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Abstract

Genome sequencing studies have shown that human malignancies often bear mutations in four or 

more driver genes1, but it is difficult to recapitulate this degree of genetic complexity in mouse 

models using conventional breeding. Here we use the CRISPR-Cas9 system of genome editing2–4 

to overcome this limitation. By delivering combinations of small guide RNAs (sgRNAs) and Cas9 

with a lentiviral vector, we modified up to five genes in a single mouse hematopoietic stem cell 

(HSC), leading to clonal outgrowth and myeloid malignancy. We thereby generated models of 

acute myeloid leukemia (AML) with cooperating mutations in genes encoding epigenetic 

modifiers, transcription factors, and mediators of cytokine signaling, recapitulating the 

combinations of mutations observed in the human disease. Our results suggest that lentivirus-

delivered sgRNA:Cas9 genome editing should be useful to engineer a broad array of in vivo 

cancer models that better reflect the complexity of human disease.
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Murine models of myeloid malignancies and other cancers have traditionally been generated 

using genetic engineering of germline alleles, retroviral overexpression of putative 

oncogenes, retrovirus-based insertional mutagenesis, or RNA interference. Genome 

sequencing studies have identified a host of recurrently mutated genes,1 so technologies are 

now required to examine the function of large numbers of cancer genes and to recapitulate 

the complex combinations of mutations characteristic of human malignancies. While short 

hairpin RNA screens have been used to screen for functionally important genes in 

malignancy,5, 6 the use of RNA interference is complicated by incomplete genetic 

inactivation and substantial off-target effects.

Targeted nucleases, most recently the Cas9-based system,2 have been successfully used to 

engineer the genomes of multiple model organisms,7–12 but their use in primary 

hematopoietic stem and progenitor cells (HSPC), the disease-initiating cell populations for 

myeloid malignancies, is complicated by the difficulty of using common non-viral gene 

transfer methods in these cells.

To perform genome editing with high efficiency in primary HSPCs, and to track the 

engineered cells in vivo, we generated a modular lentiviral sgRNA:Cas9 vector for modeling 

of myeloid malignancies by genome editing in primary HSPCs in vivo (Figure 1A and 

Supplementary Figure 1). This lentiviral vector simultaneously delivers the Streptococcus 

pyogenes cas9 gene, a chimeric sgRNA and a fluorescent marker, similar to our recently 

developed system.2, 3, 13, 14 This enables the targeting of any genomic locus in a broad range 

of cell types, and consequent NHEJ-mediated gene disruption, by a one-step exchange of the 

target site (spacer).

We sought to model loss-of-function mutations in 8 genes that are recurrently inactivated in 

myeloid malignancies (Tet2, Runx1, Dnmt3a, Ezh2, Nf1, Smc3, p53 and Asxl1). We 

validated the targeting efficacy using a fluorescent reporter, similar to former testing of 

genome editing,15 harboring up to 20 sgRNA:Cas9 target sites as an alternative approach to 

commonly used endonuclease assays (Figure 1A/1B, Supplementary Data & Methods). At 

least one effective sgRNA was identified for 6 genes (Figure 1C, Supplementary Table 1), 

whereas no functional sgRNAs were found for p53 and Asxl1. Results for two spacers were 

confirmed by the standard T7 endonuclease assay, validating efficient cutting at genomic 

loci (Figure 1D). These findings demonstrate that our lentiviral system achieves efficient 

cleavage of target sites, and that engineered fluorescent reporter cell lines can provide rapid, 

quantitative evaluation of spacer efficacy

Having demonstrated the efficiency of our lentiviral delivery system in vitro, we examined 

whether we could engineer the genomes of primary murine HSPCs ex vivo. We isolated 

Lineage−/Sca1+/cKit+ (LSK) cells, which are enriched for HSPC activity, from mice with 

knock-in of the Flt3 internal tandem duplication (Flt3-ITD) mutation.16 Although Flt3-ITD 

mutations frequently occur in acute myeloid leukemia (AML), Flt3-ITD knock-in is 

insufficient to cause AML in mice, and we hypothesized that additional co-operating 

oncogenic lesions would induce transformation. Heterozygous Flt3-ITD expressing LSK 

cells were transduced with eGFP-expressing sgRNA:Cas9 lentiviral vectors targeting the 

Runx1 gene or a non-targeting sgRNA (Figure 1A) and were then transplanted into lethally 
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irradiated wild-type (WT) congenic recipient mice. In serial analysis of the peripheral blood 

of recipient mice, we found that the population of cells expressing Cas9 and the Runx1 

sgRNA expanded significantly over a period of 19 weeks in comparison to the population of 

cells expressing Cas9 and the non-targeting sgRNA (p=0.03), thus indicating that loss of 

Runx1 may induce a growth advantage in heterozygous Flt3-ITD expressing cells in vivo 

(Figure 1E, Supplementary Figure 2A).

Detection of eGFP-positive cells at 19 weeks post-transplant in all HSPC compartments 

indicated that we transduced long-term repopulating HSCs (Figure 1E and Supplementary 

Figure 2B and 2C). Stable expression of Cas9-eGFP over the 19 weeks in HSPCs and 

normal differentiation capacity indicates that continuous Cas9 expression at the levels 

provided does not cause significant toxicity in hematopoietic cells (Supplementary Figure 

3). As further validation of genome modification of HSCs, we performed deep sequencing 

of the genomic sequence targeted in Runx1 in peripheral blood at serial time points. We 

identified at least 16 distinct insertions or deletions at the targeted Runx1 site in peripheral 

blood harvested 5 weeks post-transplant that were also present in blood 19 weeks post-

transplant (Supplementary Figure 4). The majority of genome modifications were deletions 

ranging from 1–251bp. Overall, these results demonstrate that lentiviral delivery of the 

sgRNA:Cas9 system in HSCs is feasible and well tolerated, and that this system can be 

employed to edit the genomes of HSCs to interrogate gene function in hematopoiesis.

Because myeloid malignancies, and cancer more broadly, are caused by multiple 

cooperating genetic lesions (at least 3–4 oncogenic lesions in AML1), we next sought to 

perform multiplex targeting of cancer-associated genes to induce myeloid malignancy. To 

facilitate multiplex genome editing, we generated a two-vector system in which Cas9 and an 

eGFP are delivered from one lentiviral vector, whereas additional sgRNAs and a RFP657 

fluorescent marker are delivered by a second lentiviral vector (Figure 2A). The small size of 

the sgRNA-only vector enables high viral titers and introduction of multiple sgRNAs into a 

single LSK cell.

We generated a pool of vectors with the single most effective sgRNA for the Tet2, Runx1, 

Dnmt3a, Nf1, Ezh2 and Smc3 genes. Transduction of LSK cells from C57Bl/6 wild-type 

mice with the pooled virus, followed by transplantation into lethally irradiated recipient 

mice, caused significant myeloid skewing of hematopoiesis (p=0.007) with reduction of B-

cells (p=0.001) within the transduced cell population, and leukocytosis in some mice, as 

compared to the control group that received LSK cells transduced with control vectors 

expressing Cas9 and a non-targeting sgRNA (Figure 2B).

To determine the efficacy of multiplex genome editing and to assess the selective pressure 

for combinations of mutations we examined the genetics of putative clones in the peripheral 

blood of mice. As we used pooled virus expressing different sgRNAs, transduced cells bear 

different combinations of mutations, and cells with a genotype that drives a competitive 

advantage would gain a clonal dominance as occurs naturally during leukemogenesis. Two-

dimensional flow cytometry analysis of eGFP and RFP657 allowed us to detect putatively 

clonal hematopoietic expansion in vivo (Figures 2C and 2D, Supplementary Figure 5), 
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though some clonal, mutated populations were only GFP dim (Supplementary Figure 6 and 

7).

For two mice, we purified populations from peripheral blood based on their eGFP/RFP657 

density profile (red gated) by fluorescence-activated cell sorting (FACS) (Figure 2C and 

2D). We examined the targeted genes by PCR amplification, sub-cloning and sequencing of 

targeted gene regions. In one mouse, a population expanded gradually over 12 weeks that 

had mutations in Tet2, Dnmt3a, Runx1 and Nf1 (Figure 2C, Supplementary Figure 8A), 

whereas no mutations in Ezh2 and Smc3 were detected. In a second mouse, a population 

expanded rapidly after transplantation with mutations in Tet2, Runx1, Nf1 and Ezh2 (Figure 

2D, Supplementary Figure 8B), and no mutations in Dnmt3a and Smc3. In both cases, the 

detected mutational pattern (detection of two allele variants) suggests that a single cell was 

transduced with four separate sgRNAs, resulting in modification of one or both alleles of 

four tumor suppressor genes. Despite expansion of these clonal populations, no 

transformation to acute leukemia was observed in these mice during the observation period 

of up to 30 weeks.

Transformation to acute leukemia was observed in a different mouse transduced with the 

same pool of sgRNAs. A clonal population was detected at 4 weeks post-transplant, and the 

mouse was euthanized at 6.5 weeks post-transplant with mild leukocytosis (white blood cell 

(WBC) count: 15.3×106/ml; normal: 5–10×106/ml) and splenomegaly (436 mg; normal: 80–

120mg). The cells were skewed to the myeloid lineage (Gr1+/CD11b+) (Figure 3A left 

panel) with 85% of cells expressing the sgRNA:Cas9 vectors (Figure 3A right panel). 

Analysis of the targeted genes revealed deletions in Dnmt3a, Ezh2, Smc3 and Nf1 

(Supplementary Figure 9). Leukemic cells showed enhanced re-plating capacity and analysis 

of methylcellulose colonies from the leukemia confirmed that all mutations occurred within 

a single clone (Supplementary Figure 10, Supplementary Table 2). The peripheral blood 

from these mice revealed increased granulocytes and circulating blasts, indicative of 

leukemic transformation (Figure 3B, left panel). Bone marrow histology revealed greater 

than 20% blast cells and suppression of normal differentiation (Figure 3B, right panel, 

Supplementary Figure 11A, Supplementary Figure 15), consistent with acute myeloid 

leukemia (AML).

We next confirmed that the detected mutations had an impact on protein expression and 

cellular phenotype. Both Ezh2 and Smc3 protein expression were markedly reduced, 

consistent with the bi-allelic mutations detected in both genes. Nf1 is a negative regulator of 

the Ras pathway, and we observed de-repression of the downstream targets, Erk1 and Erk2, 

as expected for cells with inactivation of Nf1 (Figure 3C). Serial re-plating of FACS-

purified, double positive eGFP/RFP657-expressing cells indicates increased self-renewal 

capacity compared to wild-type C57Bl/6 BM cells (Supplementary Figure 10). Following 

transplantation into sub-lethally irradiated secondary recipient mice we observed robust 

engraftment of the GFP/RFP657 double positive mutated cells (Supplementary Figure 11B). 

At 8 weeks post-transplant two out of five recipient mice developed leukocytosis and 

succumbed to leukemia at 11–12 weeks post transplant (Supplementary Figure 11C/D). 

Mutated cells in all mice showed a strong differentiation bias, with >90% of the cells 
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belonging to the myeloid lineage (Figure 3D and E). Bone marrow pathology confirmed 

AML in the secondary recipients (Figure 3F, Supplementary Figure 11E).

At 14 weeks following transplantation with the pool of tumor suppressor-targeting sgRNA 

pooled lentivirus, another primary mouse succumbed to a distinct myeloid leukemia 

characterized by splenomegaly (412mg), leukocytosis (WBC: 33.6×106/ml), excess myeloid 

cells in the BM (Supplementary Figure 12A), circulating blasts in peripheral blood and 

diagnostic features of AML in the bone marrow (>20% blasts) (Supplementary Figure 12B). 

Clonal mutations were identified in Tet2, Dnmt3a, Runx1, Nf1 and Ezh2. None of the mice 

transplanted with non-targeting sgRNA expressing cells developed disease during the course 

of the experiment (Supplementary Figure 13). These studies demonstrate that by using 

lentiviral delivered sgRNA:Cas9 components, we have engineered novel models of myeloid 

malignancy bearing mutations in 4–5 different genes that can be propagated and studied 

through serial transplantation.

To examine an alternative set of co-operative mutations, the same pool of sgRNAs targeting 

leukemia tumor suppressor genes was used to transduce LSK cells from mice with 

heterozygous knock-in of the Flt3-ITD oncogene allele. Targeting of Runx1 alone did not 

induce transformation of Flt3-ITD heterozygous expressing cells (Figure 1D). Consistent 

with the results of pooled tumor suppressor gene targeting in wild-type C57Bl/6 mice, 

expansion of sgRNA:Cas9-transduced, Flt3-ITD-expressing cells was observed over time. In 

some mice, expression of the sgRNA:Cas9 vector was GFP-dim at 8–10 weeks 

(Supplementary Figure 14). A total of five out of nine (55%) mice developed disease at 10–

16 weeks with leukocytosis and splenomegaly (Supplementary Figure 15). Three of the mice 

were analyzed further. Bone marrow flow cytometry demonstrated that cells were myeloid 

biased in each of these mice (Supplementary Figures 16A, 17A, 18A). Diagnostic features 

of AML were evident with an excess of myeloblasts (>20%) in the bone marrow and 

circulating blast cells in the peripheral blood (Supplementary Figures 16B, 17B, 18B). 

Clonal mutations were detected in 3–5 genes in the three mice (Supplementary Figures 16C, 

17C, 18C). Because the mutations were engineered in the Flt3-ITD heterozygous 

background, AML was generated from primary cells with mutations in 4 to 6 leukemia 

driver genes.

As off-target cleavage by Cas9:sgRNA could potentially contribute to leukemogenesis, we 

examined leukemias we generated for off-target genome editing.13, 17 We performed 

targeted sequencing of the top five off-target sites for each of the sgRNAs in each of 4 

leukemias. None of the off-target sequences had any mutations in any of the leukemias 

examined, indicating that off-target cleavages are unlikely to be a significant contributor to 

leukemogenesis in our studies (Supplementary Table 3/4).

Taken together, these studies of lentivirus-delivered Cas9:sgRNA with multiplex sgRNAs 

demonstrate efficient genome editing in mouse HSPCs. We simultaneously inactivated 

multiple tumor suppressor genes causing outgrowth of a myeloid clone and transformation 

to acute leukemia. We describe models with up to 5 genes modified, with editing of up to 10 

individual alleles, when a pool of sgRNAs targeting 6 genes was introduced in primary 

HSPCs (Figure 3G). Although genetic models have recently been generated using 
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Cas9:sgRNA in whole organisms7–9, our system enables tissue specific interrogation of gene 

function in adult organisms whereas avoiding potential developmental defects. The genetic 

complexity thus generated is beyond the capacities of current approaches for engineering 

murine malignancies and will allow rapid generation of novel disease models beyond 

hematopoietic malignancies. Such models are critical for the functional interrogation of 

novel disease alleles and for the development and pre-clinical testing of targeted therapies.

The leukemia models generated reflect both the number and functional classes of co-

occurring mutations that occur during the pathogenesis of human myeloid malignancies.1,18 

All of the clones characterized had inactivating mutations in Nf1, a lesion that activates Ras 

signaling, and the only mutation in the screen that causes activated kinase signaling, a 

common feature of leukemias and other cancers.18 Although NF1 mutations are not frequent 

in AML patients, it was chosen as an amendable target for NHEJ mediated gene editing and 

representative for cytokine activation in AML. Nf1 inactivation in mice, however, is 

insufficient to cause AML and induces a long-latency myeloproliferativen disease.19 We 

also identified mutations in Ezh2, a gene recently shown to be involved in the differentiation 

block in AML20, in all mice that presented with myeloid transformation. Inhibition of 

myeloid differentiation has also been reported after deletion of Dnmt3a21, Tet222, 23 and 

Runx1,24 each of which were successfully mutated in our models.

Overall, our studies demonstrate a robust methodology to generate multiple genetic lesions 

via lentivirus-delivered Cas9:sgRNA in a broad range of cells, including the primary adult 

stem cells that are the disease-initiating population for leukemia. The use of viral-based 

Cas9:sgRNA will enable the rapid and efficient generation of cancer models that reflect the 

complex genetics of human disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Stable modification of hematopoietic stem cells by a lentiviral sgRNA:Cas9 delivery 
system
A) Depiction of a lentiviral vector for bi-cistronic expression of the sgRNA from a U6 

promoter (U6) and cas9 from a short EF1a promoter (EFS) with a fluorescent protein 

marker (eGFP) from a picorna virus derived 2A auto-cleavage site (P2A). A lentiviral vector 

that allows incorporation of target sites into the coding sequence of a fluorescent protein 

(RFP657) is depicted at the bottom. A Puromycin resistance gene (PAC) is expressed from 

an internal ribosomal entry site (IRES) B) Super-transduction of a reporter cell line with an 

eGFP tagged sgRNA:Cas9 vector targeting the respective site (blue) induces loss of reporter 

fluorescence. A non-targeting sgRNA:Cas9 vector (red) does not affect reporter 

fluorescence. Quantification by plotting the MFI of the reporter in targeting (blue) vs non-

targeting (red) sgRNA transduced cells (black box, left plot). C) Efficacy of spacers for 

recurrently mutated genes in myeloid malignancy. Efficacy was assessed with the RFP657 
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reporter system described in A) and B). Results were normalized to non-targeting spacer. 

Spacer marked in red were used in following experiments. D) Surveyor assay based 

confirmation of target site cleavage at genomic loci for Tet2 and Runx1 spacers indicated in 

panel C compared to non-targeting spacer. Percentages above are quantified cleavage 

efficacies. E) Peripheral blood sgRNA:Cas9 vector marking tracked over a period of 19 

weeks. A significant increase of sgRNA:Cas9 expressing cells with a spacer targeting Runx1 

(n=4) was observed in comparison to mice expressing a non-targeting spacer (n=4). F) 

Stable expression of the sgRNA:Cas9 vector after 19 weeks in hematopoietic stem and 

progenitor cells. Overlay of eGFP expression in sgRNA:Cas9 transduced cells (blue) and 

non-transduced cells (red) of the respective cell population. MPP=Multipotent progenitors; 

ST-HSC=short-term HSCs; LT-HSC=long-term HSCs; LT-HSC CD34-=most quiescent 

long-term-HSCs
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FIGURE 2. Multiplex gene targeting induces clonal development in vivo
A) Schematic for multiplex gene targeting with two lentiviral vectors: a sgRNA:Cas9-eGFP 

vector expressing sgRNA, Cas9 and eGFP, and a vector expressing additional sgRNAs with 

a RFP657 fluorescent reporter gene from a short EF1a promoter.

B) Multiplexed gene targeting in mice (n=5) significantly increases myelomonocytic cells 

(CD11b+), decreases B-cells (B220+) and increases white blood cell counts at 12 weeks 

post-transplant in comparison to mice that were transplanted with control sgRNA vector 

transduced cells (n=4).
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C) Peripheral blood sgRNA:Cas-eGFP vector expression (x-axis) and expression of a pool 

of vectors expressing RFP657 (y-axis) over time starting 4 weeks post-transplant. Clonal 

populations were detected by the pattern of eGFP/RFP657 expression. Two clones were 

isolated (red gates indicate clones) and genomic regions of targeted genes were sequenced 

(displayed in red box). Mono- and bi-allelic deletions in Tet2, Dnmt3a, Nf1 and Runx1 were 

detected in one case. Detected mutations at 8 weeks are shown below. Sequences of the 

deletions are shown in Supplementary Figure 8A. D) Another clone was analyzed as in 

panel C and was found to have mutations in Tet2, Ezh2, Nf1 and Runx1 B-II. Detected 

mutations at 8 weeks are shown below. Sequences of the deletions are shown in 

Supplementary Figure 8B.
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FIGURE 3. Myeloid malignancy modeling with multiplex genome editing
A) Flow cytometric analysis of a diseased C57Bl/6 mouse for expression of the introduced 

Cas9:sgRNA vectors and for myeloid (Gr1+/CD11b+). Detected mutations are shown in the 

right panel (displayed in red box). Sequence alignments are shown in Supplementary Figure 

9. B) Peripheral blood smear (left; May-Gruenwald/Giemsa (MGG); 1000x) and BM (right; 

Hematoxylin-Eosin(HE), 1000x) showing granulocytic cells and blasts. Scale bar (5µm) 

given in the lower left. C) Western blots of Ezh2, Smc3 and activated Erk1/2 (pErk) protein 

levels in the leukemic BM compared to normal C57Bl/6 wild-type BM. D) Representative 
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flow cytometry of secondary transplant recipient mouse peripheral blood. E) Lineage 

distribution in peripheral blood from secondary mice 8 weeks post-transplant (n=5). F) 

Histopathology analysis of BM (MGG; 1000×) from a secondary mouse that succumbed to 

leukemia. Scale bar (5µm) given in the lower left. G) Heatmap summarizing mutations 

detected in all mice. Each column presents clone. Targeted genes are presented in rows. 

Color legend is given below. A table indicating where individual clones have been presented 

is given on the right (Supplementary Figure abbreviated as S. Figure).
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