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Abstract

Transcription factors (TFs) are responsible for decoding and expressing the information stored in

the genome, which dictates cellular function. Creating artificial transcription factors (ATFs) that

mimic endogenous TFs is a major goal at the interface of biology, chemistry, and molecular

medicine. Such molecular tools will be essential for deciphering and manipulating transcriptional

networks that lead to particular cellular states. In this minireview, the framework for the design of

functional ATFs is presented and current challenges in the successful implementation of ATFs are

discussed.
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1. Introduction

Most cells in multicellular organisms carry the same genome, yet are able to produce a wide

range of phenotypes which gives rise to sets of specialized cells that differ in morphology

and function. This diversity is in part attributed to differences in tightly regulated gene

expression patterns, with some genes being actively transcribed and others repressed.

Transcription factor (TF) proteins are active participants in the regulation of specific

geneexpression programs in response to cellular needs. Therefore, it is not surprising that the

malfunctioning of TFs has been directly linked to many disease states [1]. This link has

turned TFs into attractive therapeutic targets for treating a wide range of diseases, including

cancer [2– 4].

In response to specific signal, TFs target particular genes within the genome. Once localized

to the targeted genes, TFs recruit macromolecular machines to modify chromatin and initiate

transcription [5]. Over several decades, much effort has been invested in the identification of
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the components of the transcriptional machinery targeted by TFs [6, 7]. Transcription factors

have been shown to interact with RNA polymerase II, the general transcription factors

(GTFs) [5], coactivators, such as components of the Mediator protein complex [8, 9], and

TBP-associated factors [10, 11]. TFs also recruit nucleosome remodeling complexes such as

the Swi/Snf complex and histone acetyltransferases, such as the SAGA complex [12, 13].

Components of the proteasome have also been identified as targets of transcriptional

activators (Figure 1) [7].

Natural transcription factors can be minimally composed of two functional domains: a

DNA-binding domain (DBD) and a regulatory domain (RD) [5]. The DBD determines

which genes will be activated or repressed by selectively targeting specific DNA sequences

within the cis-regulatory motifs associated with the target genes; the RD dictates whether to

activate or repress transcription by recruiting components associated with the transcriptional

machinery or the repression machinery, respectively. The magnitude of the response is

encoded within the regulatory domain.

An important feature of natural TFs is that the DBD and the RD function independently

from each other, as demonstrated by domain swapping experiments in yeast and other

eukaryotes [14]. The modular nature of TFs highlights the possibility of exchanging the

DBD and RD for synthetic counterparts to engineer artificial transcription factors (ATFs).

Engineering replacements for the DBD and RD has been the most used strategy for creating

TF mimics (Figure 1) [15].

The potential benefits of implementing ATF-based tools are extensive [16]. These molecular

tools could be used to dissect genome-wide transcriptional cascades, yielding fundamental

insights on developmental processes. Diseases based on malfunctioning transcription factors

could be treated or prevented with ATFs. The metabolic pathways of an organism could be

engineered to produce valuable compounds. ATFs would also be invaluable tools for the

emerging field of synthetic biology, as they could be used to control synthetic cellular

circuits [17].

2. DNA binding domains

The information contained within the DBD dictates which DNA sequence is targeted and

therefore determines which genes are regulated by a given transcription factor. Similarly

DBD confers specificity on a given ATF. Different types of binding domains have been

employed in ATFs to target specific DNA sequences. Examples of DNA binding domains

used for ATF construction include protein-based zinc fingers, oligonucleotides and

oligonucleotide analogs, as well as synthetic small molecules (Figure 2).

The zinc finger (ZF) domain is one of the most represented DBD in the human genome [18,

19]. A zinc finger module is composed of 30 amino acids assembled in a ββα fold stabilized

by a zinc ion. Each ZF recognizes and binds to three base pairs in the target DNA (Figure 2).

ZF modules can be strung together to recognize larger unique sequences in the genome. For

example, three consecutive ZFs target a 9 bp sequence, and a polydactyl ZF consisting of six

ZFs targets an 18 bp sequence [20]. The complexity of sequences that can be recognized by

ZFs has been expanded through a variety of strategies, including structure-guided methods,
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phage display screens, and the bacterial one-hybrid system [21–23]. The most successful

artificial ZF modules target sequences containing GNN triplets [20, 24]. A detailed protocol

for the modular construction of ZF libraries was recently published by the Barbas group

[25]. Zinc fingers have been widely employed as DNA-binding domains in the construction

of ATFs [26]. However, it has been shown that in some cases the binding sequences of

individual ZFs are not completely separable and that DNA binding is influenced by the

neighboring ZFs as well [27, 28].

Two recent reports described the DNA recognition “code” of the transcription activator-
like (TAL) effectors of bacteria from the genus Xanthomonas [29, 30]. TAL effectors are

DNA binding proteins from plant pathogenic bacteria [31]. Members of the TAL effectors

family posses a characteristic central domain of tandem repeats of 34 amino acids. In each

repeat, the amino acids located in positions 12 and 13 are hypervariable and referred to as

the repeat-variable diresidue (RVD). The DNA binding specificity of TAL effectors is

determined by the tandem repeat region [32]. Specifically, a one-to-one correspondence was

found between the identity of the RVD and target DNA [29, 30].

The deciphering of the DNA binding code of TAL effectors highlights the possibility of

engineering TAL effectors with custom DNA sequence specificity. However, the molecular

details on how the repeat domain of TAL effectors recognizes targeted DNA are currently

lacking. Although more work is needed to support the generality of the proposed DNA

binding code, TAL effectors could potentially be utilized as DBD in designing transcription

factor mimics.

DBDs have also been constructed from oligonucleotides [33, 34] as well as oligonucleotide

analogs, such as locked-nucleic acids (LNAs) [35] and peptide nucleic acids (PNAs) [36].

These molecules recognize and bind to DNA by forming a triple helix DNA strand (referred

to as triplex-forming oligos (TFO)), or by strand invasion of double-stranded DNA [37].

An ATF consisting of a triplex-forming oligonucleotide DBD linked to a minimal VP16

peptide AD was first reported by Kuznetsova et al. [38]. This work was later extended by

Young and colleagues to create TFO-based ATF that induced the expression of a reporter

gene in tissue culture cells [39].

The most effective small-molecule DBDs to date are based on N-methylpyrrole and N-

methylimidazole polyamides (PA). These molecules bind in the minor groove of dsDNA

[40]. When engineered to form hairpins, PAs are capable of binding to targeted DNA

sequences, based on a set of pairing rules, with nanomolar affinity [28, 41–43]. Due to this

high affinity, a PA can modify gene expression by competitively inhibiting binding of

endogenous TFs [44–47]. An artificial activation domain (AD) attached to a hairpin PA was

shown to activate transcription in vitro [48, 49]. Applications using PA-based ATFs are

often limited due to poor cell permeability of PAs; research efforts aimed at improving the

cellular permeability of PA-based compounds are ongoing [50–53].

For an ATF to work properly, its DNA binding domain must find and bind to the targeted

DNA sequence in the cellular context. In the cell, the accessibility of an ATF binding site is

in part dictated by its chromatin state. However, genome-wide maps of nucelosome
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positions have highlighted that the regions near transcription start sites are often depleted of

nucleosomes [54– 56]. These nucleosome-free regions are potential binding sites for ATFs.

In addition, studies have shown that polyamide DBDs are able to bind to targeted DNA

sequences in nucleosome particles [57] and nuclear chromatin [58]. In addition, strategies

have been designed to alter the accessibility of DNA binding site by chromatin modification.

Snowden et al fused a ZF DNA binding domain to histone modifying enzymes to (i.e., a

histone deacetylase and a histone methyltransferae) [59, 60]. More recently a DNA

methylase enzyme was fused to TFO DNA binding domain and shown to specifically

methylate the targeted promoter in a reporter plasmid [61].

3. Regulatory domains

3.1. Activation domains

Most of the activation domains used in ATFs are derived from peptide sequences inspired

by the architecture of natural activation domains [7]. Natural ADs are usually composed of

unstructured peptides with potential to form amphipathic helices. Based on the peptide

sequences of ADs and on structures of natural ADs bound to their protein partners, it

appears that many ADs form an amphipathic α-helix upon interaction with the

transcriptional machinery, with the hydrophobic face of the helix contacting the binding

partner [62–64]. However, extended conformations with a buried hydrophobic surface are

also observed [65, 66]. Potent short peptides that function as ADs have been indentified

from screening libraries of random peptides [67, 68] and from peptide libraries that targeted

components of the transcriptional machinery [69, 70]. Peptide-based ADs have the

disadvantage of short lifetime in vivo, likely due to the unstructured nature of the peptide

that alerts the cellular surveillance machinery (e.g. proteases) to degrade the peptide.

Nevertheless, recent studies have highlighted that the potency of peptide-based ADs can be

enhanced by engineering intramolecular interactions between the AD and the DBD (see

section 6.2) [71, 72].

Proteolysis of the AD can be avoided by using peptoids or small molecules (Figure 3). A

novel regulatory module was found by screening a combinatorial library of ~100,000

peptoids for binding to the KIX domain of the mammalian co-activator CBP. The most

promising peptoid from the screen was delivered into cells as a dexamethasone conjugate

that bound to a glucocorticoid receptor-Gal4 chimera DBD. This ATF activated

transcription of a reporter luciferase gene in HeLa cells [73].

In addition to peptides, RNA can activate transcription when conjugated to a DBD. In an

adaptation of the three-hybrid system used to screen for RNA ligands that interacted with

the yeast protein Snp1, it was observed that some RNA sequences activated transcription

[74]. This finding was further supported by research from Saha et al., where a library of

RNA hairpins with a randomized 10 nucleotides loop conjugated to a DBD was screened for

transcriptional activation [75]. The authors found a consensus sequence of 6 nucleotides in

the hairpin loop that activates transcription (Figure 3). RNA-based ADs have also been

designed through in vivo evolution in yeast [76]. In vivo evolution can also be used to select

for RNA-DBD conjugates that repress transcription [77].
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An early small molecule AD was reported by Minter et al. [78]. Isoxazolidine derivatives

displaying functional groups commonly found in natural ADs were synthesized (Figure 3).

The functional groups were chosen to mimic the amphipathic character of natural ADs.

These isoxazolidines, when tethered to a DBD, activated transcription both in vitro [78] and

in vivo [79]. It was later shown that isoxazolidine ADs can bind to different components of

the transcriptional machinery. Specifically, isoxazolidines have been shown to interact with

the KIX domain of the co-activator CREB binding protein (CBP), TRRAP/Tra1 (a

component of the SAGA complex), and the components of Mediator complex, Med15/

Gal11 and MED23/Sur2 [80].

Another small molecule AD was discovered by targeting specific components of the

transcriptional machinery. Wrenchnolol, a “wrench-shaped” molecule, previously shown to

bind tightly to the transcriptional coactivator MED23/Sur2 [81], show modest transcription

activation in vitro when conjugated to a hairpin polyamide DBD [82] (Figure 3). The

function of the wrenchnolol-based ATF was further extended to modulate transcription

activation in cells [83].

In principle, molecules that interact with the transcriptional machinery may function as ADs

by increasing the local distribution of the machinery and its functional engagement at the

targeted promoter.

3.2. Repressor domains

In addition to transcription activation, ATFs can be designed to repress the transcription of

targeted genes. Repressor domains have been used less frequently in ATFs than their

activator counterparts. Early attempts at artificial repressor modules revealed peptides

enriched in positively charged residues [84]. Much of the recent work on repressor domains

has been based on peptides derived from natural repressors (e.g., Kruppel-associated box

(KRAB) domain) [15]. The Barbas group achieved transcriptional repression of the

protooncogene erbB-2 by fusing a zinc finger DBD to the natural repressor domains KRAB,

ERD repressor domain, or mSIN3 interaction domain (SID) [85]. The advantage of using

repressor domains lies in the ability to actively repress gene expression, rather than doing so

by competitive inhibition, as in the case of TF displacement [44], or by nucleic acid decoys

[86, 87]. In principle, the repression domain bypasses the need for competitively displacing

endogenous transcription factors and would use the cellular repression machinery to down

regulate targeted genes.

4. Controlling the activity of ATFs

A desirable characteristic of a TF mimic would be the ability to externally regulate its

function at desired times and locations. Also, the utility of an ATF would be greatly

increased by coupling its function to endogenous signaling cascades. A first step toward this

goal relied on the use of the ligand-binding domain (LBD) of nuclear receptors. Fusing the

LBD to a zinc finger ATF allowed control of the ATF activity by external delivery of its

hormone ligand [88]. In this example, the LBDs of the estrogen and progesterone receptors

were used. In a more direct and elegant approach, the ZF DBD itself was engineered to dock
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a small molecule “prosthetic”. The resulting ATF required the small molecule ligand for

DNA binding activity and transcriptional activity in cells [89].

A similar strategy was used for an RNA-based activation domain. The AD was rendered

ligand-dependent by including an aptamer sequence in the AD that recognized

tetramethylrosamine (TMR). In the absence of TMR, the ATF promoted transcription of a

reporter gene in Saccharomyces cerevisiae. Conversely, in the presence of TMR, the

conformational changes of the TMR-bound aptamer resulted in an inactive conformation of

the RNA activation domain [90].

Using a novel approach to control ATF activity, Hauschild et al develop a temperature

controlled ATF [91]. A hairpin PA was conjugated to a peptide that interacted with the

endogenous transcription factor Exd. This PA-peptide conjugate efficiently recruited Exd to

bind to DNA. The activity of the PA-peptide conjugate was made sensitive to temperature

by optimizing the length of the linker connecting the PA and the peptide hook. One of the

linkers tested efficiently recruited Exd to its DNA binding site between 4°C and 23°C, but

above 30°C the ATF was no longer functional [91].

5. Current challenge: Improving cellular uptake

For ATFs to be more broadly effective, they must go through the cell membrane, enter the

nucleus, find the targeted sequence in the genome and recruit the cellular machinery for

either transcription activation or repression. Through all of these steps, the ATF must

circumvent various surveillance mechanisms of the cell. Therefore, it is not surprising that

efficient delivery of ATFs remains an obstacle.

One approach towards improving cellular uptake of molecules is the use of cell penetrating

peptides (CPPs) [92, 93]. CPPs are often derived from proteins that naturally translocate

across cell membranes, such as the Tat protein from HIV [94] and the homeodomain

Antennapedia (AtnHD) from Drosophila [95]. Also, molecules enriched in arginine,

inspired by the Tat protein, have been developed as synthetic CPPs [96, 97]. In an

interesting application of this strategy, a zinc finger ATF that upregulates VEGF-A was

rendered cell-permeable by conjugating it to a 10-residue fragment from the HIV Tat protein

[98, 99]. In addition, Mascareñas and colleagues improved the nuclear localization of a

tripyrrole DNA binding molecule by conjugating the compound to an arginine octapeptide

[100].

In another approach, the Dervan lab has improved nuclear localization of PAs by

conjugating isophthalic acid derivates to the C-terminus of the PA [51, 53]. Conversely, the

Kodadek lab improved nuclear localization by using an ethylene diamine turn for the hairpin

PA in an ATF [101]. It should be pointed out that in the latter example, the hairpin PA is

conjugated to a lipophylic steroid, which may enhance the permeability of the PA through

hydrophobic membranes. In fact, covalent attachment of a steroid to a PNA has been shown

to increase cellular uptake [102]. Improving the cellular uptake of TF mimics remains an

active area of research.
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6. Future directions

6.1. Cooperativity

Attempts to target unique sites in the genome have relied on expanding the number of DNA

binding modules. For example, polydactyl ZFs have been engineered to target DNA sites of

18 bp. In the case of PAs, tandem hairpins were synthesized to target larger sites [103].

While reasonable, both examples were accompanied by a significant drop in selectivity due

to increased non-specific binding [24, 103]. Natural transcription factors overcome the

difficulties associated with finding unique targets in large genomes by forming non-covalent

complexes through cooperative binding at the DNA target site [5]. Binding sites for multiple

activators are commonly found in the gene promoter regions of higher eukaryotes. In

principle, incorporation of cooperative binding between ATFs and other transcription factors

should enhance the functionality of ATFs [104].

A new class of ATFs that incorporates cooperative binding was developed by Arndt et al.

The ATF functions by nucleating the assembly of natural transcription factors on promoters/

enhancers [105]. In this particular case, a synthetic mimic of the Hox family of transcription

factors was generated. Hox proteins are developmental regulators, and have poor DNA

affinity and sequence specificity on their own. However, cooperative binding with partner

proteins, such as Exd, can increase their DNA binding affinity and specificity [106]. A

polyamide was conjugated to a dipeptide derived from the Hox protein known to interact

with Exd. The Hox mimic was able to cooperatively interact with Exd and bind to specific

DNA sequences with nanomolar affinity [105, 107].

The principle of cooperative binding to DNA was incorporated in the ATF designed by the

Ptashne and Dervan groups [48]. Specifically, the dimerization domain of Gcn4, a yeast

transcription factor, was incorporated into a polyamide-based ATF [48]. Similarly,

cooperative binding to DNA was incorporated in a DBD designed by Blanco et al. [108]. In

this work, a tripyrrole-cyclodextrin (CD) conjugate that binds to an A/T rich DNA region

was used to recruit a 23 amino acid peptide derived from the basic region of a bzip TF

conjugated to an adamantane group. In the absence of the tripyrrole-CD conjugate, the BR

peptide does not bind to DNA. This work adds to previous studies by Schepartz and

coworkers, that achieved the dimerization of bZip DNA binding domains by incorporating

transition-metal binding groups into the DBDs [109].

6.2. “Molecular blinking” of activation domains

An unusually potent AD, P201, was discovered by screening random sequences of 8 amino

acid residues attached to Gal4(1–100), a DNA binding domain [68]. Like natural TFs, P201

also targets Gal11/Med15, a component of the transcriptional machinery [110]. This small

artificial AD is as potent as the natural AD, Gal4, and it is far stronger than artificial ADs of

similar size [68]. Mechanistic studies of this potent ATF identified that hydrophobic

intramolecular interactions between the dimerization domain of the DBD Gal4(1–100) and

the AD were crucial for the potency of the ATF [71]. Mutations which disrupted or further

stabilized this interaction significantly lowered the activity of the ATF.
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It was hypothesized that this transient intramolecular interaction between domains “masks”

the unstructured peptide AD from unproductive interactions that could lead to ATF

degradation (Figure 4). In support of this “molecular blinking” hypothesis, the cellular

potency of natural and unnatural peptide ADs was found to significantly increase when this

“masking” interaction was engineered into the ATF [72]. The potency of the ATF decreased

when the interaction between the AD and DBD was disrupted. This was completely

unexpected, and it revealed that a fine balance between “exposure” and “masking”

significantly affected the potency of the ATF. Engineering such new properties will aid in

the development of potent ATFs.

7. Conclusion

During the last decade, many advances have been made in the design of ATFs, with some

ATFs currently undergoing clinical trials [111]. However, some obstacles must be overcome

in order to realize the full potential of ATFs. Spatial and temporal control of the ATF

activity and incorporating the ATF into cell signaling pathways are also highly desirable

goals. Surmounting these challenges will require the collaboration of chemists, biologists,

computational scientists, and bioengineers.
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Figure 1. Transcription activation by transcription factors
TFs are minimally composed of a DNA binding domain (DBD) and an activator domain

(AD). The DBD recognize and binds to a DNA sequence to activate the targeted gene(s).

The AD recruits the transcriptional machinery components through interactions with RNA

polymerase II (RNApol), general transcription factors, (GTFs), (TBP)-associated factors

(TAFs), the Mediator complex, chromatin remodeling complexes such as SAGA and

Swi/Snf complexes and/or the 19S and 26S components of the proteasome.
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Figure 2. DNA binding domains commonly used in ATFs
Zinc fingers (ZF) recognize and bind to 3bp (N1-3) in dsDNA; triplex forming

oligonucleotides (TFOs); hairpin polyamides (PAs).
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Figure 3. Activation domains commonly used in ATFs
Peptides: amphipathic helix (AH) [62], VP16 from herpes simples virus [112], and P201

[68]. Peptoid [73]. RNA [75] Smallmolecule: isoxazolidine [78] and wrenchnolol [82].
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Figure 4. Model of ATF blinking
In the blinking model, the ATF is in rapid equilibrium between an ‘off’ (masked) state and

an ‘on’ (exposed). The interconversion between these two states is mediated by

intermolecular interactions between the DBD and the AD. In the ‘off’ state, the ATF is

masked from the cellular milieu that could lead to degradation; whereas in the ‘on’ state the

AD is transiently exposed and is able to recruit the transcriptional machinery.
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