
studies have identified a role for the Mnk kinases in 
cap-independent mRNA translation, suggesting that 
the Mnk kinases can exert important functional effects 
independently of the phosphorylation of eIF4E. The 
role of Mnk kinases in inflammation and inflammation-
induced malignancies is also discussed.
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Core tip: The Mnk kinases are important downstream 
targets of the Erk and p38 mitogen-activated protein 
kinase (MAPK) pathways and their activity can also 
be modulated by MAPK independent signals. The Mnk 
kinases play important roles in regulating mRNA trans-
lation and, because of this, are key mediators of onco-
genic progression, drug resistance, production of pro-
inflammatory cytokines and cytokine signaling. This 
review focuses on the pathways regulating the Mnk 
kinases, the substrates on the Mnk kinases as well as 
the biological functions of the Mnk kinases.  
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INTRODUCTION
The Erk (extracellular regulated kinase) and p38 (mito-
gen-activated protein kinase) MAPK pathways are known 
to play important roles in mediating multiple biological 
processes including development, apoptosis, autophagy, 
oncogenesis, inflammation, etc[1]. Kinases that can be 
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Abstract
The mitogen-activated protein kinase (MAPK) inter-
acting protein kinases 1 and 2 (Mnk1 and Mnk2) play 
important roles in controlling signals involved in mRNA 
translation. In addition to the MAPKs (p38 or Erk), 
multiple studies suggest that the Mnk kinases can be 
regulated by other known kinases such as Pak2 and/
or other unidentified kinases by phosphorylation of 
residues distinct from the sites phosphorylated by the 
MAPKs. Several studies have established multiple Mnk 
protein targets, including PSF, heterogenous nuclear 
ribonucleoprotein A1, Sprouty 2 and have lead to the 
identification of distinct biological functions and sub-
strate specificity for the Mnk kinases. In this review 
we discuss the pathways regulating the Mnk kinases, 
their known substrates as well as the functional conse-
quences of engagement of pathways controlled by Mnk 
kinases. These kinases play an important role in mRNA 
translation via  their regulation of eukaryotic initiation 
factor 4E (eIF4E) and their functions have important 
implications in tumor biology as well as the regulation 
of drug resistance to anti-oncogenic therapies. Other 
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phosphorylated by multiple MAPKs such as the MAPK 
interacting protein kinases (Mnks) can exert multiple 
biological functions due to their ability to respond to a 
wide range of  external stimuli such as mitogens as well as 
stress inducers[1]. The Mnk kinase family includes Mnk1 
and Mnk2 which were originally discovered in two inde-
pendent screens as substrates for Erk1[2] and Erk2[3]. It is 
now well established that the Mnk kinases can be activat-
ed by either Erk or p38 MAPKs in response to multiple 
extracellular stimuli and phosphorylate their major down-
stream effector, the cap binding eukaryotic initiation fac-
tor 4E (eIF4E)[4]. 

Mnk1 and Mnk2 are serine/threonine kinases with 
substantial similarity in their coding sequences and motifs 
present in their structures[3]. Both kinases contain a N-ter-
minal basic amino acid rich region that can mediate their 
localization; a catalytic domain similar to the serine/threo-
nine kinases such as the Rsks, Ca21/calmodulin (CaM)-
dependent kinases, Mapkap kinase-2 and Mapkap kinase-3 
containing conserved MAPK phosphorylation sites; and 
an MAPK binding domain in their carboxyl terminus[3]. 
Mnk1 is activated in response to treatment with growth 
factors, ultraviolet (UV) radiation, mitogens and stress in-
ducing agents such as anisomycin or sorbitol  as well as by 
cytokines such as type Ⅰ and type Ⅱ interferons (IFNs), 
tumor necrosis factor (TNF)-α, interleukin (IL)-1b, etc.[3-6]. 
In contrast Mnk2 exhibits high basal activity that is more 
resistant to the inhibition of  Erk and p38 and these ob-
servations can be partially explained by differences in the 
C-terminal domains of  the Mnk kinases[3,7]. 

A detailed look at the Mnk kinases has shown that 
both Mnk1 and Mnk2 undergo alternative splicing[8,9]. 
Mnk1 and Mnk2 transcripts are alternatively spliced giving 
rise to two distinct isoforms for each[8,9]. The b isoforms 
lack the MAPK binding C-terminal domain and therefore 
their activity is MAPK independent[8,10,11]. The b isoforms 
also lack a nuclear export sequence while still retaining 
the nuclear localization signal and therefore both Mnk1b 
and Mnk2b are preferentially localized to the nucleus 
and in PML bodies which also contain eIF4E[8,10]. While 
most of  the studies on the Mnk kinases have focused on 
the Mnk1a and Mnk2a isoforms, evidence suggests that 
aberrant regulation of  Mnk splicing can have important 
biological consequences. The splicing factor SF2/ASF 
which can function as a proto-oncogene in multiple hu-
man cancers can regulate Mnk2 splicing[12]. Overexpres-
sion of  SF2/ASF was shown to result in the increased 
expression of  the MAPK independent Mnk2b isoform, 
while knockdown of  SF2/ASF attenuated the expression 
of  Mnk2b[12]. This study suggests the need for a better 
understanding of  the factors that regulate Mnk splicing 
as the preferential expression of  the MAPK independent 
Mnk isoforms can have important biological implications.

POST TRANSCRIPTIONAL REGULATION 
OF MNK KINASES
Mnk kinase activity is mainly regulated by the upstream 

p38 and Erk MAPK pathways. The p38 MAPK pathway 
is activated by a variety of  stress inducers such as osmotic 
shock, UV radiation, as well as cytokine and chemokine 
stimulation[13]; while engagement of  the Erk MAPK 
pathway is primarily mediated by pro-growth stimuli such 
as growth factors and phorbol esters[1]. Thus the Mnk ki-
nases can play a dual role in mediating cellular responses 
to stress as well as responses to mitogens in a context-
specific manner. MAPK phosphorylation of  Mnk1 
results in the phosphorylation of  Thr 209 and Thr 214 
located in the T loop activation domain, whereas mouse 
Mnk1 is phosphorylated on Thr 197 and Thr 202[14].

Phosphorylation of  Mnk1 has been shown to acti-
vate its kinase activity as well as to enhance its binding to 
the eukaryotic initiation factor 4G (eIF4G) which func-
tions as a scaffolding protein[14,15]. Additionally Mnk1 
mediated phosphorylation of  eIF4E regulates its release 
from eIF4G[14]. eIF4G contains binding sites for the cap 
binding eIF4E and the poly A tail protein (PABP) at the 
N-terminus[16,17] while the C-terminal domain contains 
docking sites for eIF3, eIF4A and Mnk1[15,17]. eIF4G 
along with its binding partners and the small ribosomal 
subunits are important components of  the 48S initiation 
complex required for translation initiation[18]. Studies sug-
gest that Mnk1 is unable to interact with eIF4E in the ab-
sence of  eIF4G and a mutant eIF4E lacking the ability to 
bind eIF4G is not a good Mnk1 substrate[15]. Additionally 
Mnk1 can interact with the eIF4G related translational 
repressor p97[15]. p97 which functions as a cap dependent 
and cap independent translation repressor has a 28% 
homology to the C-terminal of  eIF4G and can interact 
with translation initiation factors such as eIF3, eIF4A but 
is unable to interact with the mRNA recruiting eIF4E[19]. 
Thus p97 may be a potential negative regulator of  Mnk1 
mediated phosphorylation of  eIF4E [15]. Also PKCα 
which was initially believed to be a Mnk1 kinase is known 
to phosphorylate eIF4G on Ser 1186 facilitating its bind-
ing to Mnk1[20] and may potentially play an important role 
in regulating Mnk1 activity by indirectly controlling the 
phosphorylation of  eIF4E. Mnk2 has also been shown 
to interact with eIF4G and to function as an eIF4E ki-
nase[21].  Thus, regulation of  the Mnk-eIF4G interaction 
can play an important role in regulating Mnk activity.

Other studies have suggested that phosphorylation 
of  Mnk1 by the p21 activated kinase 2 (Pak2/γ-Pak) can 
negatively regulate its kinase activity[22]. Pak2 belongs to 
a family of  serine/threonine kinases and is activated in 
response to stress inducing stimuli such as UV and ion-
izing radiation induced DNA damage, serum starvation, 
by the binding of  the GTP bound small G protein cdc24 
as well as by caspase 3 mediated cleavage[23]. Caspase 3 
activated Pak2 mediated engagement of  Mnk1 results in 
the phosphorylation of  Thr 22 and Ser 27, residues that 
lie in the N-terminal domain of  Mnk1 that can interact 
with eIF4G and thereby attenuates the affinity of  Mnk1 
towards eIF4G[22]. Additionally Pak2 mediated engage-
ment of  Mnk1 also attenuated Mnk1 mediated phos-
phorylation of  eIF4G[22]. As the experiments conducted 
in this study were for the most part performed in vitro, 
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Pak2 mediated phosphorylation of  Mnk1 did not affect 
Mnk1 mediated phosphorylation of  eIF4E. Additionally 
Pak2 can also phosphorylate eIF4G at the eIF4E binding 
domain and compete with eIF4E to bind eIF4G, thereby 
exerting suppressive effects on cap dependent transla-
tion[24]. These results suggest that Mnk activity may be 
modulated independently of  the MAPK pathway and 
may account for the observation that all stimuli that re-
sult in phosphorylation of  Mnk1 do not result in activa-
tion of  eIF4E on serine 209.      

Mnk kinase activity can be negatively regulated by 
the protein phosphatase 2A (PP2A)[25]. Small interfering 
RNA mediated knockdown of  PP2A or pharmacologi-
cal inhibition of  PP2A was found to result in increased 
phosphorylation of  its direct target Mnk1 and subse-
quently increased phosphorylation of  eIF4E[25]. Phos-
phorylation of  eIF4E in response to PP2A inhibition 
leads to increased cap dependent translation of  growth 
promoting mRNAs such as c-myc and Mcl-1[25]. 

Multiple studies have shown that Mnk2 has high basal 
activity that is mostly unresponsive to external stimuli. 
A study by Stead et al[26] showed that treatment of  cells 
with rapamycin, the classic inhibitor of  the mammalian 
target of  rapamycin (mTOR), resulted in enhanced phos-
phorylation of  eIF4E that was mediated by the enhanced 
activity of  Mnk2 and not by Mnk1. The increase in Mnk2 
activity was mediated by the decrease in phosphorylation 
of  Mnk2 on Ser 437 by an unidentified mechanism[26]. 
These results suggest that Mnk2 activity may also be pos-
sibly modulated independently of  the MAPK pathway. 
The regulation of  Mnk kinases by upstream signaling 

proteins is summarized in Figure 1.

EFFECTORS OF THE MNK KINASES
The Mnk kinases function as serine/threonine kinases 
and are known to phosphorylate a number of  down-
stream targets including eIF4E[3,21], hnRNPA1[27] and 
Sprouty2[28]. Additionally Mnk1 and Mnk2 can also exhib-
it substrate specificity[29], resulting in substrates that are 
unique to Mnk1 and Mnk2, respectively. Recent studies 
have surprising uncovered a kinase independent function 
for Mnk2 in negatively regulating eIF4G and p70S6K 
phosphorylations[30]. The proteins that regulate signaling 
downstream of  the Mnk kinases are discussed in detail 
and are summarized in Figure 2.

eIF4E
A major and well characterized target of  the Mnk kinases 
is the cap binding protein eIF4E.  eIF4E is phosphory-
lated on Ser 209[31] by the Mnk kinases[3] but its role in 
regulating mRNA translation remains undetermined. 
Multiple biochemical studies have shown that phos-
phorylation of  eIF4E reduces its affinity for the 5’ m7G 
cap[32,33]. Based on X-ray crystallography data, Scheper et 
al[34] have speculated that the phosphate group on Ser 209 
may negatively interact with the phosphate groups on the 
RNA backbone as well as the mRNA cap. They have put 
forth a model in which Mnk mediated phosphorylation 
of  eIF4E after the formation of  the pre-initiation trans-
lation complex leads to the release of  eIF4E and thereby 
enables it to be available for another round of  initiation 
of  mRNA translation[34]. 

Studies based on the targeted deletion of  Mnk1 
and Mnk2 in mice have suggested that the expression 
of  Mnk1 and/or Mnk2 and the phosphorylation of  its 
target eIF4E is dispensable for survival[35]. Mice with a 
targeted deletion of  Mnk1 and/or Mnk2 do not exhibit 
any developmental or reproductive defects[35]. Addition-
ally the mouse studies also confirmed previous reports 
that Mnk1 is more sensitive to external stimuli as mito-
gen mediated eIF4E phosphorylation was defective in 
the Mnk1-/- cells, while basal eIF4E phosphorylation 
was attenuated in Mnk2-/- cells[35]. Mouse embryonic fi-
broblasts and adult tissues from mice lacking both Mnk1 
and Mnk2 did not exhibit any basal or inducible eIF4E 
phosphorylation indicating that the Mnk kinases are key 
regulators of  eIF4E phosphorylation[35]. Interestingly, 
cells from Mnk1 and Mnk2 deficient mice did not exhibit 
any defects in cap dependent translation or general pro-
tein synthesis, indicating that Mnk mediated phosphory-
lation of  eIF4E is not critical under basal conditions but 
may be important during their activation with external 
stimuli[35].

Similarly knock-in mice expressing a mutant eIF4E 
(eIF4E S209A) which cannot be phosphorylated do not 
exhibit any developmental or viability defects[36]. These 
results suggest that while phosphorylation of  eIF4E may 
not be critical for general mRNA translation, it may be 
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Figure 1  Regulation of Mnk kinases. The Mnk kinases are phosphorylated 
on Thr 197/202 by the p38 and Erk1/2 mitogen-activated protein kinases 
(MAPKs). They can associate with eIF4G and this interaction is essential for 
the efficient phosphorylation of their target eIF4E. The Mnk kinases are also 
known to phosphorylate eukaryotic initiation factor 4G (eIF4G) but its functional 
consequences remain to be determined. Pak2 can phosphorylate Mnk1 on 
Thr22/Ser27 resulting in decreased affinity for eIF4G and potentially interferes 
with Mnk1 mediated phosphorylation of eIF4E. Additionally Pak2 also phos-
phorylates eIF4G inhibiting its interaction with eIF4E. Protein phosphatase 2A 
(PP2A) is a phosphatase for Mnk1 and thereby negatively regulates Mnk kinase 
activity.



important for the translation of  specific mRNAs, in-
duced by specific stimuli. Phosphorylation of  eIF4E is 
important for the translation of  mRNAs containing 5’ 
untranslated terminal regions (UTRs) with extensive sec-
ondary structure[37]. 

Besides its ability to bind capped mRNA, nuclear 
eIF4E can interact with a 100 nt eIF4E-sensitive ele-
ment (4E-SE) region in the 3’UTRs of  mRNAs and 
promote the nuclear export of  the bound mRNA[38]. The 
phosphorylation of  eIF4E on Ser 209 is required for 
its mRNA export activity, as well as transformation[39]. 
Mnk-mediated phosphorylation of  eIF4E can facilitate 
the nuclear export of  mRNAs such as HDM2[40], Cyclin 
D1[38] and other growth regulatory mRNAs[41]. 

Sprouty 2
Sprouty2 (Spry2) belongs family of  proteins homolo-
gous to the Drosophila melanogaster Spry[42] that acts as 
a negative regulator of  multiple receptor tyrosine kinase 
pathways[43,44] by negatively controlling the Erk MAPK 
pathway[45]. A study by DaSilva et al[28] showed that Mnk1 
can phosphorylate Spry2 on Ser 112 and Ser 121 leading 
to increased stability of  Spry2. Inhibition of  Mnk activity 
resulted in increased tyrosine phosphorylation of  Spry2 
leading to increased binding of  c-Cbl and promoting the 
polyubiquitination of  Spry2; consequently resulting in a 
proteosome mediated decrease in Spry2 expression[28]. 
Additionally a mutant Spry2 (S112A and S121A) that can-
not be phosphorylated by Mnk1 also increased proteoso-
mal degradation of  Spry2[28]. Mnk1 mediated stabilization 
of  Spry2 was found to be functionally important for the 
antagonism of  fibroblast growth factor (FGF) signaling 
by Spry2[28].

Another study showed that Mnk2 can regulate the 

phosphorylation of  Spry2 on Ser 112 and Ser 121[46]. 
This study established that Mnk2-mediated phosphoryla-
tion of  Spry2 increased its interaction with the E3 ubiq-
uitin ligase NEDD4 and lead to increased proteosomal 
targeting of  Spry2[46]. Additionally, small interfering RNA 
mediated silencing of  Mnk2 attenuated Spry2 NEDD4 
interactions and enhanced the ability of  Spry2 to inhibit 
FGF signaling[46]. The results of  the studies by DaSilva et 
al[28] and Edwin et al[46] are conflicting, but it is important 
to note that the studies were conducted in distinct biolog-
ical cell lines. It is possible that Mnk kinases negatively or 
positively regulate Spry2 expression in a cell-specific man-
ner, depending on the presence of  additional regulatory 
cellular signals.  More work focusing on the relevance of  
Mnk mediated phosphorylation of  Spry2 is required to 
get a better understanding of  the consequences of  Spry2 
phosphorylation by Mnk kinases.

Studies in our laboratory have previously shown that 
the Mnk kinases are activated by both type Ⅰ and type 
Ⅱ interferons (IFNs)[5,6]. IFNs are potent antiviral agents 
that also generate antiproliferative and antitumor re-
sponses[47,48]. Both type Ⅰ and type Ⅱ IFN mediated en-
gagement of  the Mnk kinases is important for regulating 
the inhibitory effects of  IFNs on normal hematopoiesis 
by regulating the translation of  specific IFN stimulated 
genes[5,6]. Importantly, engagement of  Mnk kinases also 
play a critical role in mediating the anti-neoplastic effects 
of  IFNs on primitive myeloproliferative neoplasm (MPN) 
precursors from patients with polycythemia vera[49]. Other 
work in our laboratory has shown that type Ⅰ IFNs can 
upregulate the expression of  both Spry1 and Spry2 in a 
Mnk1 and Mnk2 dependent manner[50]. Data from mouse 
embryonic fibroblasts (MEFs) derived from mice with 
a targeted deletion of  Spry1, Spry2 and Spry4 suggests 
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Figure 2  Effectors of the Mnk kinases. The Mnk kinases can regulate multiple biological processes by phosphorylating multiple substrates. Mnk mediated phos-
phorylation of eIF4E and eIF4G can play an important role in mediating cap dependent translation. The Mnk substrates hnRNPA1 and PSF play an important role in 
mediating the translation of AU rich elements containing mRNAs such as the TNF-α mRNA. The Mnk kinases also phosphorylate cPLA2 which plays an important role 
in arachidonate release from platelets. TNF-α: Tumor necrosis factor-α; eIF4G: Eukaryotic initiation factor 4G; hnRNPA1: Heterogenous nuclear ribonucleoprotein A1; 
cPLA2: Cytosolic phospholipase A2.



lack of  Spry expression promotes IFN mediated antiviral 
responses[50]. The Spry 1, 2, 3 triple knockout MEFs ex-
hibit enhanced activation of  the p38 MAPK pathway in 
response to IFN treatment and, consequently, enhanced 
transcriptional activity and expression of  the IFN stimu-
lated gene ISG15[50]. Additionally knockdown of  either 
Spry1, Sry2 or Spry4 was found to result in enhanced anti-
leukemic effects of  type Ⅰ IFNs[50]. Thus, Mnk mediated 
phosphorylation of  Spry proteins can have important 
biological consequences, but more work is required to 
elucidate the role of  Mnk mediated phosphorylation of  
Spry proteins and its biological relevance in response to 
tyrosine kinase signaling.

hnRNPA1
The Mnk pathway plays an important role in production 
of  TNF-α via its effector hnRNPA1. TNF-α is mainly 
secreted by activated macrophages and T lymphocytes 
and plays important roles in regulating inflammation[51]. 
Enhanced secretion of  TNF-α is implicated in diseases 
such as rheumatoid arthritis, and inflammatory bowel dis-
ease[52], as well as in superantigen-induced septic shock[53].  
Thus, the mechanisms regulating its expression have 
important clinical-translational and therapeutic relevance. 
The TNF-α mRNA is tightly regulated by the AU rich 
elements (AREs) present in the 3’UTR that regulate its 
nuclear cytoplasmic export[54], mRNA stability[55] as well 
as its mRNA translation[56]. TNF-α production in acti-
vated macrophages, as well as T cells, is regulated by the 
p38 and Erk MAPK pathways[57,58], consistent with the 
concept that their common downstream effectors, Mnk 
kinases may play an important role in TNF-α production. 

Buxade et al[27] showed that inhibition of  Mnk1 activi-
ty/expression results in attenuated production of  TNF-α 
in T cells.  In that study, overexpression of  Mnk1 resulted 
in increased expression of  a reporter construct tagged 
with the TNF-α 3’UTR suggesting that Mnk1 regulation 
of  TNF-α may be mediated by the AREs[27]. Mnk1 was 
found to phosphorylated the TNF-α ARE binding pro-
tein hnRNPA1 on Ser 192 and Ser 310/311/312 result-
ing in the disassociation of  hnRNPA1 from the TNF-α 
3’UTR[27]. Thus, during T cell activation, activation of  the 
MAPK cascade leads to the engagement of  Mnk1 and 
the phosphorylation of  its target hnRNPA1 and its disas-
sociation from the TNF-α ARE, consequently promoting 
the translation of  the TNF-α mRNA[27]. ARE elements 
have also been identified in mRNA encoding cytokines 
(GM-CSF, IL-3, IFNγ, etc.), proto-oncogenes (bcl, c-myc 
etc.) as well as in nuclear transcription factors (c-fos, c-jun, 
junB, etc.)[59] suggesting that the Mnk kinases can medi-
ate the translation of  multiple mRNAs independently of  
translation initiation complex.

Guil et al[60] showed that stress induced engagement 
of  the Mnk kinases results in the phosphorylation of  
hnRNPA1 leading to its accumulation in stress granules. 
Depletion of  hnRNPA1 or the Mnk kinases attenuates 
cell recovery following osmotic stress, suggesting that 
Mnk-mediated recruitment of  hnNPA1 to stress granules 

plays an important role in regulating cell physiology pos-
sibly by controlling the expression of  stress responsive 
mRNAs[60]. Many stress inducing stimuli can lead to se-
nescence and this pathway[61,62] may potentially be medi-
ated by the Mnk kinases due to their engagement by the 
stress activated p38 MAPK pathway. Mnk1 phosphory-
lation and expression is enhanced in senescent diploid 
human fibroblasts as compared to young fibroblasts[63]. 
In senescent cells, Mnk1 can phosphorylate hnRNPA1 
leading to the cytoplasmic accumulation of  hnRNPA1. 
Depletion of  hnRNPA1 results in induction of  senes-
cence[64], suggesting that Mnk kinases may potentially 
regulate cellular senescence by regulating the cellular dis-
tribution of  hnRNPA1. 

PSF
Buxade et al[29] sought to identify novel substrates for the 
Mnk kinases. Using a proteomic approach, the research-
ers examined the ability of  the Mnk kinases to phos-
phorylate proteins that could bind to a 5’ cap resin[29]. 
They identified PSF [the PTB (polypyrimidine tract-
binding protein)-associated splicing factor] as a potential 
Mnk substrate[29]. In vitro studies showed that the Mnk 
kinases could phosphorylate PSF on Ser 8 and Ser 283[29].  
Remarkably, phosphorylation of  PSF on Ser 8 was pref-
erentially mediated by Mnk2 suggesting that Mnk1 and 
Mnk2 exhibit distinct substrate specificities[29]. PSF along 
with its partner p54 (nrb) was found to bind mRNAs 
containing AREs in their 3’UTR, and Mnk mediated 
phosphorylation of  PSF was found to enhance its bind-
ing to the TNF-α mRNA containing AREs[29]. Notably, 
Mnk mediated phosphorylation of  PSF did not affect the 
stability or the nuclear cytoplasmic localization of  PSF 
or the bound TNF-α mRNA, but its effects on TNF-α 
mRNA translation were undetermined[29]. Thus another 
Mnk substrate can bind ARE elements in the 3’UTR of  
mRNAs again underscoring the role of  Mnk kinases in 
mediating mRNA physiology independently of  the cap 
translation initiation complex. 

Cytosolic phospholipase A2
Cytosolic phospholipase A2 (cPLA2) is an enzyme acti-
vated by increased cytosolic calcium and catalyzes the re-
lease of  arachidonate acid from glycerophospholipids to 
provide the precursor of  the eicosanoids[65]. Eicosanoids 
are important secondary messenger molecules that play 
an important role in inflammation, immunity as well as 
regulation of  the central nervous system[66]. Mnk1 was 
found to phosphorylate cPLA2 on Ser 727 resulting in 
the enhancement of  its enzymatic activity[65]. Thrombin 
mediated platelet activation was found to result in Mnk1 
mediated engagement of  cPLA2 and arachidonate re-
lease[65]. Thus the Mnk kinases can play a role in regulat-
ing arachidonate acid release and thereby mediate eico-
sanoid signaling. Although no follow-up studies on the 
regulatory effects of  the Mnk pathway on cPLA2 have 
been reported, further studies in that direction may pro-
vide important insights regarding the role of  Mnk kinases 
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in various cellular and biological contexts.   

Mnk2 specific interactions
The Mnk2 kinase was initially identified in a yeast two 
hybrid screen attempting to identify proteins that can 
interact with the ligand binding domain of  the estrogen 
receptor b (ERb)[9]. Only the nuclear Mnk2b isoform and 
not Mnk2a or Mnk1 was found to specifically interact 
with ERb and not ERα[9]. Interestingly esterdiol treat-
ment was found to augment Mnk2b binding to ERb[9], 
but whether this interaction leads to the phosphorylation 
of  ERb or alters ERb mediated transcription remains 
to be determined. Another study has reported that ERb 
can be phosphorylated on Ser 105 by estradiol-mediated 
Erk1/2 activation or osmotic stress induced p38 MAPK 
activation and this phosphorylation was found to inhibit 
breast cancer migration and invasion[67]. These observa-
tions suggest that ERb may be a potential substrate for 
the Mnk kinases.

Mnk2 has also been shown to phosphorylate plec-
tin on Ser 4642[68]. Plectin is an ubiquitously expressed 
protein that can interact with microtubules, intermediate 
filaments and the actin microfilaments; and thereby plays 
an important role in regulating cellular responses to me-
chanical stress[69]. Mnk2 mediated plectin phosphoryla-
tion was found to attenuate plectin interactions with the 
intermediate filaments and reduced plectin phosphoryla-
tion was observed at sites of  cell substrate contact that 
require a network of  intermediate filaments[68]. These 
results suggest a potential role for Mnk kinases in mediat-
ing cytoskeletal integrity.  

A study by Hu et al[30] showed that Mnk2 expression 
is augmented during muscle atrophy. Overexpression 
of  Mnk2, but not Mnk1, was found to attenuate eIF4G 
phosphorylation on Ser 1108 and reduced basal p70 S6 
kinase (p70S6K) phosphorylation at Thr 389 and Ser 371 
in a kinase independent manner[30]. The serine-arginine 
rich protein kinase family members SRPK1, SRPK2 and 
SRPK3 were identified as the kinases that mediate eIF4G 
phosphorylation on Ser 1108[30]. Results from in vivo stud-
ies showed that dexamethasone treatment or starvation 
of  Mnk2 knockout mice resulted in enhanced phos-
phorylation eIF4G Ser 1108 as compared to the wild type 
mice[30]. Mnk2 was found to selectively interact with the 
mammalian target of  rapamycin complex 1 (mTORC1) , 
in a kinase independent manner and this interaction was 
essential to regulate Mnk2 mediated decreased phosphor-
ylation of  p70S6K[30]. As phosphorylation of  eIF4G Ser 
1108 and p70S6K Thr 389 and Ser 371 is associated with 
enhanced mRNA translation, these observations suggest 
Mnk2 may play an important role in negatively regulating 
protein synthesis during muscle atrophy[30]. These obser-
vations are consistent with other findings showing that 
overexpression of  Mnk kinases can negatively regulate 
cap dependent translation[70] and suggest that Mnk medi-
ated regulation of  mRNA translation may be context de-
pendent. Altogether, the available evidence indicates that 
Mnk1 and Mnk2 exhibit differing substrate specificities 

and, possibly, distinct biological functions. The functional 
differences between Mnk1 and Mnk2 need to further 
explored in future studies using both in vitro and in vivo 
approaches.

BIOLOGICAL FUNCTIONS OF THE MNK 
KINASES
There is extensive and definitive evidence that Mnk ki-
nases regulate the phosphorylation and/or activity of  
proteins involved in diverse cellular functions. As a result 
of  such effects, the Mnk kinases play important roles in 
cancer biology, development of  drug resistance to cancer 
therapeutics, cap independent translation, as well in medi-
ating pro-inflammatory cytokine production and cytokine 
signaling (Figure 3).   

Role of Mnk kinases in tumorigenesis
eIF4E is known to be upregulated in a variety of  human 
cancers and is linked to poor prognosis[71]. Additionally, 
overexpression of  eIF4E in NIH-3T3 and rat 2 fibro-
blasts results in their oncogenic transformation[72]. As 
eIF4E is modulated by phosphorylation by Mnk kinases, 
Mnk kinases and phosphorylated eIF4E may have impor-
tant roles in cancer biology (reviewed in[73]). Studies with 
mouse models using a rapid adoptive transfer strategy 
suggest that a constitutively active Mnk1 leads to in-
creased eIF4E phosphorylation and promotes lymphom-
agenesis by preventing apoptosis and/or by upregulating 
mRNA translation of  the anti-apoptotic Mcl-1[74].

Mouse embryonic fibroblasts derived from mice with 
a targeted deletion of  both Mnk1 and Mnk2 are resistant 
to Ras mediated transformation[75]. Deletion of  both 
Mnk1 and Mnk2 in a T-cell specific Pten null lymphoma 
model resulted in delayed tumorigenesis and lymphomas 
with an absence of  eIF4E phosphorylation[75].  Addition-
ally knock-in mice expressing a mutant eIF4E (S209A) 
that cannot be phosphorylated are resistant to oncogenic 
transformation by both c-myc and a constitutively active 
Ras[36]. Additionally the knock-in mice are resistant to 
Pten loss-induced prostate cancer  and exhibit decreased 
expression of  proteins involved in tumorigenesis such as 
vascular endothelial growth factor (VEGF) and matrix 
metalloprotease 3 (MMP3)[36]. Moreover, phosphorylated 
eIF4E positively correlates with progression to human 
prostate carcinoma[36]. Other studies have shown that 
inhibition of  Mnk activity and the consequent decrease 
in the phosphorylation of  eIF4E strongly attenuates the 
polysomal recruitment of  terminal oligopyrimidine mes-
senger RNAs (TOP mRNAs) and results in decreased ex-
pression of  mRNAs involved in proliferation in prostate 
cancer[76]. 

The Mnk kinases are overexpressed in glioblastoma 
and inhibition of  the Mnk kinases results in attenuated 
cell growth and increased sensitivity to rapamycin[77]. 
Additionally, inhibition of  Mnk activity was found to at-
tenuate mRNA translation of  a subset of  genes involved 
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in transforming growth factor b (TGFb) signaling  and 
regulation of  signal transduction and induced cell cycle 
arrest[77]. A microarray analysis of  polysomal mRNA 
revealed an important role for Mnk kinases in mediat-
ing the mRNA translation of  SMAD2[77]. Importantly, 
SMAD2 expression positively correlated with Mnk1 
expression in human glioblastoma patients and Mnk1 
was found to play an important role in mediating TGFb 
induced cell motility[77].

The phosphorylation of  Mnk1 and Mnk2 is elevated 
in Her-2 over-expressing breast cancers and inhibition of  
Mnk activity can attenuate growth in soft agar[78]. Inhibi-
tion of  Mnk activity in breast cancer cell lines exerts a 
cytostatic effect by downregulating the expression of  Cy-
clin D1, one of  the targets of  phosphorylated eIF4E[79]. 
In breast cancer cell lines, the integrin α6b4 interaction 
leads to the engagement of  the Mnk kinases in a p38 and 
Erk dependent manner and enhances VEGF mRNA 
translation[80]. 

The Mnk kinases are also known to play a role in he-
matological malignancies. Acute myeloid leukemia (AML) 
is often characterized by expression of  different fusion 
proteins that account for leukemic transformation[81]. 
A microarray study demonstrated that MNK1 is post-
translationally stabilized by PML-RAR alpha[82]. Notably, 
inhibition of  Mnk1 activity/expression was found to 
enhance ATRA (all-trans retinoic acid) induced myeloid 
differentiation[82]. Another recent study has shown that 
chronic myeloid leukemia (CML) patients exhibiting blast 
crisis are characterized by enhanced Mnk-eIF4E phos-
phorylation consequently leading to augmented b-catenin 
protein synthesis as well as its nuclear translocation and 
activation[83]. These results suggest that inhibition of  the 
Mnk kinases may have potential anti-leukemic properties.  

Thus the Mnk kinases can play an important role in 

tumor progression and the development of  Mnk inhibi-
tors will have an important clinical applications.

Role of Mnk kinases in drug resistance
Mnk kinases can modulate multiple aspects of  tumor 
biology and data from multiple studies suggest that they 
may also be involved in drug resistance by multiple mech-
anisms. Inhibition of  mTOR by drugs such as temsiroli-
mus (CCI-779), everolimus (RAD001), and ridaforolimus 
(AP-23573) has shown promising results in preclinical 
studies and are under investigation in cancer clinical tri-
als[84]. Numerous studies in our laboratory as well as oth-
ers have shown that rapamycin treatment of  cancer cells 
results in the phosphorylation of  the Mnk kinases as well 
as its target eIF4E[26,85] in a phosphoinositide 3-kinase 
(PI-3K) dependent manner[86]. In malignant hematopoi-
etic cells, rapamycin treatment leads to a phosphorylation 
of  Mnk1 and its target eIF4E, while simultaneous inhibi-
tion of  both mTOR and Mnk kinases enhances the anti-
leukemic effects of  rapamycin[85]. Additionally Mnk1 inhi-
bition has been shown to augment the anti-tumor effects 
of  rapamycin in multiple human lung cancer cell lines[86]. 
In prostate cancer cells, inhibition of  mTOR or the Mnk 
kinases results in distinct changes in translation initiation 
and the simultaneous inhibition both kinases exerts addi-
tive negative effects in the recruitment of  TOP mRNAs 
and strong suppressive effects on cell cycle progres-
sion[76].

CML is characterized by the t(9; 22) translocation re-
sulting in the constitutively active fusion oncogene bcr-
abl, and its inhibition by imatinib mesylate (imatinib) 
results in a potent patient responses[87]. However, patients 
with late stage disease often develop resistance to imatinib 
resulting in decreased drug efficacy[88,89]. A study by Zhang 
et al[90] showed that simultaneous inhibition of  the Mnk 
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Facilitate IRES mediated mRNA 
translation of the cmyc mRNA

Promote translation of pro-oncogenic 
genes: Mcl-1, VEGF, MMP3, b-catenin, 
SMAD2, Cyclin D1

Regulate the production of pro-
inflammatory cytokines such as 
TNFα, RANTES, IL-17, etc.

Mediate cellular responses to 
Type Ⅰ and Type Ⅱ IFNs, IL-2, 
IL-15 and TGF-b

Promote drug resistance to mTOR 
inhibitors, Imatinib, cytrabine, 
trastuzumab, gemcitabine, etc.Mnk kinases

Figure 3  Biological functions of Mnk kinases. The Mnk kinases play an important role in multiple biological processes. Mnk1/2 can regulate tumor biology by 
mediating the translation of multiple genes that promote tumor growth and resistance to apoptosis. They also mediate resistance to chemotherapy as well as targeted 
therapy agents such as trastuzumab, imatinib, gemcitabine, etc. Mnk kinases are also implicated in regulating cap dependent translation of oncogenes as well as viral 
mRNA. Additionally the Mnk kinases play an important role in mediating the production of multiple pro-inflammatory cytokines such as TNF-α, RANTES and IL-17 
and also mediate cellular responses to multiple cytokines such as Type Ⅰ and Type Ⅱ IFNs, IL-2, IL-15 and TGF-b. TNF-α: Tumor necrosis factor-α; IL: Interleukin; 
RANTES: Regulated upon activation normal T cell expressed and presumably secreted; TGF: Transforming growth factor; MMP3: Matrix metalloprotease 3; IRES: 
Internal ribosome entry sites; IFNs: Interferons.



kinases and imatinib treatment resulted in a synergistic 
enhancemet of  the anti-leukemic effects of  imatinib by 
augmenting its anti-proliferative and apoptotic effects. 
Inhibition of  the Mnk kinases was found to attenuate 
polysomal mRNA recruitment by enhancing imatinib 
mediating inhibition of  the pre-initiation complex eIF4F 
and by independently inhibiting the phosphorylation of  
the pre-initiation complex associated ribosomal protein S6 
(rpS6)[90]. Additionally inhibition of  the Mnk kinases has 
been found to also enhance the anti-leukemic effects of  
the chemotherapeutic drug cytarabine, currently in clinical 
use for the treatment of  acute myeloid leukemia (AML)[85]. 

Breast cancers with overexpression of  the oncogenic 
Her-2 are clinically treated with trastuzumab (herceptin), 
a monoclonal antibody targeting the ectodomain of  
Her-2[91].  Breast cancer patients that respond to trastu-
zumab often develop resistance within a year of  initia-
tion of  treatment[92], underscoring a need to uncover 
the mechanisms contributing to drug resistance. The 
oncogenic Y-box-binding protein-1 (YB-1) can be phos-
phorylated by the p90 ribosomal S6 kinase as well as Akt 
promoting its nuclear translocation, upregulating the ex-
pression of  the epidermal growth factor (EGFR), MET, 
PIK3CA and CD44 ultimately conferring trastuzumab 
resistance[93]. Using an unbiased chromatin immune-
precipitation sequencing approach to identify the tran-
scriptional targets of  YB-1, Astanehe et al[94] identified 
Mnk1 as a YB-1 transcriptional target. Mnk1 and Mnk2 
were found to be overexpressed in trastuzumab resistant 
cell lines and depletion of  Mnk1 was found to augment 
trastuzumab sensitivity[94]. Consistently, overexpression of  
Mnk1 was sufficient to confer trastuzumab resistance[94] 
suggesting a causative role for Mnk1 in the process. 

Pancreatic ductal adenocarcinoma (PDAC) is clini-
cally treated with the chemotherapeutic drug gemcitabine 
which results in marginal benefits when used as a single 
agent[95]. A study by Adesso et al[96], showed that eIF4E 
phosphorylation positively correlates with PDAC tumor 
grade and predicts a ppor prognosis.  In vitro studies 
showed that gemcitabine treatment can induce eIF4E 
phosphorylation in a Mnk2 dependent and Mnk1 inde-
pendent manner[96]. Gemcitabine was found to induce 
the expression of  the oncogenic splicing factor serine/
arginine rich splicing factor (SRSF1) which preferentially 
promoted the expression of  the MAPK independent 
Mnk2b isoform with high basal activity[96]. Interestingly, 
inhibition of  Mnk activity synergistically enhanced the 
anti-oncogenic effects of  gemcitabine by promoting 
apoptosis suggesting an important role for Mnk2 and 
SRSF1 in mediating gemcitabine resistance[96].

Thus the Mnk kinases can regulate resistance to che-
motherapy as well as targeted therapy in multiple cancer 
types. The clinical development of  Mnk inhibitors may 
therefore play an important role in enhancing the efficacy 
of  cancer therapeutics. 

Role of Mnk kinases in cap independent translation
The role of  Mnk kinases in cap dependent translation 

had been the subject of  extensive work, but more recent 
evidence suggests that the Mnk kinases may also play an 
important role in mediating cap independent translation. 
Cap independent translation is mediated by the internal 
ribosome entry sites (IRES) in the 5’UTR of  the target 
mRNAs[97,98]. The IRES elements possess complex sec-
ondary and tertiary structures that facilitate  the interac-
tion with the 40S ribosome in the absence of  eIF4E and 
other translation initiation factors[99]. IRES elements can 
thereby facilitate mRNA translation when cap dependent 
translation is impaired in virus infected cells[100] or in ma-
lignant cells treated with drugs inhibiting cap dependent 
translation[101] .

Cap dependent translation is often dis-regulated in 
malignant cells and drugs inhibiting cap dependent trans-
lation are in common clinical use. Studies in multiple 
neoplastic cell types have suggested that cancer sensitivity 
to rapalogs is decreased by induction of  the Akt path-
way[102,103] subsequently resulting in IRES mediated trans-
lation of  oncogenes such as VEGF[104], cyclin D1 and 
c-myc[105]. Interestingly, the IRES mediated translation of  
oncogenes is also regulated by the p38 and Erk MAPK 
pathways[105] suggesting a role for the Mnk kinases in 
controlling cap independent translation. A recent study 
by Shi et al[106] demonstrated that mTOR inhibition by 
rapamycin in multiple myeloma cells results in the activa-
tion of  Mnk1. Inhibition of  Mnk activity or expression 
was found to attenuate rapamycin induced upregulation 
of  c-myc IRES activity[106]. Combination treatment of  
malignant cells with rapamycin and a Mnk inhibitor was 
found to abolish c-myc expression and enhanced the 
anti-oncogenic activity of  rapamycin[106]. 

Additional evidence from viral studies also supports a 
role for the Mnk kinases in the regulation of  IRES medi-
ated translation. A study by Goetz et al[107] showed that 
replication and cytotoxicity of  the prototype oncolytic 
poliovirus PVSRIPO in glioblastoma multiforme (GBM) 
results in the engagement of  Mnk1 subsequently result-
ing in the enhanced cap independent translation of  the 
viral RNA[107]. Taken together, these results suggest that 
Mnk kinases play important roles in regulating cap inde-
pendent translation and more studies along this line are 
required to gain mechanistic insight into such effects.

Role of Mnk kinases in inflammation
MAPK pathways such as Erk and p38 have been shown 
to play important roles in modulating immune responses 
by mediating the production of  cytokines that control the 
initiation of  innate immunity; the activation of  adaptive 
immunity; and by regulating cellular responses to cyto-
kines involved in immune responses[108]. As Mnk kinases 
are effectors of  MAPK pathways, these observations 
suggest that they may play important roles in mediat-
ing cytokine production at the translational level. Indeed 
pharmacological blockade of  Mnk kinases was found to 
attenuate the production of  pro-inflammatory cytokines 
such TNF-α, IL-6, and monocyte chemo-attractant pro-
tein-1 and enhanced the production of  the anti-inflam-
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matory cytokine IL-10 in macrophages stimulated with 
multiple Toll like receptor (TLR) agonists[109]. Also, data 
from multiple studies have shown that Mnk kinases play 
important roles in mediating the production of  multiple 
pro-inflammatory cytokines such as TNF-α, RANTES 
and IL-17 and in mediating the cellular responses to Type 
Ⅰ and Type Ⅱ IFNs, IL-2, IL-15 and TGF-b (reviewed 
in[110]). 

Most of  the studies focusing on the role of  the Mnk 
kinases in inflammation have utilized small interfering 
RNA mediated Mnk knockdown or pharmacological in-
hibitors of  the Mnk kinases. Recently a study by Gorentla 
et al[111], examined the role of  Mnk kinases in T cell de-
velopment in mice with a targeted deletion of  Mnk1 and 
Mnk2. This study showed that in mice lacking Mnk1 and 
Mnk2, T-cell receptor mediated Ser 209 phosphorylation 
of  eIF4E in T cells was completely abolished[111]. Lack of  
of  Mnk1 and Mnk2 expression in T cells had no influence 
on the development of  conventional αb T cells, regulato-
ry T cells, or NKT (natural killer T cells)[111]. The Mnk1/2 
double knockout mice also did not exhibit any deficiencies 
in CD8 T cell response to bacterial or viral infection[111]. 
Interestingly, while lack of  the Mnk kinases does not in-
hibit Th1 and Th17 differentiation in vitro, immunization 
of  mice with myelin oligodendrocyte glycoprotein peptide 
in complete Freund’s adjuvant, an experimental model 
of  autoimmune encephalomyelitis, resulted in attenuated 
production of  IFNγ and IL-17 by CD4 T cells and at-
tenuated differentiation of  Th1 and Th17 cells[111]. Collec-
tively, these results suggest that while the Mnk kinases are 
dispensable for normal T cell development and function, 
they may play important roles in regulating the cytokines 
required for T cell differentiation or   antigen presenting 
cell (APC) activation pathways, and thereby modulate Th 
cell differentiation in an T cell extrinsic manner[111].

Another recent study focused on the role of  the Mnk 
kinases in the generation of  neutrophil responses. Neu-
trophils are involved in acute inflammatory response and 
secrete proinflammatory cytokines such as TNF-α, IL-
1b, IL-8, IFNγ, IL-4, IL-10, etc.[112]. Mnk1 is phosphory-
lated in human neutrophils upon treatment with LPS 
or TNF-α[113]. Inhibition of  the Mnk kinases in LPS or 
TNF-α stimulated human neutrophils was found to at-
tenuate the secretion of  CXCL8, CCL-3 and CCL4 while 
the mRNA levels of  the cytokines were unaffected, Mnk 
inhibition also attenuated the anti-apoptotic effects of  
LPS and TNF-α[113]. Overexpression of  a kinase active 
Mnk1 and not a kinase dead Mnk1 mutant was found 
to  enhance LPS- and TNF-α- induced cytokine secre-
tion[113]. Similarly the Mnk kinases play important roles in 
pro-inflamatory cytokine production in macrophages[109]. 
These studies further support the observation that the 
Mnk kinases are attractive targets for diseases associated 
with inflammation.

While pro-inflammatory cytokines play an important 
role in mediating an effective immune response to patho-
gens, their persistent enhanced expression is associated 
with multiple disorders such as auto-immune diseases[114], 

allergies[115], neurological disorders[116], sepsis[117], cardio-
vascular diseases[118], obesity[119]  and cancer[120]. As the 
Mnk kinases represent a central node in regulating pro-
inflammatory cytokine production, development of  Mnk 
inhibitors will have important broad spectrum transla-
tional implications.

CONCLUSION
The Mnk kinases are regulated by the p38 and Erk 
MAPK pathways and their activity can also be modulated 
by other MAPK independent mechanisms. Multiple pro-
teins such as those involved in mRNA translation (eIF4E, 
eIF4G), in TNF-α mRNA expression (hnRNPA1, PSF), 
in platelet activity (cPLA2) and in regulation of  receptor 
tyrosine kinase activity (Spry2) are regulated by the Mnk 
kinases. As a result, the Mnk kinases can play important 
roles in controlling cap-dependent and -independent 
translation, participate in the pathophysiology of  several 
malignant and inflammatory diseases and diminish re-
sponses to cancer therapeutics (Figure 3). 

The above observations suggest that development of  
Mnk inhibitors can have broad spectrum clinical applica-
tions. Most of  the studies discussed in this review used 
the Mnk inhibitor CGP57380 a low weight molecular 
compound identified from the Novartis Pharma com-
pound collection that can inhibit both Mnk1 and Mnk2 
activity[121]. The IC50 of  CGP57380 against Mnk1 is seen 
at a concentration of  2.2 μmol/L[70], the concentration at 
which it can also inhibit the activity of  other kinases such 
as casein kinase, MAP2K1 and BR serine/threonine-
protein kinase 2[122]. As a result this compound cannot 
be used for in vivo studies and research mainly utilizing 
CGP57380 should be interpreted with caution. The anti-
fungal agent cercosporamide is also reported to inhibit 
Mnk activity, although it exhibits higher specificity for 
Mnk2 as compared to Mnk1[123].  Importantly cerco-
sporamide has been shown to exhibit anti-tumor effects 
in both in vitro and in vivo studies[123, 124].  More research 
efforts are needed to develop Mnk inhibitors that can be 
tested in clinical settings.
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