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Abstract

Due to its universality, swarm behavior in nature attracts much attention of scientists from many fields. Fish schools are
examples of biological communities that demonstrate swarm behavior. The detection and tracking of fish in a school are of
important significance for the quantitative research on swarm behavior. However, different from other biological
communities, there are three problems in the detection and tracking of fish school, that is, variable appearances, complex
motion and frequent occlusion. To solve these problems, we propose an effective method of fish detection and tracking. In
this method, first, the fish head region is positioned through extremum detection and ellipse fitting; second, The Kalman
filtering and feature matching are used to track the target in complex motion; finally, according to the feature information
obtained by the detection and tracking, the tracking problems caused by frequent occlusion are processed through
trajectory linking. We apply this method to track swimming fish school of different densities. The experimental results show
that the proposed method is both accurate and reliable.
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Introduction

There has been growing research interest in animal collective

behavior due to its high scientific values and a wide range of

potential applications [1–3]. From biological perspective, the study

of swarm behavior in animals can provide us with a better

understanding of how animals evolve. In computer science, there

are techniques being used such as particle swarm optimization and

ant colony optimization that use these social interactions to solve

optimization problems. In engineering, the study of swarm

behavior has been used to create groups of robots that are capable

of interacting and working together.

Fish school is one of the most common biological swarms in

nature. The schooling fish often swim in various shapes. This

behavior is either spontaneous or for resisting attacks. But what is

the principle behind the movement? How do fish schools benefit

from these movements to survive? How could we get revelation of

bionic algorithm from schooling (artificial fish swarm algorithm)?

These problems have been intriguing many scientists, especially

biologists, physicists and computer scientists. Since the 1970’s, in

an attempt to answer these questions, there are already researchers

from different fields, who have begun to research by quantitative

analysis [4–10], but because of the variability of fish motion and

the complexity of their environment, currently, the study of fish

school behavior is still challenging.

The most informative way to study schooling behavior and to

discover underlying principles is through acquiring and quantita-

tively analyzing the motion data of the fish school [11–16]. While

manual analyses of collective motion is tedious, time-consuming

and sometimes even impossible, video-tracking technology helps

rapid and objective quantification of collective motion. As the

rapid development of image acquisition devices and video tracking

methods, it has become possible to measure the trajectory of each

individual in a large group.

When the schooling behavior is studied in a laboratory

environment, a common experiment setup is to place a video

camera vertically on top of a fish tank filled with shallow water as

shown in Figure 1(a) for which the swimming motion can be

approximately considered as a movement on a two-dimensional

plane. While the problem of detection and tracking of fish school is

related to the multi-target detection and tracking problem in the

field of computer vision and pattern recognition, it has strong

unique characteristics making it challenging and worth thorough

investigation. In details, we are faced with the following two

difficulties.

(1) Detection problem: first, the shape of the fish is non rigid,

the outline can’t be represented by one or several

templates; second, the fishes’ texture information in the

video image are less to detect and its location can’t be

detected effectively only by texture features; finally, when

the fish density is large, the targets will frequently occlude

each other in the image. With the current target detection

algorithm, it is difficult to detect the location of each target.

(2) Tracking problem: first, the motion of fish swimming is so

complex that the existing models cannot fully simulate;

second, due to the higher degree of similarity among the

fish, the use of a single feature method can hardly

distinguish between different targets; finally, the detecting

errors caused by fish occlusion will lead to a fragmentation

in trajectory, adding more difficulties in tracking.
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In order to overcome the above mentioned difficulties, we

propose an effective method for tracking a large number of fish,

which has the following advantages.

(1) Based on the analysis of the fish shape, we propose a fish

head region detection method that integrates local feature

and geometric feature. First, the extremum detection of the

entire image is implemented based on the gray distribution

of the fish head region, and then according to the shape

characteristics and contrast characteristics of the fish head

region, the ellipse fitting and parameter estimation are

conducted to the detected adjacent region of the extreme

points, and the fish head region is further positioned

accurately. This method comprehensively applies various

features of the fish head appearance. It can accurately

locate the fish head regions under different environments

with fast computation and strong ability of anti-interfer-

ence; second, the method simplifies the fish detection

problem into the detection of one point and its adjacent

region. Only by detecting partial shape information can we

determine the fish’ position and better deal with the

occlusion problem in fish school detection.

(2) According to the detected target position, we first use

Kalman filter to estimate its motion state, then apply

feature matching method to realize data association. For

targets failing to be predicted, we establish a compensation

window to deal with that. Finally, in order to solve

trajectory fragmentation caused by occlusion, we propose

to use time and space information of trajectory fragments

to complete the trajectory linking. The proposed tracking

method takes full advantage of a variety of features and

information in swimming fish school, able to deal with the

complex motion of fish school and tracking problems

caused by frequent occlusion effectively. Besides, with a low

computational complexity, the method is more efficient in

tracking targets in a large population.

Using the proposed method, we have successfully tracked the

motion trajectories of fish schools of different densities. In order to

measure the performance of the method, we compare the tracked

results with the ground truth obtained by manual tracking. The

result shows that the proposed method is accurate and robust.

The Proposed Detection and Tracking Method
From Figure 1(b), we observe that the fish appears in a top view

image as consisting of two parts: a rigid anterior part and a

deformable posterior part that may swing to propel it. Since the

fish head is rigid and its shape and grayscale distribution keep

almost constant as the fish swims, an effective way to track fish in

video is to find the fish head regions and associate them for each

frame. Following this line of reasoning, the proposed method is

designed to consist of several steps to track fish school. The first

Figure 1. (a) Experiment environment; (b) Fish shape model.
doi:10.1371/journal.pone.0106506.g001

Figure 2. The diagram of the proposed method.
doi:10.1371/journal.pone.0106506.g002
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step is to detect the fish head from the video frames by using blob

detection and ellipse fitting. The second step is to filter its motion

state vector and predict its next value and utilize the predicted

position together with feature matching results to associate the

detected head regions of two consecutive frames. The final step is

to deal with the possible fragmentation of the trajectories caused

by occlusion via an effective trajectory linking method. An

overview of the proposed method is shown in Figure 2. The

following describes each step in detail.

2.1 Ethics statement
All experimental procedures were in compliance with the

Institutional Animal Care and Use Committee (IACUC) of

Shanghai Research Center for Model Organisms (Shanghai,

China) with approval ID 2010-0010, and all efforts were made to

minimize suffering. This study was approved by the Institutional

Animal Care and Use Committee (IACUC), and written informed

consent was obtained.

2.2 Target detection
For each frame image of the video sequence, we first detect the

fish head regions. The detection method consists of two parts:

scale-space DoH blob detection, ellipse fitting and constraint.

2.2.1 Scale-space DoH blob detection. From Figure 1(b),

we can see that the pixels inside the fish head region are

considerably darker than the background ones, the head region is

partially elliptical, and its width is greater than the rest part of the

fish body. These characteristics show that fish head region appears

like a blob and we first use blob detection to find the fish head

region. In scale-space, it is an effective method to detect image

blobs by using Determinant of Hessian (DoH) [17,18], which

reflects the local structural information of the image, and can

better detect blobs of different scales in the image and well

suppress the slender blobs in the image. The basic idea of scale

space is: by introducing a scale parameter in image information

processing model to obtain visual information at different scales

through the continuous variation of the scale parameter; then,

explore the substantive characteristics of image by combining all

the information. The method of scale space absorbs the traditional

single-scale visual information to the constantly changing dynamic

Figure 3. The illustration of the ellipse parameters. (a) The raw image of the fish head region; (b) (xo,yo) denotes the extreme point and the
violet color shows the grayscale distribution of the extreme point region. Variables length, width and h represent the long axis, short axis and angle of
the fitted ellipse respectively; (c) The variable contrast in the direction of the z-axis represents the contrast change of the ellipse and its surrounding
region.
doi:10.1371/journal.pone.0106506.g003

Figure 4. Candidate constraints based on width, contrast and angle.
doi:10.1371/journal.pone.0106506.g004
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analysis so as to obtain substantive characteristics of image more

easily. It has been proved that scale space can be created by

convolving the image with Gaussian kernel function [19]. The

Gaussian kernel function has several good properties such as

linearity, symmetry, separateness and so on, making it the kernel

function best for the expression of scale space.

Suppose the pixel point is (x,y,s) in scale-space, where x, y are the

point’s coordinates, s is the scale of the point, the Hessian matrix of

the point is defined as:

M(x,y,s)~
Lxx Lxy

Lxy Lyy

� �
ð1Þ

where Lxx, Lyy, Lxy are the convolution results of the Gaussian

second order derivative and the point (x,y) at scale s respectively.

The DoH of the matrix can be expressed as:

DM(x,y,s)~(Lxx|Lyy{Lxy
2)|s4 ð2Þ

Then the result in the blob detection is the extreme point of DoH

responses for the position space and scale space:

(x0,y0,s0)~arg minlocal(x,y,s)(DM(x,y,s)) ð3Þ

Since the head region gray value is less than the background

region, we retain only the minimum extreme point. To improve

the accuracy of the extreme point, we use tri-linear interpolation

method to calculate the related parameters (coordinates and scale)

of each extreme point. Tri-linear interpolation is a method of

multivariate interpolation on a three-dimensional regular grid. It

Figure 5. (a) The model of compensation window; (b) The segmentation model of matching region.
doi:10.1371/journal.pone.0106506.g005

Figure 6. The process of feature matching.
doi:10.1371/journal.pone.0106506.g006
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approximates the parameters of an extreme point within the local

axial rectangular prism linearly, using data on the lattice points.

When scale-space DoH blob detection is carried out in the

image, there always exists a stable extreme point at the center of

the fish head region, which provides a reliable basis for the

positioning of the head region. However, apart from the fish head

regions, there may also exist extreme points in other regions.

Therefore, it is necessary to pick up the extreme points that

corresponding to the fish head regions out of all extreme points. In

order to solve this problem, we fit ellipse for each extreme point

according to the grayscale change of the extreme point region. If

the extreme point is located in the center of the head region, the

fitted ellipse can most reflect the characteristics of the head region.

2.2.2 Ellipse fitting and constraint. There is a correspond-

ing relationship between the Hessian matrix of the extreme point

detected in the previous step and the second-order derivative

matrix. The second-order derivative matrix can also be called the

autocorrelation matrix, and its eigenvalues can represent the

curvature of the orthogonal direction, and the change of curvature

can reflect anisotropy degree of the regional structure. Based on

this characteristic, we fit ellipse by using the second-order

derivative matrix of the extreme point, estimate the grayscale

variance of the extreme point region and finally find the location

of the fish head.

Let the second-order derivative matrix (Hessian matrix)

corresponding to the extreme point (x0, y0, s0) be M(x0, y0, s0).

Then the eigenvalues and eigenvectors of the matrix can be

expressed as:

l1~(Lx0x0
zLy0y0

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lx0x0

{Ly0y0
)2z4L2

x0y0

q
)=2

l2~(Ly0y0
zLy0y0

{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lx0x0

{Ly0y0
)2z4L2

x0y0

q
)=2

8><
>: ð4Þ

a1~(a1x0
,a1y0

)T~

(
Lx0y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(l1{Ly0y0
)2zL2

x0y0

q ,
l1{Lx0y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(l1{Ly0y0
)2zL2

x0y0

q )T

a2~(a2x0
,a2y0

)T~

(
Lx0y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(l2{Ly0y0
)2zL2

x0y0

q ,
l2{Ly0y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(l2{Ly0y0
)2zL2

x0y0

q )T

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

where the eigenvectors a1, a2 correspond to the eigenvalues l1

and l2 respectively (|l1|.|l2|). The ratio of the eigenvalues is

defined as r~l1=l2.

Let the calculated extreme point (x0, y0) as the center of an

ellipse; the ellipse major axis and the minor axis as the length and

width of the fish head region, and the direction of the ellipse major

axis as the direction of the fish head region. Then the length and

width of the fish head region can be defined as length~s0|
ffiffiffiffiffiffiffi
1=r

p
,

width~r|a; the orientation angle as h~ arctan (a2x0
=a1x0

), and

the local contrast of each region as:

contrast~
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DDM(x0,y0,s0)D

p
|(1zr)2

�
r , if l1w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DDM(x0,y0,s0)D
p

|(1zr)2
�

r, otherwise

(
ð6Þ

Some parameters of the method are described in Figure 3.

The above method will obtain a plurality of candidate regions of

head position. Because the fish head’s width is usually in a certain

range, we first use the width constraint to remove the candidate

regions generated by noise interference. Width threshold value w
can be specified manually.

After the width constraint, there is still some false detection of

candidate regions, which occur mainly in fishtail and fish body. In

order to remove non-head regions from these candidate regions,

we first perform image segmentation to identify fish regions from

image. Image segmentation refers to the process of partitioning an

image into a set of coherent regions. Since the image mainly

contains two kinds of gray distribution (fish and background),

thresholding method can distinguish them. Thresholding method

is a common image segmentation method. It uses a threshold value

to turn a grayscale image into a binary image. Here, we use Otsu

method [20] to obtain fish regions from image. Otsu method is

considered as a good thresholding method for image segmenta-

tion. It selects the threshold by minimizing the within-class

variance of the two groups of pixels separated by the thresholding

operator. Assuming the best segmentation threshold is t, v0 and

v1 are the proportions of background pixels and foreground pixels

in the image, u0 and u1 are the mean grays of background and

foreground respectively, then the t value can be determined by the

following equation:

t~ max½v0(t)|v1(t)|(u0(t){u1(t))2� ð7Þ

According to the results of segmentation, we use contrast

constraint and angle constraint to remove non-head regions from

the candidate regions.

Contrast constraint: The contrast of the fish head region and

background is larger compared with the other parts. According to

the results of equation (6), when contrastwk|(u0=u1), the region

is considered to be an effective head region, where k is a contrast

Figure 7. Trajectory linking based on time and distance.
doi:10.1371/journal.pone.0106506.g007
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adjustment parameter. This constraint can effectively remove the

candidate regions of the fishtail.

Angle constraint: After the contrast constraint, if there are two

or more candidate regions cr1, cr2…crn in a segmented region, and

their corresponding orientation angles and contrasts are h1, h2…hn

and c1, c2…cn respectively. IfDhi{hj Dv30, 1ƒi,jƒn, it is

indicated that there is a phenomenon of duplicate detection. In

this case, we reserve the candidate region of maximum contrast

cri~ max
1ƒiƒn

(ci) and remove the other candidate regions. The

reason for the angle setting is that when two fish are in mutual

occlusion, angle between their head orientations is most likely

greater than 30 degrees with few situations in which the angle is

less than 30 degrees. We set that only when the angle is less than

30 degrees will it be constrained by the angle, ensuring that the

occluded target will not be missed in most cases. For the small

probability of missed detections, we will solve the problem by using

trajectory linking method presented in section 2.3.3. Angle

constraint can effectively remove the fish body candidate regions,

ensuring that there is only one candidate region within a certain

angle in a segmented region. Figure 4 shows an example of the

candidate constraints.

2.3 Target tracking
After the detection of fish head region with the above method,

we will track every detected targets in the whole video. The

tracking method is generally described in three parts: motion

prediction, feature matching and trajectory linking.

2.3.1 Motion prediction. The fish’s motion state is repre-

sented by a four-dimensional state vector xk~(x,y,vx,vy), where x
and y are the coordinates of the target center (ellipse center), vx

and vy the speeds in the x direction and y direction. Define the

observation variable zk = (zx, zy) to indicate the coordinates of the

ellipse central after data association. Thus the targets’ motion state

becomes able to be predicted by the Kalman filter [21]. Kalman

filter is an optimal auto-regression data processing algorithm,

which estimates a signal’ current value according to the previous

estimated value and the most recent observational data, without all

of the past observation data. The application of Kalman filter in

tracking can transform a global search into local search to

accelerate the tracking speed. In addition, when the target is

blocked or interfered by other factors (the background noise or

illumination change), Kalman filter’ predicted value can be used to

replace the best associated target to improve the tracking

performance. To simplify the model, assume target tracking

system as a linear discrete system, then the system’ state equation

and observation equation are described as:

xk~Fxk{1zwk ð8Þ

zk~Hkxkzvk ð9Þ

where F and H are the target’ state transition matrix and

observation matrix respectively, wk and vk the noises of state

variable and observation variable respectively, both assumed to be

independent and irrelevant zero-mean Gaussian noise. To

estimate the motion state xk at k, we first predict the current state

according to the previous estimated state. Because the fish motion

between adjacent images generally differs slightly, hence the

constant velocity model is applied to predict the state at the next

time:
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x{
k ~Fxk{1 ð10Þ

P{
k ~FPk{1FTzQ F

~

1 0 Dt 0

0 1 0 Dt

0 0 1 0

0 0 0 1

2
666664

3
777775 Q~

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775

ð11Þ

where Dt is the sampling time interval of two adjacent frames, x{
k

and P{
k the model’s priori estimation of state variable and error

covariance at k respectively. Q represents the covariance matrix of

the state noise wk.

After data association, assume x{
k ’s associated observation

variable asz{
k , update the current state according to the equation

below:

xk~x{
k zKk(z{

k {Hx{
k ) H~

1 0 0 0

0 1 0 0

� �
ð12Þ

Pk~P{
k {KkHkP{

k ð13Þ

Where Kk is the gain parameter at current time, which can be

expressed as:

Kk~P{
k HT (HP{

k HTzR){1 R~
1 0

0 1

� �
ð14Þ

where R is the covariance matrix of the observation noise vk.

In the above motion prediction, the constant velocity model is

chosen because of the similarities between fish school’ motion and

the motion it describes, as well as its simple calculation for

attainability. However, the motion of fish school in some cases is

random, where constant velocity model cannot deal with. That is,

the model itself cannot give a complete description of all the

motions, bound to cause some errors in the subsequent tracking.

Based on the statistical analysis of the test data, the change of fish

head motion between two adjacent frames (1/30 second) is

generally within 645 degrees. Then we design a compensation

window to track the targets failing to be predicted according to this

law. As shown in Figure 5(a), the compensation window prescribes

the detected ellipse’ direction as the target’s moving direction at

current time, the target’ possible moving range as a quarter circle

region with the ellipse center as the center and its long axis as the

radius. If the prediction fails, the compensation window will be

Table 2. Detection performance on different groups.

Group Size Precision Recall Number of Occlusions OR ODR DT

A1 (10 fish) 0.998 0.992 125 0.025 0.912 1.75

A2 (20 fish) 0.990 0.989 640 0.064 0.889 1.79

A3 (40 fish) 0.971 0.969 3040 0.152 0.846 1.88

doi:10.1371/journal.pone.0106506.t002

Figure 8. (a) Example of frame image illustrating the detection
results of the fish head regions for a group of 40 fish; (b) Some
examples of occlusion events efficiency resolved and a rare
case where the detection failed.
doi:10.1371/journal.pone.0106506.g008
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Table 3. Compared methods.

Number Motion Prediction Data Association Trajectory Linking

Method1 None Proposed Proposed

Method2 Proposed Nearest neighbor association [25] Proposed

Method3 Proposed Probabilistic data association [26] Proposed

Method4 Proposed Proposed None

Method5 Proposed Proposed Proposed

doi:10.1371/journal.pone.0106506.t003

Figure 9. Performance of compared methods on two evaluation metrics. (a) TCF; (b) TFF. As fish density increases, tracking performance of
all five methods falls. In comparison, the proposed method offers highest TCF values and lowest TFF values, indicating its performance is the best
among the compared methods.
doi:10.1371/journal.pone.0106506.g009
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used for data association to make up for the shortage of the

constant velocity model.

2.3.2 Feature matching. Data association of state vectors

and observations is a necessity for multi-target tracking. In order to

optimize association accuracy, we employ feature matching. The

key issue of feature matching is to find effective features that reflect

the similarity among images of the same target and dissimilarity

between images of different targets. The observation of sampling

video finds that fish school generally moves horizontally in the

shallow water, with very little vertical motion that can be ignored.

That means the head region of the same target in different videos

remains substantially constant. Based on the observed character-

istics, we propose to use the width, area and grayscale information

of fish head region for feature matching.

First, feature calculation. Based on the detection result in 2.2,

active contour model [22] is used for the extraction of fish head

contour and its initial region is the detected elliptical region.

Assume (xi, yi) is a random point among the detected contour set,

set the ellipse center (x0,y0) as the inner endpoint, search the range

with a directional angle of h615 degrees for the farthest contour

point (xa,ya) to the central point (x0,y0) as the outer endpoint. Then

draw a line passing (x0,y0) and perpendicular to the line of inner

and outer endpoints. Set the intersection points of the line and the

contour as (xb,yb) and (xc,yc), then the line of these two points is the

cutting line, the closed region enclosed by the cutting line and the

contour is the target’ matching region, and the line of inner and

outer endpoints and their directions is the alignment line of the

matching region. Figure 5(b) shows the segmentation model of

matching region.

Here we do not directly use the detected ellipse region for

feature matching but the positional relationship between the

ellipse center and head contour to redesign a segmentation

method as matching region. This is because that the ellipse region

is estimated according to the grayscale adjacent to the central

point, subject to the change of light in the swimming of fish school.

The proposed segmentation method takes advantage of the high

stability of the ellipse center and the head contour, as well as active

contour model’ high accuracy in contour description, which

together contribute to the obtained matching region’ strong

consistency between the adjacent images and therefore greatly

improve the accuracy of feature matching.

After obtaining the matching region, the next is feature

matching. Based on the degree of feature discrimination, we use

cascade method for feature matching, which not only ensures the

accuracy of matching, but also improves the matching speed.

Let the cutting line at k-1 as Lk-1 and matching region MRk-1,

then the width matching at k is expressed as:

wmk~DWidth(Lk){Width(Lk{1)D ð15Þ

where, Width is the width of the corresponding cutting line.

Figure 10. Tracking results on different groups with 16.7 seconds as duration. Left column: trajectory acquisition results with the time axis.
Right column: trajectory acquisition results without the time axis. (a) A1 (10 fish); (b) A2 (20 fish); (c) A3 (40 fish).
doi:10.1371/journal.pone.0106506.g010
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Area matching is expressed as:

amk~
Area(MRkDMRk{1)

Area(MRk)
ð16Þ

where, g is the symmetric difference set of the two matching

regions after the alignment of alignment line, Area the area of the

corresponding matching region.

Grayscale matching is expressed as:

gmk~
X

i

(HMRk
(i){HMRk{1

(i))2

HMRk
(i)zHMRk{1

(i)
ð17Þ

where, H is the histogram of the corresponding matching region.

The final feature matching result is defined as follows:

result~
1, if ?[wmkvsw&amkvsa&gmkvsg

0, otherwise

�
ð18Þ

Figure 6 shows the process of feature matching. If only one

target’ matching region at k matches successfully, then the target is

the associated observation variable. If more than one targets’

matching regions at k match successfully, the target with the

smallest matching result min (wmk
:amk

:gmk) is the associated

observation variable.

2.3.3 Trajectory linking. The occlusion occurs frequently in

swimming fish school, causing some detection errors and the

failure of the complete matching between adjacent images and

finally leading to the fragmentation of tracking trajectory. To solve

this problem, we propose the following approach for trajectory

handling on the basis of [23]:

(1) If a state variable of the associated observation variable is

found, update according to equation (12), and mark the

state variable effective.

(2) If no state variable of the associated observation variable is

found, associate with a virtual observation variable, update

according to xk~x{
k and mark the state variable

ineffective. If no observation variable on the trajectory is

associated in T1 consecutive frames, then the target

probably keeps still, mark the trajectory incomplete and

record the time et and position ep of the observation

variable of the last effective state as the end tag of the

trajectory.

(3) If no observation variable of the associated state variable is

found, we initialize the tracking and record the time st and

position sp of the observation variable as the start tag of a

new trajectory. The following tracking will see the two

situations: A. if the observation variable is caused by error

detection, it will last only a few frames of time, then we

remove trajectory with an even less time of duration than

this one; B. if the observation variable is generated by re-

emerging target after occlusion, then mark the trajectory

incomplete.

After the above process, we begin trajectory linking. Assume Ci

is an incomplete trajectory with end tag and Cj an incomplete

trajectory with start tag. Define the constraint as below:

Time constraint : Time(Ci,Cj)~

1 if 1ƒCj(st){Ci(et)vT2

0 otherwise

(
ð19Þ

The above equation indicates that, if the initial time of

trajectory Cj is later than the end time of trajectory Ci, and time

difference is less than T2, then the two trajectories meet time

constraint.

Space constraint : Space(Ci,Cj)~

1 if DCi(ep){Cj(sp)DvD

0 otherwise

(
ð20Þ

The above equation indicates that, if the distance between the

end position of Ci and start position of Cj is less than D, then the

two trajectories meet space constraint.

If two trajectories meet both time constraint and space

constraint at the same time, then they maybe belong to the

trajectory fragments of one trajectory. Next, we conduct feature

matching on the observation variables represented by the start tag

and end tag. If the matching is successful, connect the two

trajectories. Figure 7 shows an example of trajectory linking.

Experiments and Discussions

We have conducted experiments to evaluate the performance of

the proposed method in tracking multiple swimming fish. The

experimental apparatus is shown in Figure 1(a). The fish are 2–

3 cm long, and swim in a square acrylic tank of size 30 cm630 cm

filled with water of 3 cm deep. Fish behavior is relatively quiet and

several motion modes (regular acceleration and deceleration,

glide-and-burst, rapid and explosive motion) are present in the

experimental data. A Flare 4M180-CL camera by IO Industries is

placed above the tank at a distance to capture the entire arena. In

order to evaluate the proposed method more challengingly, we

leave the noise at the bottom of fish tank and the disturbance of

the suspended matter in the water with no special processing. The

computing facility includes a desktop computer with Intel I5

2.3 GHz processor, 4G RAM, GF9400 graphics card and Matlab

programming environment. In order to test the tracking perfor-

mance of different fish schools, we choose zebrafish (Danio rerio)

with different densities in 3 groups: A1 (10 fish), A2 (20 fish), A3

(40 fish), the video for each fish group contains 500 frames. The

time resolution of the camera is 30 frames per second and image

resolution 204862040 pixels. The parameter settings are shown in

Table 1.

3.1 Evaluation of detection performance
We first carry out target detection for each frame image in the

video. In order to quantify the performance of the proposed

detection method, the precision and recall ratios that are widely

adopted for evaluating object detection methods are used in the

experiment. They are defined as follows:

Precision~
true positive

true positivezfalse positive
ð21Þ
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Recall~
true positive

true positivezfalse negative
ð22Þ

where true positive is the total number of correctly detected

regions in all frames; false negative is the total number of missed

regions; false positive is the total number of wrongly detected

regions.

In addition, in order to better evaluate the detection perfor-

mance of the proposed method in the case of fish occlusion, we set

up three additional evaluation criteria: OR (occlusion ratio), ODR
(occlusion detection ratio) and DT (detection time).

OR~
total number of occlusions in all frames

total number of targets in all frames
ð23Þ

ODR~

successful number of occlusion detection in all frames

total number of occlusions in all frames

ð24Þ

DT~
total detection time

total number of frames
ð25Þ

The detection results are as shown in Table 2. From the results

we can see that with the increase of fish school density, the

occlusion ratio rises and the detection performance gradually

declines. The fish school occlusion makes the head region invisible

and then leads to the detection errors. In spite of this, the Precision

ratio of the three groups of videos are maintained at over 0.971

and the Recall ratio are maintained at over 0.969, which fully

proved the effectiveness of our detection method. Furthermore,

occlusion detection ratio shows that, although fish occlusion brings

some difficulties, the proposed detection method still demonstrates

strong detection ability under occlusion. Because most occlusions

are caused by fish body or tail rather than head, our method is

then able to detect most occluded targets. Finally, seen from the

detection time, the detection time in three groups are all within

1.9 seconds, and no significant change occurs with the increase of

detection quantity, which indicates a good time performance in

detecting target population. Figure 8 shows some detection results.

As can be seen from Figure 8(b), when the target is occluded but

the head region is visible, our detection method can detect the

target’s location and direction according to the local information.

3.2 Evaluation of tracking performance
After detecting and locating each fish, we then track them

throughout the video to obtain their motion trajectories. To

evaluate the proposed tracking method quantitatively, we associate

the obtained trajectories C with ground truth trajectories G by

using the approach proposed by [24]. Make O(Cj ,Gi) to indicate

the frames where Cj and Gi overlap, then the distance between

two trajectories is defined as:

D(Cj ,Gi)~
1

DO(Cj ,Gi)D

X
t[O(Cj ,Gi )

x
j
t{xi

t

��� ��� ð26Þ

where xt represents the target location on t. The above equation

indicates the average distance between the obtained target position

and ground truth target position over all frames. The cost of an

association is defined as the sum of distances between the obtained

trajectories and the associated ground truth trajectories. According

to the cost, we can work out an optimal association A* that

minimizes this cost.

Define two evaluation metrics to evaluate the tracking method.

The first is TCF (trajectory completeness factor):

TCF~

P
i

P
Cj[A(Gi )

DO(Cj ,Gi)DP
i DGi D

ð27Þ

where A(Gi) is the set of obtained trajectories associated with Gi in

A*. It indicates the average ratio of one ground truth trajectory

length covered by the obtained trajectories. The smaller the value

is, the little the accuracy is. The second evaluation metric TFF
(trajectory fragmentation factor) can be defined as:

TFF~

P
i DA(Gi)D

DfGi DA(Gi)=1gD ð28Þ

It describes the average number of gained trajectories used to

match one ground truth trajectory. Larger value means worse

effect of the method in tracking the targets.

The tracking method consists of three parts: motion prediction,

data association and trajectory linking. In order to better evaluate

the proposed method, we use five methods with different schemes

and compare them, and compared methods are shown in Table 3.

Figure 9 shows the comparison results of different methods.

Seen from the comparison of motion prediction, the adding of

motion prediction performs much better than the single use of

feature matching, especially in that, the more fish schools are, the

more searching space for feature matching is needed, which will

gradually lower the probability of successful matching and then

lead to more tracking errors. By adding motion prediction into

feature matching, the matching calculation drops and accuracy

increases, thus tracking results are significantly improved. Seen

from the comparison of data association, the tracking result of data

association with feature matching performs significantly better

than the nearest neighbor association [25] and the probabilistic

data association [26], due to that the latter two only take account

of fish school’ motion as the association basis. In actual tracking,

the motion state of fish school is quite complex, with frequent

occlusion. The motion information itself can hardly complete

accurate association, while feature matching takes full advantage

of the fish school’s appearance information and keeps the

consistency of targets in the complex motion. With the increase

of fish schools, the tracking performance of all three methods

declines because of more occlusion. However, the comparison

finds that, the tracking performance of our tracking method

declines much more slightly than the other two, showing that the

proposed tracking method has strong robustness in multi-target

tracking. Seen from the comparison of trajectory linking, the TCF
and TFF using trajectory linking method is superior to the

unconnected, which indicates that the gained trajectories becomes

more intact after trajectory linking. In addition, with the increase

of fish schools, the number of gained trajectories after trajectory

linking also increases, with a more obvious effect in high-density

population than low-density population, indicating that the

proposed method can better deal with trajectory fragmentation

problem caused by occlusion. Acquired trajectories using the

proposed method in different groups are shown in Figure 10.
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3.3 Discussions
In experimenting, we find out that for fish with rapid transition

of swimming mode, Kalman filter will likely fail to predict a

reasonable new state. Then we solve this problem by using a

compensation window and trajectory linking method. In addition,

we have performed preliminary experiments on images of golden

shiner, paracherirodom innesi, tadpole and sperm, and results

show that the proposed method can also detect and track the

regions of their heads. The performance of the proposed method is

closely related to the occlusion ratio. When the fish head region is

occluded by other fish, the coordinate data of the target will be

lost. The longer the occlusion time, the longer the coordinate data

are lost. When the similarity between several matching regions is

very high, feature matching may fail, which will lead to identity

switch. The higher the density of fish group, the higher the

probability of the occurrence of this situation. If the ratio between

BL/LA (mean fish body length/length of arena) decreases, the

occlusion ratio will go down, thus resulting in that fish can be

tracked more easily. Conversely, if fish swim in polarized schools,

it will cause severe occlusions, which will significantly increase

tracking difficulties. The occlusion problem is the most difficult

problem in multi-target tracking. Although we have tried to

overcome it, the detection errors and tracking errors caused by

occlusion cannot be completely avoided.

Conclusion

This paper proposes an effective method for detecting and

tracking multiple fish swimming in shallow water with frequent

occlusion. Our contributions include a novel method for detecting

multiple fish with possible occlusions based on robust image

features around the head region. The method integrates the local

extremum and ellipse fitting to locate the fish head region and

better deal with the difficulties in fish school detection caused by

factors such as variable appearances, frequent occlusion and small

discrimination of texture region. Our second contribution is an

effective method for first-pass tracking that combines Kalman

filtering with feature matching, taking full advantage of the motion

and appearance information of fish school to better cope with the

tracking in complex motions. Our third contribution is a robust

trajectory linking method as the second-pass of the tracking

process in order to deal with frequent occlusion among fish. We

have evaluated the proposed method on zebrafish schools of

various densities in laboratory environment, and the results show

its effectiveness and accuracy.
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