
highlighted as a critical protein that regulates numer-
ous cell functions from proliferation/apoptosis to stress-
resistance and aging. FoxO3a has been found to be 
deregulated in several diseases and FoxO3a targeting 
approaches are currently underway to treat various 
types of cancers. This review will describe the current 
concept of FoxO3a’s pathological role in various diseas-
es and elucidate the regulatory mechanisms involved. 
It will also provide the clinical significance and strate-
gies to target FoxO3a to limit the progression of human 
diseases.    
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INTRODUCTION
Forkhead box O (FoxO) transcription factors are the 
human homologues of  the C. elegans transcription factor 
DAF-16 and share a highly conserved 110-amino acid 
DNA binding domain, forkhead box or winged-helix do-
main[1,2]. Forkhead box proteins comprise more than 100 
members in humans, classified from FOXA to FOXR[3-5]. 
Members of  class O share the characteristic of  being reg-
ulated by the insulin/PI3K/Akt signaling pathway[4]. Four 
principal members of  the mammalian FoxO subfamily, 
FoxO1, FoxO3a, FoxO4 and FoxO6 have been previ-
ously described[3]. Although they seem to bind a common 
set of  DNA sites, FoxO6 is mainly specific to neurons, 
while the other 3 FoxO family members are expressed in 
most tissues. These FoxO members are linked to cell sur-
vival, cellular proliferation and DNA damage repair re-
sponse[5,6]. Among them, FoxO3a has recently been stud-
ied extensively as a crucial protein that is involved in the 
regulation of  several essential cellular functions (see page 
349). Prior studies have shown that FoxO3a functions as 
a tumor suppressor by regulating expression of  genes in-
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Abstract
The Forkhead box O (FoxO) family has recently been 
highlighted as an important transcriptional regulator 
of crucial proteins associated with the many diverse 
functions of cells. So far, FoxO1, FoxO3a, FoxO4 and 
FoxO6 proteins have been identified in humans. Al-
though each FoxO family member has its own role, un-
like the other FoxO families, FoxO3a has been exten-
sively studied because of its rather unique and pivotal 
regulation of cell proliferation, apoptosis, metabolism, 
stress management and longevity. FoxO3a alteration 
is closely linked to the progression of several types of 
cancers, fibrosis and other types of diseases. In this 
review, we will examine the function of FoxO3a in 
disease progression and also explore FoxO3a’s regula-
tory mechanisms. We will also discuss FoxO3a as a 
potential target for the treatment of several types of 
disease. 
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volved in apoptosis, cell cycle arrest, oxidative stress resis-
tance and autophagy[3,7-9] (Figure 1). In general, FoxO3a 
is known to suppress cell cycle progression and promote 
cell death. Thus, it has been thought that FoxO3a can 
be an important target to inhibit cancer cell progression. 
However, recent studies have discovered other functions 
of  FoxO3a, such as stress response and longevity, as 
described on page 349. FoxO3a alteration is also linked 
to many different types of  disease. Interestingly, FoxO3a 
increases autophagy to protect cells from environmental 
stresses[10,11]. Thus, under this situation, unlike the general 
concept of  FoxO3a’s role, FoxO3a potentially has a pro-
tective role in maintaining a cell’s homeostasis. Perhaps 
the most interesting feature of  FoxO3a is its biological 
role associated with longevity (page 349). Based on this, it 
becomes clear that FoxO3a has diverse roles in response 
to many environmental stimuli and these recent find-
ings certainly change our view on the previous roles of  
FoxO3a. Therefore, from the perspective of  disease pro-
gression, it is imperative to define the potential role of  
FoxO3a in cells and elucidate how alteration of  FoxO3a 
is linked to the development of  several types of  disease.      

FOXO3A STRUCTURE
Recent technologies have revealed that the primary struc-
ture of  FoxO3a contains highly conserved residues of  the 
helix H3 (motif  NXXRHXXS/T), which is the main DNA 
recognition element that binds into a major groove, which 
comprises the majority of  the direct base-specific con-
tacts[1,6]. Recent studies further revealed that FoxO proteins 
recognize two consensus sequences, 5’-GTAAA(T/C)AA-3’ 
known as the Daf-16 family member-binding element[6,7] 
and 5’-(C/A)(A/C)AAA(C/T)AA-3’ known as the insulin-
responsive sequence (IRE)[8,9]. Crystal structure revealed 
that the recognition helix H3 docked perpendicular to the 
major groove making extensive contacts with the DNA[7]. 
FoxO3a contains several crucial domains[12] (Figure 2) such 
as a nuclear localization signal (NLS), a nuclear export sig-
nal (NES) and a transactivation domain (TA).

FOXO3A REGULATORY MECHANISMS
Phosphorylation and dephosphorylation
FoxO3a is regulated by posttranslational modifications 
such as phosphorylation, acetylation and ubiquitination, 
each of  which affects the transcriptional activity of  FoxO 
proteins[11-16] (Figure 2). The potency of  FoxO3a is care-
fully regulated by phosphorylation. The phosphorylation 
of  FoxO3a by several kinases is well established. Among 
them, protein kinase B (Akt) is an important kinase that 
directly phosphorylates FoxOs. In the case of  FoxO3a, 
T32, S253 and S315 residues are phosphorylated by Akt 
and, in particular, the phosphorylation of  S253 is a crucial 
residue regulating the nuclear/cytoplasmic shuttling of  
FoxO3a. For example, when cells are cultured in the pres-
ence of  growth factors or insulin, FoxO3a is phosphory-
lated by Akt and mainly localized to the cytoplasm, which 
prevents its transcriptional activity. The phosphorylation 
event of  FoxO3a by Akt facilitates FoxO3a interaction 
with the 14-3-3 nuclear export protein, further preventing 
nuclear re-import by concealing nuclear localization sig-
nals[13]. Furthermore, the phosphorylation of  FoxO3a by 
activated Akt promotes an association with an ubiquitin 
E3 ligase, subsequently polyubiquitinating FoxO3a, which 
facilitates FoxO3a degradation by proteasomes[13-17]. Thus, 
the activation of  Akt is thought to be critical in FoxO3a 
regulation. However, in some tumors, FoxO3a remains 
in the cytoplasm even in the absence of  active Akt[14]. It 
has been found that IkB kinase (IKK) phosphorylates 
FoxO3a at serine 644, thereby inhibiting its transcriptional 
activity in an Akt-independent manner[15]. The phosphory-
lation of  FoxO3a by IKK also leads to its cytoplasmic 
localization, although the underlying export mechanism is 
not understood. The insulin/IGF-1 and integrin-depen-
dent signaling pathways activate Akt via PTEN suppres-
sion which phosphorylates FoxO3a, thereby rendering it 
functionally inactive. In contrast, FoxO3a is localized to 
the nucleus to activate its target genes when growth fac-
tors or serum are deprived. Additionally, serum and gluco-
corticoid regulated kinase (SGK), casein kinase 1 (CK1), 
dual specificity tyrosine-phosphorylated and regulated 
kinase 1A (DYRK1A), janus N-terminal kinase (JNK), 
mitogen-activated protein kinases (MAPKs), IkappaB ki-
nase (IKKβ), mammalian sterile 20-like kinase 1 (MST1) 
and AMP activated protein kinase (AMPK)  are also 
known to regulate FoxO3a and other family members[18-23] 
by phosphorylating multiple residues. Interestingly, SGK1 
is transcriptionally up-regulated in response to a variety 
of  external stimuli, including growth factors. SGK1 is 
also known to phosphorylate the pivotal ser 253 residue, 
which triggers its location to the cytoplasm, thereby inhib-
iting its function[19]. In contrast, AMPK activates FoxO3a 
function. 6 threonine/serine residues (T179, S399, S413, 
S555, S588 and S626) in mammalian FoxO3a are found 
to be phosphorylated by AMPK[24,25]. Mutation of  these 
phosphorylation residues to alanine severely impairs its 
function, yet it does not alter its ability to bind to cognate 
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Figure 1  Forkhead box O3a target genes. Forkhead box O (FoxO)3a tran-
scriptionally activates several target genes. FoxO3a binds to the promoter of 
apoptosis inducing genes, such as Bim, FasL and TRAIL, and to the promoter 
of cell cycle inhibitors, such as p27 and p21. FoxO3a also activates autophagy 
genes Gabarapl1, ATG12, etc. A recent study showed that FoxO3a also partici-
pates in the activation of stress response genes, such as MnSOD and catalase 
in response to oxidative stress.  



sequences or to participate in nucleocytoplasmic shuttling 
depending on external cues[25]. Likewise, JNK also phos-
phorylates FoxO3a, activating FoxO3a function by en-
hancing its location into the nucleus which subsequently 
increases its transcriptional activity[18,22]. 

Unlike kinases, very few phosphatases have been 
found to regulate FoxO3a. One particular phosphatase, 
protein phosphatase-2A (PP2A), has been shown to 
regulate FoxO3a function. Nho et al[26] showed that when 
fibroblasts attach to 2D type collagen coated plates, 
PP2A activity is suppressed, which facilitates FoxO3a 
inactivation by enhanced Akt, promoting fibroblast pro-
liferation. But the over-expression of  PP2A reverses this 
inactivation and increases dephosphorylated FoxO3a, 
thereby suppressing their proliferation. Singh et al[24] also 
demonstrated that FoxO3a interacts with PP2A C/A 
subunits in HeLA cells, dephosphorylating its T32/S253 
residues, which subsequently inhibits the interaction of  
the 14-3-3 protein to FoxO3a by Akt. This study showed 
that PP2A is required for the reactivation of  FoxO3a 
by promoting its translocation to the nucleus (Figure 3). 
Interestingly, recent studies also showed that the adeno-
virus E1A stabilizes FoxO3a by inducing the expression 
of  PP2A/C, which suppresses βTrCP-mediated degra-
dation of  FoxO3a[25]. Thus, these studies clearly suggest 
that the imbalance between kinases and phosphatase(s) 
can greatly affect a cell’s fate by curbing FoxO3a func-
tion and the alteration of  these kinases and phosphatases 
are directly linked to certain disease progression.

Ubiquitin proteasome degradation
As we briefly described above, FoxO3a degradation is 

also an important step to regulate its function. The single 
molecule RING-finger E3 ligase murine double minute 
2 (MDM2) promotes ubiquitination of  FoxO3a as well 
as FoxO1 and FoxO4, facilitating their degradation[27]. 
Intriguingly, knockout or knockdown of  MDM2 alone 
increases FoxO3a protein levels. This effect was shown 
to be mediated by MDM2-induced polyubiquitination 
of  FoxO proteins[27,28], whereas another study showed 
that MDM2 catalyzes multiple monoubiquitination of  
FoxO4 rather than polyubiquitination[28]. When FoxO3a 
is located to the cytoplasm by Akt, FoxO3a becomes 
ubiquitinated and this event triggers a proteasome-
dependent degradation process. Like MDM2, FoxO3a 
phosphorylation by IKK also leads to its ubiquitination 
and degradation[15]. Thus, these studies document that 
FoxO3a localization in the cytoplasm not only deactivates 
FoxO3a function but also becomes a crucial step leading 
to FoxO3a degradation.  

Acetylation, transcriptional regulation, microRNA and 
others
Acetylation also plays an important role in regulating 
FoxO3a. Oxidative stress triggers FoxO3a acetylation/
deacetylation and affects the localization of  FoxO3a. 
For example, protein acetylase CREB binding protein 
(CBP)[29-31], p300[32,33] and deacetylase Sirt are known 
to modulate FoxO3a function[34-38], although a precise 
mechanism describing the effects of  acetylation and 
deacetylation is not known. A recent piece of  evidence 
suggests that the FoxO family is also regulated by mi-
croRNA. mir155, mir96 and mir21 are thought to directly 
regulate FoxO3a, while mir205 regulates FoxO3a via its 

348WJBC|www.wjgnet.com August 26, 2014|Volume 5|Issue 3|

Nho RS et al . FoxO3a and disease progression

CBP CBP ? ? CBP

K569K290K242 K259 K271

Akt/SGK MST1 Akt/SGK Akt/SGK IKKβ

S644S315S253S207T32

TANESNLSFKH

Figure 2  Major phosphorylation and acetylation residues of FoxO3a. Post-translational modification sites of FoxO3a. Shown are sites of serine/threonine phos-
phorylation by Akt/SGK, MST1, IKKβ or the residues acetylated by CBP or unidentified acetyl transferases (?) on FoxO3a domains[12]. FKH: Forkhead DNA binding do-
main; NLS: Nuclear localization signal; NES: Nuclear export sequence; TA: Transactivation domain; Akt: Protein kinase B; MST1: Mammalian sterile 20 like kinase-1; 
CBP: The cyclic–AMP responsive element binding (CREB) binding protein, IKKβ: Ikβ kinase; SGK: Serum-and glucocorticoid-induced protein kinase.
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Figure 3  Forkhead box O3a localization by phosphoryla-
tion and dephosphorylation. Forkhead box O (FoxO)3a 
becomes translocated to the cytoplasm when phosphorylated 
on ser 253 residue by Akt or SGK. FoxO3a is then bound to 
14-3-3 and this interaction promotes its degradation by the 
proteasome. In contrast, FoxO3a is dephosphorylated by pro-
tein phosphatase-2A and this opposite event facilitates its re-
location into the nucleus, thereby activating its target genes. 
SGK: Serum-and glucocorticoid-induced protein kinase; Akt: 
Protein kinase B.



upstream target PTEN[39-43]. FoxO3a is also known to be 
regulated by a transcription factor. E2F-1 can bind to the 
promoter region of  FoxO1 and FoxO3a, thereby regulat-
ing FoxO3a at the mRNA level[44]. FoxO3a mRNAs are 
modulated as a function of  age in rat muscle, peaking at 
6 and 23 mo, suggesting that FoxO3a may also affect lon-
gevity in mammals[45].  

FOXO3A FUNCTION 
Cell proliferation and apoptosis
Perhaps the two most significant cellular processes that 
are regulated by FoxO transcription factor are the sup-
pression of  cell cycle progression and the promotion of  
apoptosis[46-50]. FoxO3a activation increases cell cycle in-
hibitor proteins p21 and p27, both of  which subsequently 
suppress G1 to S cell cycle transition[51-54]. Although p27 is 
transcriptionally regulated by FoxO3a via the PI3K/Akt-
dependent axis, it has been shown that p27 is also regu-
lated via the FoxO3a/NF-κB/c-Myc-dependent pathway. 
Chandramohan et al[55] showed that in WEHI 231 cells, the 
suppression of  PI3K activity promotes a decrease in c-Myc 
dependent p27 expression via NF-κB inhibition. Since 
NF-κB is frequently altered in many types of  cancers and 
NF-κB transcriptionally activates c-Myc gene expression, 
this finding suggests that p27 is reciprocally regulated by 
FoxO3a and c-Myc. A recent study further suggests that 
FoxO3a inhibits NF-κB function and that the alteration 
of  FoxO3a is associated with hyper-proliferative helper T 
cells, cigarette smoke-induced inflammation, airspace en-
largement and chronic obstructive pulmonary disease[56,57]. 
Likewise, FoxO3a also increases several target genes, such 
as Bim, TRAIL, PUMA and Fas ligand, which all promote 
cell apoptosis. For example, FoxO3a directly binds to the 
promoter region of  Bim, causing sympathetic neuron 
cell death[44]. The activation of  the transcription factor 
FoxO3a led to increased TRAIL transcription and induc-
tion of  G1 arrest in the absence of  v-Abl inhibition; this 
effect could be inhibited by the expression of  a constitu-
tively active Akt mutant in BCR-Abl-transformed human 
cells. Ghaffari et al[49] also demonstrated that cytokine and 
BCR-Abl suppression of  TRAIL transcription is mediated 
through phosphorylation and inhibition of  the FoxO3a 
transcription factor. This study showed that BCR-Abl-
induced inhibition of  TRAIL transcription is linked to the 
tumorigenicity in chronic myeloid leukemia[50]. FoxO3a is 
also associated with the regulation of  PUMA and Noxa 
proteins in lymphoid and neuroblastoma cells, respec-
tively[58,59]. Thus, these findings clearly demonstrate that 
FoxO3a-dependent cell cycle arrest and apoptosis induc-
tion are important for tumor suppression (Table 1) and 
further indicate that the pathological alteration of  FoxO3a 
can potentially contribute to the acquisition of  uncon-
trolled cell proliferation and an apoptosis-resistant cell 
phenotype. 

Stress resistant effect
The most recent discovery regarding FoxO3a’s function 

is that it is also associated with stress response and lon-
gevity. In contrast to FoxO3a’s better known functions 
of  inhibiting cell proliferation and promoting apoptosis 
as described above, FoxO3a also participates in protect-
ing cells when exposed to unfavorable conditions. This 
seemingly contradictory effect of  FoxO3a has been ob-
served in various cell models and it has been found that 
the reactive oxygen species (ROS) are linked to the acti-
vation of  FoxO3a to protect cells from a stress inducing 
environment[60,61]. In C. elegans, DAF-16 is thought to reg-
ulate 230 genes on the ablated germ cell line background 
and most of  these genes are related to the resistance of  
external stress[62,63]. Deregulated ROS induce apoptosis 
and are associated with various diseases and aging. Sir-
tuin-1 (Sirt1) decreases ROS levels and promotes cell 
survival under oxidative stress conditions. Interestingly, 
FoxO3a and other FoxO family members increase super-
oxide dismutase (SOD) and protect cells from oxidative 
stress in a Sirt1-dependent manner[34,38]. A Sirt1/FoxO3a-
dependent cell regulatory function that has been linked 
to stress management was previously studied. Brunet et al 
showed that Sirt1 and FoxO3a form a complex in cells in 
response to oxidative stress and Sirt1 increases the ability 
of  FoxO3a to induce cell cycle arrest and resistance to 
oxidative stress but inhibited FoxO3a’s function to induce 
cell death[38]. These results showed that FoxO3a deacety-
lation by Sirt1 in response to ROS can be an important 
self  defense mechanism to detoxifying harmful reactive 
molecules, further suggesting that Sirt1 is linked to pro-
tect cells from a stress inducing environment by tipping 
FoxO dependent response away from apoptosis and 
toward stress resistance[38]. Studies also found that Sirt3, 
which belongs to class Ⅲ of  HDACs, is linked to the 
resistance of  stress inducing environments by detoxifying 
ROS. The role of  Sirt3 and FoxO3a function is particu-
larly well described in myocytes[64]. At the cellular level, 
when cardiomyocytes are exposed to stressful stimuli, 
Sirt3 levels are elevated, which subsequently deacetylase 
FoxO3a and facilitate its location into the nucleus to ac-
tivate anti-oxidant genes[65]. Among them, catalase (Cat) 
and manganese superoxide dismutase (MnSOD) are di-
rect targets of  detoxifying enzymes by FoxO3a. Thus, the 
increased level of  Cat and MsSoD by FoxO3a activation 
may efficiently and effectively manage ROS, which can be 
beneficial for reducing stress induced by ROS.  Interest-
ingly, a prior study found a potential FoxO activator as a 
way to protect cells from oxidative stress. Resveratrol, a 
polyphenolic flavonoid abundant in red wine with potent 
antioxidant activity, is known to up-regulate the FoxO 
family and block caspase 3, 8, and 9 activation, protecting 
photoreceptor cells from oxidative stress[66]. Thus, it is 
believed that when cells are exposed to a stress inducing 
environment, FoxO3a protects cells by utilizing SOD, 
catalase, etc., and this action is ultimately beneficial to 
cells. Given the fact that FoxO3a is linked to stress re-
sponse and cells utilize FoxO3a to respond to ROS, it is 
a plausible scenario that the activation of  FoxO3a under 
stress inducing conditions triggers the cell’s defense sys-
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tem, which can protect cells from harmful environments. 

Longevity
However, perhaps the most intriguing recent discovery 
in FoxO3a function is that the FoxO3a gene is associated 
with aging. Because FoxO3a is regulated by insulin-IGF1 
signaling (IIS) which influences metabolism and lifespan 
in model organisms[67], FoxO3a had been proposed to be 
an ideal candidate to study longevity as the link between 
FoxO3a and longevity that has previously been described.  
Willcox et al[68] described 3 single nucleotide polymor-
phisms (SNPs) in the FoxO3a gene that were statistically 
significantly associated with longevity and different aging 
phenotypes in a sample of  long-lived Americans of  Japa-
nese ancestry. Furthermore, Flachsbart et al[69] found that 
not only were certain FoxO3a variants very common in 90 
year olds, they were even more common in 100 year olds, 
emphasizing the importance of  genetics for aging well. 
It becomes clear that increases in cellular ROS levels are 
known to be associated with aging[70-75]. Increased cellular 
oxidative stress regulates FoxO post-translational modi-
fications and the activation of  the FoxO family has been 
shown to regulate cellular oxidative-stress resistance[76-81].  
Interestingly, to support these findings, recent studies sug-
gest a possibility that Sirt3 and FoxO3a have been linked 
to an extended life span in humans[75-78,82]. 

FOXO3A IN CLINICAL APPLICATION
FoxO3, FoxO1 and FoxO4 are present at chromosomal 
translocation break points in cells of  rhabdomyosar-
comas and acute myeloid leukemia.  Among the FoxO 
family, FoxO3a has been shown to be deregulated in 
several tumor types, including breast cancer[83-85], prostate 
cancer[86-88], glioblastoma[89] and leukemia[90,91]. Therefore, 
FoxO3a has been targeted as a way to treat several types 
of  cancers. Interestingly, Akt, IKK and Erk are three 
commonly activated oncogenic kinases in human cancers 
and all three kinases target FoxO3a in an identical man-
ner to inhibit its tumor suppressor function[92]. All three 
kinase-mediated phosphorylations stimulate FoxO3a 
ubiquitination, resulting in its proteasomal degradation. 
Thus, a FoxO3a targeting approach via the modulation 
of  above kinases is currently underway. For example, 

the chemotherapeutic drugs paclitaxel[93] and KP372-1 (a 
multiple kinase inhibitor)[30], currently used in the treat-
ment of  breast carcinoma, activate FoxO3a by reducing 
Akt activity. Doxorubicin activates FoxO3a to induce 
the expression of  the multidrug resistance gene ABCB1 
(MDR1) in K562 doxorubicin-sensitive leukemic cells[94].  
Imatinib activates FoxO3a and induces Bim-dependent 
apoptosis through inhibition of  BCR-ABL in chronic 
myeloid leukemia[95]. Imatinib also induces erythroid dif-
ferentiation through repressing ID1 gene transcription by 
FoxO3a activation[96]. BMS-345541, a selective IKK in-
hibitor, promotes apoptosis in T-cell acute lymphoblastic 
leukemia (T-ALL) cell lines[97]. Several pieces of  evidence 
in recent years further suggest that a FoxO3a target-
ing approach may be helpful for the treatment of  other 
types of  human diseases. For example, FoxO3a causes 
the induction of  apoptosis in prostate cancer cells via up-
regulating PUMA[98]. Low levels of  FoxO3a may link to 
chemotherapy resistance in liver cancer and FoxO3a ap-
pears to present antitumor properties in hepatocellular 
carcinoma[99-101]. FoxO3a also plays a role in the neuro-
protective effect of  the erythropoietin (EPO) role in Par-
kinson’s disease via Akt[102]. Thus, all these studies indicate 
that as our knowledge for FoxO3a targeting approaches 
continuously develop, the clinical application of  FoxO3 is 
potentially promising to limit the progression of  human 
diseases in the future. 

FUTURE APPLICATION OF FOXO3A
FoxO3a has recently been recognized as a promising 
therapeutic target to treat cancers and other types of  dis-
eases. To improve therapeutic outcomes, FoxO3a-depen-
dent chemosensitization is being currently tested.  Studies 
suggest that precise FoxO3a regulation is essential for ho-
meostasis and if  there is deregulation of  FoxO3a by en-
vironmental factors, such as chronic exposure to ROS or 
genetic/epigenetic alteration, this pathological condition 
can directly lead to abnormal proliferation or changes in 
apoptotic signals, which subsequently are responsible for 
disease progression. In particular, age-dependent FoxO3a 
modulation is an interesting concept to help understand 
the pathogenesis of  certain types of  disease models. If  
FoxO3a is a crucial protein mainly deregulated by aging, 
maintaining optimum FoxO3a activity in a patient’s spe-
cific clinical condition can be beneficial to minimize age-
dependent disease.  For example, the preservation of  op-
timum FoxO3a activity using drugs such as paclitaxel may 
be helpful for patients with age-related diseases.   Clearly, 
more studies are required to elucidate FoxO3a’s function 
as an effective and useful target capable of  preventing or 
limiting the progression of  diseases without clinical com-
promise.    
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