

GCGCCGAATTGCCG

S300A_10732R CGGCAATTCGGCGCTCCACGGCAGT-

TCTTTCCTCACTACG

T206A_10732F GAGAAAGAGGAGACTCCCGCGCCTC-

TTCCCAAGCCAGAG

T206A_10732R CTCTGGCTTGGGAAGAGGCGCGG-

GAGTCTCCTCTTTCTC

CG10732-NdeI-F1 GGGAATTCCATATG ATGGCGCCG-

CCGCCCAAG

CG10732-XmaI-R 1 TCCCCCCGGGATTTGAGGAGCC-

CCCTTG

CG10732-NdeI-F2 GGGAATTCCATATGGTGCCTGGAA-

TGTGGGC

CG10732-XmaI-end-R2 TCCCCCCGGG CTATTCGA-

GACTGACGTCCTGTT

DBD-mwh5 GGAATTCCATATGGCTCCCAGTGTGT-

GCG

DBD-mwh3 CCGGAATTCTTAGTAGAGGCCGGATGG-

CAG

pGBKT7-59Fy CATGCCATGGAGATGTCCATCTATT-

TGTTATG

pGBKT7-39_Fy CGCGGATCCTTATCACCAACATACT-

GACTTC

59frtz-hybrid GGGAATTCCATATGCTGCTCAGCGAGA-

CC

39fritz-hybrid CCGGAATTCTTATTAGACCACGCCGAA-

GTGGA

Inturn-th5 TCTAGGGAATTTCCATATGCGCAAATCG-

CCGGCCAG

Inturn-th3 GATCGCGGATCCATGTCATCCCATTGAGA-

AGAAGGA
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Supporting Information

Figure S1 Summary and accession numbers of sequenc-
es used in alignments and phylogenetic analyses.

(TIF)

Figure S2 Cmb phylogenetic analyses. (A) Maximum

likelihood tree of the deduced amino acid sequence of D.
melanogaster Cmb to other putative Dipteran Cmb proteins

showing that Cmb is highly conserved within the Dipterans

(including flies and mosquitos). Multiple, lineage-specific cmb
duplications may have occurred in the mosquitoes, in that these

mosquito cmb orthologs did not resolve into paralog-specific

clades. However, the results of this analysis do suggest that the

common ancestor of the Anopheles lineage had duplicate cmb
paralogs with the most parsimonious explanation being that A.
darlingi lost the paralog of A. gambiae AFAP012311. The

relationships among other mosquito cmb genes is less clear and

may be due long branch attraction [65]. (B) Drosophila portion of

the tree in (A) showing the relationship of the deduced amino acid

sequences of putative Drosophilid cmb orthologs. (C) Maximum

likelihood tree showing the relationships between the deduced

amino acid sequences of arthropod Cmb orthologs. A DELTA-

BLAST of Cmb indicated that it has partial sequence similarity to

SMC (Stability of Mitotic Chromosomes) proteins. The Cmb

group clusters as a sister-group to the SMC2 protein group. aLRT

test (SH-Like) support at each node is indicated as a percent. The

scale bars represent the number of amino acid substitutions per

site. All gene numbers were retrieved from the repositories listed in

Figure S1.

(TIF)

Figure S3 Multiple sequence alignment of the putative
amino acid sequences of arthropod Cmb orthologs. All

aligned sequences are listed in Figure S1. Sequence logos

are shown above each aligned site. Sequences were

aligned using the T-COFFEE algorithm (see Materials and

Methods).

(PNG)

Figure S4 FASTA file of alignment shown in Fig. S3.
(FASTA)

Figure S5 Loss or gain of cmb does not cause a PCP
phenotype in the eye. Tangential sections of adult eyes with

corresponding schematic representation of ommatidial orienta-

tions underneath. Black and red arrows represent dorsal and

ventral chiral forms of ommatidia. (A) Wild-type. (B) A

homozygous cmbKO mutant eye shows no PCP phenotype. (C,

D) Eyes overexpressing cmb-RA (C) or cmb-RB (D) under the

control of the sev-Gal4 at 29uC are wild-type.

(TIF)
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