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Abstract

The development of tyrosine kinase inhibitors (TKIs) has led to extended lifespans for many

patients with chronic myelogenous leukemia (CML). However, 20% to 30% of patients fail to

respond, respond suboptimally, or experience disease relapse after treatment with imatinib. A key

factor is drug resistance. The molecular mechanisms implicated in this resistance include those

that involve upregulation or mutation of BCR-ABL kinase and those that are BCR-ABL

independent. The clinical consequences of these molecular mechanisms of resistance for disease

pathogenesis remain open for debate. This review summarizes the molecular mechanisms and

clinical consequences of TKI resistance and addresses the current and future treatment approaches

for patients with TKI-resistant CML.
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Introduction

Chronic myelogenous leukemia (CML) is a myeloproliferative hematologic neoplasm

associated with a chromosomal translocation that gives rise to the Philadelphia (Ph)

chromosome and the fusion BCR-ABL gene. Before the introduction of tyrosine kinase

inhibitor (TKI) therapy, the disease was inevitably life-shortening. Understanding of the

pathophysiology underlying CML has facilitated the development of targeted agents: TKIs

such as imatinib, dasatinib, and nilotinib have succeeded in altering the course of the disease

and extending life to potentially near-normal spans for many patients. Despite this

remarkable achievement, the challenge of overcoming resistance to TKI therapy persists in

the management of CML.
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It is now known that approximately 20% to 30% of patients with CML fail to respond to

imatinib or experience disease relapse after an initial response.1 Much progress has been

made in the identification of the molecular mechanisms of resistance in vitro and their

clinical impact.2–4 However, the clinical significance of certain mechanisms of resistance

and the consequences for disease pathogenesis are ongoing matters for investigation and

debate. We provide an overview of the BCR-ABL-independent and -dependent mechanisms

of TKI resistance, including the clinical consequences of the more extensively studied BCR-

ABL mutations. We also discuss identification of BCR-ABL mutations and other molecular

indicators of drug response that may be used to predict treatment responses and influence

clinical decision-making. Finally, we address the current approaches to the treatment of

patients with TKI-resistant CML, agents in development, and the use of newer agents to

ensure optimal clinical outcomes.

Defining the Lack of a Response to Therapy

Responses to TKI treatment are described in terms of hematologic, cytogenetic, and

molecular outcomes.5,6 Suboptimal response and treatment failure have been defined in

terms of these outcomes at certain time points (Table 1) by the European LeukemiaNet

(ELN) guidelines.6,7 The ELN guidelines also provide warning signs, indicating possibility

of treatment failure or suboptimal response.6 However, the applicability of the ELN

milestones has been questioned, particularly in the case of newly diagnosed patients with

chronic-phase CML receiving second-generation TKI therapy.8 There is increasing evidence

for the use of molecular monitoring (i.e., measurement of BCR-ABL transcript level) to

assess response and predict outcome early in the course of first-line treatment.9–13 The

National Comprehensive Cancer Network® (NCCN® ) currently recommends molecular

monitoring at 3 months and defines an inadequate molecular response as a BCR-ABL/ABL

transcript level of > 10% (as determined by quantitative real-time polymerase chain reaction

[PCR] using the international scale).5 This is likely to be refined in the future as more

information is accrued on optimal timing and threshold transcript levels for different

treatments and standardization of measurements.

How Many Patients Fail to Achieve the Response Milestones?

The management of CML has been transformed by the use of imatinib (STI571), with an

estimated 5-year overall survival rate of 89% being achieved in patients receiving imatinib

therapy alone during follow-up of the pivotal International Randomized Study of Interferon

and STI571 (IRIS) clinical trial.14 However, for a proportion of patients, single-agent

imatinib therapy is not sufficient to control their disease. Some patients may respond

suboptimally, and others fail to respond at all.

The lack of hematologic response to imatinib is exceptional in newly diagnosed cases of Ph-

positive chronic-phase CML2,5 and occurs in approximately 5% of patients in whom

interferon-alfa therapy had previously failed.15 Failure to achieve a cytogenetic response

within 18 months of initial imatinib therapy is more commonly observed; for example, in the

IRIS trial, 23.8% of patients receiving imatinib failed to reach this milestone.16 In addition,

clinical response in patients with chronic-phase CML decreases during the course of
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imatinib therapy. This is demonstrated by Alvarado et al.,17 who reported that the frequency

of suboptimal response in patients with chronic-phase CML receiving first-line imatinib was

4%, 8%, and 40% after 6, 12, and 18 months of therapy, respectively.

Resistance to Imatinib Therapy

Patients respond suboptimally or fail to respond to imatinib for a variety of reasons,

including lack of adherence to prescribed treatment because of toxicity, pharmacokinetic

factors, and drug resistance due to molecular/cytogenetic mechanisms. In the published

literature, there is little information on the relative contribution made by each of these

factors to the lack of response in study populations; however, drug resistance is a key factor.

Resistance to imatinib is divided into 2 categories: primary (innate) resistance and secondary

resistance (also referred to as “acquired resistance”). Patients with primary resistance

display a lack of response from the start of therapy, whereas patients with secondary

resistance achieve a degree of response for a variable length of time before the development

of resistance. In describing poor response, investigators often refer to patients as being

“resistant” even though the underlying cause of the poor response may not have clearly

determined to be specifically drug resistance. The true incidence of drug resistance is thus

unclear. In one study, Hochhaus et al.2 examined the underlying causes of poor responses to

imatinib. In patients in different phases of CML progression, the authors found that 4% of

those with primary resistance and 74% of those who relapsed after a good response had a

detectable molecular/cytogenetic mechanism of resistance. In other studies, suboptimal

response has mostly been reported in terms of the occurrence of point mutations in the BCR-

ABL tyrosine kinase domain, which will be discussed later in the article.

BCR-ABL—Independent Mechanisms of Resistance

Pharmacokinetics and Oral Bioavailability

Analysis of imatinib pharmacokinetics and pharmacodynamics has revealed considerable

interpatient variability in drug exposure. Failure to achieve a hematologic response has been

observed in patients with low imatinib plasma levels, suggesting that at least some cases of

primary resistance to imatinib may result from exposure to inadequate drug levels.18–20 The

intrinsic variability of the cytochrome P450 (CYP) enzyme system 18,19 may also affect the

response to imatinib. CYP isoenzyme 3A4 (CYP3A4) is the major isoenzyme that

metabolizes imatinib, and its levels vary between individuals.21 The involvement of

CYP3A4 also means that systemic imatinib concentrations are susceptible to change if the

patient is concurrently receiving other drugs.

Another proposed mechanism underlying resistance to imatinib is the binding of a plasma

acute phase protein, α1-acid glycoprotein (AGP), to imatinib. Binding to AGP interferes

with imatinib’s biologic activity because only non—protein-bound imatinib is available for

cellular uptake.22 However, the clinical relevance of this binding is a matter of debate.23
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Inadequate Intracellular Concentrations

Intracellular concentrations of imatinib may be affected by transporters involved in drug

influx and efflux.24,25 The human organic cation transporter (hOCT1) protein mediates

imatinib influx, and single nucleotide polymorphisms in hOCT1 have been associated with

in vitro resistance in the imatinib-sensitive human leukemic cell line (K562), the prediction

of clinical response, treatment failure, and the need to increase imatinib doses.25–27

However, a clear correlation between hOCT1 expression and patient response to imatinib

has not been fully elucidated.25,28

The adenosine triphosphate-binding cassette (ABC) transporter ABCB1 is a transmembrane

protein that mediates multidrug resistance through the regulation of efflux of several

chemotherapeutic agents and is overexpressed in patients with blast-phase CML.24

Overexpression of ABCB1 has also been identified in patients with accelerated-phase CML

who have experienced disease progression 3 months after receiving imatinib, suggesting that

ABCB1 expression could influence imatinib resistance when CML is not fully controlled.29

However, the activity of ABCB1 in imatinib efflux is low compared with that of other

cytotoxic agents, and ABCB1 overexpression was not found to confer resistance in K562

cells.30

Activation of Alternative Signaling Pathways

Because imatinib does not completely eliminate BCR-ABL—expressing leukemic cells,

researchers investigated alternative signaling pathways that may affect CML.31,32 The Src

family kinases (SFKs) are nonreceptor, intracellular tyrosine kinases that regulate signal-

transduction pathways involved in cell growth, differentiation, and survival.32 BCR-ABL

kinase activates 3 SFKs (Lyn, Hck, and Fgr) resulting in cell cycle progression from G1 to S

phase.1,33 Hck and Lyn kinase expression in specimens from patients with blast-phase CML

has been associated with disease progression and resistance.34 Furthermore, in cells with

high levels of Lyn expression, imatinib was not sufficient to fully disengage BCR-ABL—

mediated signaling; for optimal treatment efficacy, inhibition of both BCR-ABL and Lyn

kinase was required.35 The Src pathway seems to be a critical BCR-ABL—independent

mechanism whereby leukemic cells survive imatinib treatment and for CML transition to

lymphoid blast crisis, although the factors involved in the stimulation of this pathway are

unclear.31

Clonal Evolution

Clonal evolution occurs when CML cells acquire additional chromosomal abnormalities,

such as trisomy 8, del(20q), a second Ph chromosome, or aberrations of chromosome

17p.36–38 In patients with hematologic resistance/recurrence after imatinib treatment,

Lahaye et al.37 reported the incidence of cytogenetic aberrations to be approximately 50% in

patients with chronic and accelerated phases of disease and 73% in patients in blast crisis. At

least some of the abnormalities are associated with poor response to imatinib.39–41 For

example, chromosome 17 abnormalities are associated with a poor outcome.39 This is

possibly because of changes to the TP53 gene, which encodes the tumor suppressor protein

p53, because inactivation of p53 reduces sensitivity to imatinib.42 Other anomalies (e.g.,

trisomy 8) seem to have little impact on imatinib response.39
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Epigenetic Modulation

Gene expression and subsequent protein function are affected by the action of epigenetic

methylation and post-translation acetylation.43 Epigenetic methylation of nonhistone

proteins can affect gene expression and support cellular proliferation and resistance to

apoptosis.43 Lee and colleagues44 reported in vitro imatinib resistance in CML cell lines due

to alterations in the regulation of histone deacetylases and histone acetyltransferases. An

example of the impact of methylation was described by San José-Eneriz et al:45 Reduced

expression of the pro-apoptotic B-cell lymphoma 2—interacting mediator was associated

with poor response to imatinib in patients with CML, and downregulation of this apoptosis

mediator was found to be controlled by hypermethylation. However, because clinical trials

have reported only modest responses in patients with CML treated with hypomethylating

agents alone or in combination with TKIs, it is unclear whether targeting this process is

effective.46,47

Stem Cell Persistence

Some patients with undetectable levels of BCR-ABL transcripts may experience a recurrence

of disease after discontinuation of imatinib therapy, which suggests that CML cells persist

despite being below detectable limits.48 This observation and the biphasic nature of BCR-

ABL transcript clearance during imatinib exposure indicate that there are differences in the

susceptibility of CML cell subpopulations to imatinib.1,49 Current research indicates that

differentiated cells are rapidly cleared by imatinib; however, CML stem cells are unaffected

because of their quiescent nature, leading to disease relapse.1 Quiescent CML stem cells are

inherently resistant to imatinib and make up approximately 5% of the CD34-positive cell

population.50 Two investigations have shown that imatinib does not induce apoptosis in

primitive CML cells; these cells express only a single copy of BCR-ABL but are capable of

expressing considerably higher levels of BCR-ABL transcripts and BCR-ABL protein

compared with more mature CML cells.51,52 Corbin et al.53 also reported that primitive

CML cells are capable of BCR-ABL—independent survival and are not eliminated by

imatinib. In the absence of BCR-ABL activity, cytokine support is thought to permit growth

and subsequent survival to a level comparable to that of normal stem or progenitor cells.54

BCR-ABL—Dependent Resistance

BCR-ABL Duplication and Amplification

The upregulation of BCR-ABL kinase associated with the amplification of the BCR-ABL

gene was first described in imatinib-resistant CML cell lines in the absence of BCR-ABL

gene mutations.24 BCR-ABL kinase upregulation was subsequently reported in patients with

blast-phase CML or acute lymphoblastic leukemia who developed resistance to imatinib.3

However, the importance of BCR-ABL amplification as a mechanism of resistance was

questioned in a further study which found that only 3% of patients with imatinib-resistant

CML had BCR-ABL gene amplification.2 Although BCR-ABL overexpression may account

for only a small proportion of cases of resistance seen in patients with CML, BCR-ABL

protein levels are related to the emergence and rate of emergence of imatinib-resistant

subclones. This was demonstrated by Barnes et al.,55 who found that CD34-positive CML

cells expressing large amounts of BCR-ABL had reduced sensitivity to imatinib and
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developed mutations at a higher rate compared with cells expressing BCR-ABL at lower

levels.

BCR-ABL Mutations

The activation loop of the BCR-ABL kinase is the major regulatory component of the kinase

domain and is able to assume an open/active or closed/inactive conformation.56 The closed/

inactive conformation of the BCR-ABL kinase domain is necessary for imatinib binding.57

The anti-tumor activity of imatinib results from it binding to and stabilizing the BCR-ABL

kinase domain in the closed/inactive conformation, inhibiting the enzyme activity of BCR-

ABL.57 Resistance to imatinib occurs when mutations in the kinase domain of BCR-ABL

alter amino acid residues needed for direct contact with the TKI, or prevent BCR-ABL from

assuming the inactive conformation required for imatinib binding.56

Point mutations within the kinase domain of BCR-ABL are the most frequently reported

reason for imatinib resistance. The reported incidence of BCR-ABL mutations in patients

with imatinib-resistant disease varies from 40% to 90% depending on the detection methods

used, the definition of resistance applied, and the disease phase examined.1,2,37,58 Recent

analyses of patients resistant to imatinib therapy have identified more than 100 distinct point

mutations in BCR-ABL.1 Most of the mutations do not occur with a high level of frequency

in patients with CML, but 15 mutations comprise approximately 85% of all those

detected.59,60 Table 2 shows the relative frequency of the most common mutations as a

proportion of all mutations detected in a range of studies in patients receiving imatinib.58–68

Soverini et al.60 noted that amino acid substitutions at 7 residues (M244V, G250E,

Y253F/H, E255K/V, T315I, M351T, and F359V) accounted for 85% of all resistance-

associated mutations.

Four different categories of BCR-ABL kinase domain mutations have been described (Fig.

1)69 and include those that affect the imatinib-binding site,3,70 the P loop or adenosine

triphosphate (ATP)-binding site,71 the activation (A) loop,59 and the catalytic loop.56

Point mutations in the imatinib-binding site were first characterized by Gorre et al.,3 who

reported that 6 of 9 patients in blast crisis possessed a single-nucleotide mutation resulting in

a threonine to isoleucine substitution at amino acid 315 (T315I). The T315I mutation leads

to a hydrogen bond being formed with imatinib that prevents imatinib localization within the

ATP-binding pocket. This hydrogen bond and the addition of the bulkier side chain of the

substituted isoleucine cause steric hindrance to the positioning/binding of imatinib.3,72 This

mutation is one of the most frequently detected in patients receiving imatinib and confers

resistance to currently available TKIs.73 In clinical practice, T315I comprises approximately

14% of detected mutations.21 Shortly after the identification of T315I, several other

mutations were identified in adjacent residues, comprising some of the more common

mutations that alter and prevent imatinib binding (e.g., D276G and F317C/L).73

Substitutions in residues 244 to 255 of BCR-ABL affect the P loop and are common in

patients with imatinib resistance.71 Amino acid changes in the P loop/ATP-binding site

cause conformational alterations in the BCR-ABL protein that lead to destabilization of the

Jabbour et al. Page 6

Clin Lymphoma Myeloma Leuk. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



conformation needed for imatinib binding.50 Six P loop mutations (M244V, L248V, G250E,

Q252H, Y253F/H, and E255K/V) are commonly found in patients with CML.21,74

Mutations affecting the A loop prevent the kinase achieving the inactive conformation.59

H396R is the most commonly identified mutation in this site.56 Catalytic-loop mutations

affect tyrosine kinase activity and substitutions at 3 residues (M351, E355, and F359) are

commonly found.56

The frequency and impact of mutations in patients with primary resistance are thought to be

limited compared with patients who develop secondary resistance. Mutations have been

detected with increased frequency in patients who acquired resistance during the course of

therapy compared with patients in whom initial imatinib therapy failed.60 The frequency of

mutations has been found to increase with sequential TKI therapy.75

The incidence of mutations has been examined in terms of treatment failure and suboptimal

response. For example, mutations were detected in 24% of patients with early chronic-phase

CML who failed and 13% of patients who had a suboptimal response to first-line imatinib

therapy.76 Likewise, Kim and colleagues77 reported mutations in 25% of patients who failed

and 13% of patients who responded suboptimally after 12 months of imatinib treatment. At

18 months, these incidences were 62% and 32%, respectively.

Several assessments have found that the degree of imatinib resistance is related to the type

and location of the BCR-ABL mutation.78 For example, mutations in the P loop (Y253H and

E255K/V) and T315I cause a high level of resistance to imatinib and are related to treatment

failure,75 whereas substitutions at M244, F317, and M351 confer low-level resistance and

correlate with suboptimal response.79 In addition, different amino acid substitutions

occurring at the same position may result in varying degrees of resistance; for example,

although high concentrations of imatinib were required to inhibit the proliferation of Ba/F3

pro-B cell-line cells with the T315I mutation, cells with the T315A mutation remained

sensitive to the TKI.57 Several studies have observed varying sensitivities of kinase domain

mutations to higher doses of imatinib.53,80,81

A few studies have shown that some patients are able to achieve and maintain a cytogenetic

response to imatinib despite the presence of BCR-ABL mutations.82–84 For example,

Sherbenou et al.84 identified mutations, including T315I, in 19% of patients with stable

complete cytogenetic responses during imatinib therapy. On follow-up, half of the patients

with mutations experienced an increase in BCR-ABL transcript levels that led to disease

relapse, progression, or required an alternative treatment approach.84 Willis et al.85 also

reported complete hematologic responses and major cytogenetic responses during first-line

imatinib treatment in a small number of patients with BCR-ABL mutations.

The type of mutation within the BCR-ABL kinase domain may vary according to disease

phase. Mutations at M244, M351, and G250 have frequently been detected in patients with

chronic-phase CML, whereas mutations at T315, E255, and Y253 were often found in

patients with accelerated or blast-phase disease.22,60,61 Soverini et al.60 reported that the rate

of mutations leading to resistant phenotypes was lower in patients with chronic-phase CML

compared with those in accelerated or blast phase.
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Significant mutations have also been observed in BCR-ABL regions outside the kinase

domain. The SH2, SH3, and Cap domains are involved in autoinhibition of the kinase;

mutations in these regions may destabilize the inactive conformation of BCR-ABL.86

Several mutations in these regions have been detected in patients treated with imatinib,84,87

and at least 1 (T212R) has been shown to be associated with patient resistance to imatinib.84

Molecular Monitoring of Resistance

The widespread use of imatinib and the subsequent increase in the overall survival of

patients with CML has led to an increase in the number of patients receiving imatinib and

the duration of their treatment. As imatinib use increases, so does the number of patients

who will require reassessment of their treatment strategy because of resistance issues.88

Therefore, this will lead to an increased requirement to monitor and characterize resistance

in patients. Currently, there is no consensus on whether mutational analysis should be

performed before treatment initiation or during second-line TKI therapy. However, both the

European Treatment and Outcome Study Panel (part of the ELN) and the NCCN Clinical

Practice Guidelines In Oncology (NCCN Guidelines® ) recommended that mutational tests

should be performed in cases of disease progression and inadequate response to TKIs (Table

3).5,69

Several assays currently are available for the detection of BCR-ABL kinase domain

mutations, 89 which vary in terms of detection frequency, sensitivity, and the clinical utility

of the results. Direct sequencing (DS) is the most commonly used (by approximately 80% of

American and Canadian laboratories) and is recommended by the European Treatment and

Outcome Study Panel.69,90 DS is the least sensitive assay, detecting a mutation in

approximately 1 in 5 BCR-ABL transcripts, but this level of sensitivity is considered to be

appropriate because the clinical significance of low-level mutations is a matter of

debate.89,90 With the addition of denaturing-high performance liquid chromatography (D-

HPLC), the sensitivity of DS can be improved to detecting a mutation in approximately 1 in

1000 BCR-ABL transcripts.91 D-HPLC is a cost-effective, high-throughput assay used to

screen for sequence variations before DS, and it reduces the number of samples that need to

be sequenced.69 The clinical utility of D-HPLC/DS was demonstrated by Ernst et al.,62 who

reported that BCR-ABL mutations were detectable a median of 7.1 months before

hematologic relapse. Other screening methods include mutation-specific PCR-based assays

(fluorescence allele-specific PCR, nanofluidic digital arrays, and peptide nucleic acid

clamping) and liquid bead array high-resolution melt-curve analysis. 89

Although there is no doubt that the PCR-based methods are highly sensitive, these

techniques are specific for known mutations and cannot be used to detect novel mutations.92

However, they may increase the diagnostic window from 7.1 months to 10.1 months by

detecting the known highly resistant mutations earlier than D-HPLC/DS.92 This may

provide physicians with the opportunity to reassess the treatment strategy before the clinical

impact of resistance is felt by the patient.92 It should be noted that the detection of low-level

mutations via these highly sensitive assays may not correlate with treatment failure because

these mutations may not represent clones that will survive and dominate unmutated cells.69
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Additional factors, such as cost, specificity, labor/equipment requirements, turnaround time,

and vulnerability to contamination, also affect the feasibility of using such assays in clinical

practice.89 The increase in the number of highly sensitive assays available for BCR-ABL

mutation analysis and the possible increase in their use have raised important issues

regarding the standardization of these tests and the transferability of the assays to routine

diagnostic procedure. When comparing the results of mutational assays, consideration must

be given to the lack of standardization between laboratories with respect to the reagents and

technology platforms used.90 This was demonstrated by a survey of American and Canadian

accredited clinical laboratories performing routine BCR-ABL mutational analysis, which

found that 3 different methods (DS, pyrosequencing, and microarray or liquid bead array)

were used by 14 laboratories.90 Furthermore, only a small proportion of laboratories

performed T315I analysis or reported whether the mutation(s) identified were known to

confer resistance.90 Not only is there a need for standardization of BCR-ABL mutation

assays, but also tools are required to aid physicians in the interpretation of assay findings.

Many physicians are unaware of the benefits of mutational analysis for the prediction of

treatment failure/suboptimal response and the influence that mutational status should have

when choosing a second-line TKI.88 A 2007 survey of American and European physicians

who had treated at least 4 patients with CML reported that 60% of US-based respondents

were unfamiliar with mutational testing or had never requested a test.93 This underuse of

mutational analysis in the management of patients with CML in clinical practice was also

highlighted by Morra et al.,94 who found that 57% of patients with imatinib-resistant disease

had not been assessed for mutations.

In addition to assessing disease burden, BCR-ABL transcript levels may serve as a

determinant of resistance.95 For example, Wang et al.96 reported that increases in transcript

levels could be used to identify patients who develop BCR-ABL mutations. Other molecular

predictors of response may also aid the selection of appropriate treatment strategies in

patients with imatinib-resistant disease. As described earlier, hOCT1 activity is considered

to be a determinant of resistance. Some studies have led to the suggestion that low hOCT1

levels may indicate patients who are prone to the development of resistance via BCR-ABL

mutations.97

Available and Future Treatment Approaches to Overcome Resistance

In cases of treatment failure, CML treatment guidelines state that further imatinib therapy at

the current dose is no longer the appropriate treatment strategy.5,6 Although patients with a

suboptimal response to imatinib may benefit from the continuation of therapy, the long-term

outcome for these patients is expected to be unfavorable if they remain on this treatment.98

It should be remembered that although the goal of therapy is achieving a complete

cytogenetic response, when considering second-line therapy, patients often achieve lesser

responses; however, patients achieving a partial or minor cytogenetic response still derive a

survival benefit.99
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Dose Escalation

Higher imatinib doses (up to 800 mg/day) may be considered to gain a response in patients

with resistance.57,100–102 A retrospective analysis of the pivotal IRIS trial of patients who

received the increased doses of imatinib concluded that dose escalation is an effective option

in patients with chronic-phase disease who experience suboptimal cytogenetic response or

cytogenetic relapse.100 More specifically, imatinib dose escalation may be an attractive

therapeutic option in patients who have mutations that encode low-level resistance (e.g.,

M351T) or in patients whose resistance is due to insufficient plasma levels of imatinib or to

BCR-ABL gene amplification.19,20 However, dose escalation is unlikely to have any benefit

for patients who have never achieved a cytogenetic response during imatinib therapy.101

Imatinib and Interferon-Alfa Combination Therapy

In patients who respond to imatinib, indefinite imatinib therapy is recommended to prevent

relapse and disease progression.103 However, this strategy raises concerns regarding the

evolution of drug resistance.104 Considerable efforts are being made to develop treatment

approaches that generate long-term remission and permit treatment discontinuation.105,106

One such approach is the use of imatinib in combination with interferon-alfa. Interferon-alfa

is an effective treatment for CML because this agent stimulates an immune response to

CML-specific antigens, such as proteinase-3.106 When interferon-alfa was combined with

imatinib, the majority of patients with chronic-phase CML achieved long-term remission,

enabling the discontinuation of imatinib therapy.105,106 The clinical effectiveness of this

combination has been verified in patients with cytogenetic resistance and those with T315I

mutations.107–109 Most interesting of these studies is the successful use of imatinib/dasatinib

with pegylated interferon in 2 patients harboring the T315I mutation.107,109 Furthermore,

Itonaga et al.109 reported the re-achievement of complete cytogenetic response and the

disappearance of the T315I mutation in a patient after imatinib and interferon-alfa therapy.

Second-Generation TKIs

The “second-generation” TKIs dasatinib and nilotinib are approved for the treatment of

imatinib-resistant patients. Dasatinib is a piperazinyl derivative that targets tyrosine kinase

and is able to bind to BCR-ABL in both the active/open and closed/inactive conformation.6

This agent is also active against SFKs because dasatinib is able to bind to SFKs due to the

similar geometry of SFKs and the BCR-ABL active conformation.43 In preclinical

comparisons with imatinib, dasatinib was 325 times more potent than imatinib against cells

expressing wild-type BCR-ABL.110 Three clinical trials (START-A, START-R, and

START-C) demonstrated the superior activity of dasatinib compared with imatinib in

patients with imatinib-resistant CML.111–113 Dasatinib has activity against a large

proportion of imatinib-resistant BCR-ABL mutations, and during the START-A trial,

responses were reported in patients despite the presence of mutations.111 However, Muller et

al.114 reported that patients with T315I, F317L, or V299L mutations responded poorly to

dasatinib. Low in vitro sensitivity to dasatinib is reported for cells with any of the

aforementioned mutations.114 Furthermore, BCR-ABL mutational status may evolve during

the course of second-line therapy; several studies have described the emergence of new

BCR-ABL mutations in patients with imatinib-resistant disease receiving
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dasatinib.75,111,115–119 Therefore, when selecting dasatinib as a treatment approach for

patients with imatinib-resistant disease, specific mutations present at baseline or arising

during the course of dasatinib therapy must be considered. 5,69

Nilotinib is an orally active phenylaminopyrimidine derivative of imatinib and is

approximately 30 times more potent than imatinib in inhibiting BCR-ABL.110,120 In vitro

studies found that nilotinib inhibits 32 of 33 mutant forms of BCR-ABL resistant to imatinib

at physiologically relevant concentrations.110,120 Nilotinib has been evaluated in several

investigations in patients with imatinib-resistant chronic-phase CML.121–124 a considerable

proportion of patients achieved major molecular response or complete cytogenetic response.

However, in vitro analysis of nilotinib found that the agent is not active against cells with

the T315I mutation and has low potency against cells with Y253F/H, E255K/V, or

F359V/C/I mutations.57,125 The NCCN® and ELN recommend using an alternative to

nilotinib in the presence of specific BCR-ABL mutations.5,69

Bosutinib (SKI-606) inhibits BCR-ABL with a 10- to 20-fold higher potency than imatinib,

with additional activity against SFKs, c-kit, and the platelet-derived growth factor

receptor.126,127 At the 2-year follow-up of a Phase I/II study, Cortes et al.128 observed

responses in patients with chronic-phase imatinib-resistant or imatinib-intolerant CML with

a range of BCR-ABL mutations except T315I. An analysis conducted after a minimum of 3

years of follow-up demonstrated durable responses and manageable toxicity in these patients

(Table 4).130 Bosutinib has also proved effective in patients with chronic-phase CML who

had been treated with imatinib followed by dasatinib and/or nilotinib.129,144 A safety

analysis concluded that gastrointestinal, hematologic, and liver function adverse events were

commonly associated with bosutinib treatment but could be readily managed.145 Bosutinib

has recently been approved by the FDA for the treatment of Ph-positive CML in adult

patients with resistance or intolerance to prior therapy.

Third-Generation TKIs

A number of “third-generation” agents are being evaluated in clinical trials. These agents

have similar 3-dimensional structures to the currently approved TKIs, and their main target

is BCR-ABL kinase.43

Ponatinib was specifically designed to bind BCR-ABL with very high potency and to have

activity against CML with any of the BCR-ABL mutations.146 Early data from Phase I and II

trials indicate good responses in pretreated patients, including those with chronic-phase

T315I-positive CML (Table 4).131–133 On the basis of response rates, the FDA approved

ponatinib for the treatment of adult patients with chronic-, accelerated-, or blast-phase CML,

or Ph-positive acute lymphoblastic leukemia that is resistant or intolerant to prior TKI

therapy. Ponatinib is currently being assessed as first-line therapy in a Phase II clinical trial

in patients with chronic-phase CML (NCT01570868). Although the early clinical trial data

are promising, one group has reported both partial and full BCR-ABL—independent

resistance to ponatinib in 4 BCR-ABL—positive cell lines grown in the presence of low

ponatinib concentrations, which may have important implications for the future use of this

agent.147
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XL228 is a potent protein kinase inhibitor that has activity against fibroblast growth factor

receptor, insulin-like growth factor receptor-1, Src, and Abl.148 In initial analyses of Phase I

clinical trial data, this agent demonstrated the ability to induce hematologic or cytogenetic

responses in 52% of patients, including 19% of those with the T315I mutation (Table 4).134

Bafetinib (INNO-406) is a dual BCR-ABL/Lyn kinase inhibitor with 25- to 55-fold higher

potency than imatinib.43 Although this agent is not active against CML with the T315I

mutation, it has demonstrated in vitro activity against CML with multiple P loop

mutations.149 In a Phase I clinical trial of heavily pretreated patients with imatinib-resistant

and imatinib-intolerant disease, responses were seen only in patients in the chronic phase

(Table 4).135

Aurora Kinase Inhibitors

The aurora kinases are key mitotic regulators and control entry into mitosis, centrosome

function, and chromosome assembly and segregation.150 They are frequently found to be

aberrantly overexpressed in cancer cells, and inhibition of these proteins can result in mitotic

catastrophe in leukemia cells.43 Danusertib, a small molecular inhibitor, exhibits activity

against all known aurora kinases in addition to BCR-ABL tyrosine kinase, including the

T315I variant.150 Preliminary results of a Phase I investigation assessing danusertib in a

small number of patients with accelerated or blast-phase CML resistant/intolerant to

imatinib or second-generation TKIs reported clinically important responses (Table 4).136 A

Phase II study has reported hematologic and cytogenetic responses in a small number of

patients with BCR-ABL T315I mutations.137

Two further aurora kinase inhibitors are in development: AT9283 and KW-2449, both of

which have demonstrated in vitro activity against cells with the BCR-ABL T315I mutation.43

Clinical trials of these agents are ongoing in patients with TKI-resistant disease, but

preliminary results with AT9283 indicate hematologic activity, and treatment with

KW-2449 resulted in the disappearance of the T315I clone in a patient with blast-phase

CML (Table 4).138,139

Omacetaxine

Omacetaxine mepesuccinate (“omacetaxine”) is a semisynthetic version of

homoharringtonine, an agent that was originally recognized as having antitumor activity

more than 35 years ago and that demonstrated efficacy in CML as a single agent and in

combination with cytosine arabinoside or interferon-alfa. 151,152 Omacetaxine is a first-in-

class cephalotaxine, a small molecule that inhibits protein synthesis in a BCR-ABL—

independent manner by binding to the 80S ribosome and interfering with protein chain

elongation.43,153 By blocking ribosomal function, omacetaxine decreases intracellular levels

of several anti-apoptotic regulatory proteins, resulting in apoptosis.154 Allan et al.153 have

reported that omacetaxine is also able to induce apoptosis in CML stem cells by inhibiting

the synthesis of the anti-apoptotic protein Mcl-1 and that it can inhibit the function of

surviving stem cells in a dose-dependent manner.
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The clinical effectiveness of omacetaxine was demonstrated in several Phase II and III

clinical trials in patients with the T315I mutation, patients with resistance to ≥ 2 TKIs, and

patients unable to tolerate TKIs, with reports of sustained hematologic and cytogenetic

responses (Table 4).140–143 Subset analyses of pooled data for heavily pretreated patients

demonstrated a major cytogenetic response in 20% of those with chronic-phase CML, as

well as hematologic responses in patients with accelerated-phase CML and hematologic

improvement in a small proportion of patients with blast-phase CML.155–157

In an analysis of pooled safety data from 2 Phase II trials and a small pilot investigation

assessing omacetaxine in patients in all phases of CML, the most commonly reported

treatment-related grade 3/4 adverse event was thrombocytopenia, followed by neutropenia

and anemia.158 The authors concluded that omacetaxine administration was associated with

an acceptable toxicity profile.158

A further therapeutic approach is the combination of omacetaxine and a TKI. The

combination of these agents has been found to inhibit the proliferation of imatinib-resistant

CML cell lines in vitro in a synergistic manner.159 Dual imatinib and omacetaxine therapy

in patients in all 3 phases of CML was evaluated by Ayoubi et al.,143 who reported that this

combination was effective in patients with advanced disease. Another study reported

suppression of CML cells with the T315I mutation and undetectable molecular residual

disease in an imatinib-resistant patient treated with omacetaxine and nilotinib combination

therapy after single-agent omacetaxine.160

Omacetaxine alone or in combination with other agents in patients with resistant disease,

specifically those with T135I mutations, may represent an attractive future treatment

approach. Omacetaxine has recently been approved by the FDA for the treatment of adult

patients with chronic- or accelerated-phase CML with resistance or intolerance to 2 or more

TKIs.

What Is the Feasibility of Treatment Selection Based on BCR-ABL Mutation

Type?

The in vitro inhibitory effect (50% inhibitory concentration [IC50]) of all commercially

available TKIs has been published for the most common mutations to help clinicians in their

choice of TKI for patients known to harbor mutations.127 In vitro IC50 data for imatinib,

dasatinib, and nilotinib show that the T315I mutation results in a high level of resistance to

all 3 agents.57,127 These data also provide information regarding other mutations with

differing levels of resistance to imatinib, dasatinib, and nilotinib. For example, CML cells

with Y253F/H mutation are insensitive to imatinib, but display intermediate (moderate)

resistance to nilotinib and are sensitive to dasatinib.57,127 Certain common mutations confer

a high level of resistance to at least 1 of the 3 commercially available TKIs.127 For example,

in cases in which T315I, V299L, T315A, Y253H, E255K/V, and F359V/C/I mutations are

present, there is little doubt that a change in treatment strategy is warranted, and alternative

therapeutic approaches have been recommended by the NCCN (Table 5) and ELN in such

cases.5,69 However, in the case of substitutions at M244, F317, and M351, which correspond

to moderate imatinib resistance in CML cells, patients may respond to an increased imatinib
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dose or another TKI.79 The use of IC50 values alone is insufficient to guide the choice of

TKI therapy for many other mutations because the IC50 values determined in vitro do not

necessarily correlate with the in vivo situation. For example, IC50 information does not

account for the impact of important in vivo factors, such as pharmacokinetics, protein

binding, and drug efflux.161 In cases of rare mutations, for which clinical trial evidence is

lacking, in vitro data should be considered alongside evidence of treatment failure or

suboptimal response.69 However, because the number of new rare kinase domain mutations

is increasing for which the sensitivity to imatinib is unknown, the selection of effective

therapeutic regimens for patients with uncharacterized mutations may be challenging.

What Are the Nonpharmacotherapy Options If Pharmacologic Therapy

Fails?

Before imatinib, CML was the most common reason for hematopoietic stem cell

transplantation (HSCT).162 Since the introduction of imatinib, the number of patients with

chronic-phase CML receiving HSCT has decreased dramatically.43 HSCT is now restricted

to patients with advanced-phase CML complex comorbidities. However, HSCT remains the

only means of achieving a cure for CML and is recommended by the ELN and NCCN

Guidelines® for patients with TKI-resistant CML cells harboring the T315I mutation. 5,69

Stem cell trans-plantation is also an option for patients who have experienced prior

hematologic resistance to imatinib and respond suboptimally during second-line TKI

therapy.6 As new therapies that target the BCR-ABL T315I mutation continue to be

developed, the role of stem cell transplantation in the management of CML will require

reassessment.

Conclusions

The advent of TKI therapy for CML has changed the natural history of this hematologic

neoplasm, and for many patients there is now the real possibility of long-term survival or

even complete resolution. However, the management of patients with imatinib-resistant

CML has become increasingly complex. There is no doubt that certain BCR-ABL mutations

contribute to the development of resistance in patients with CML. However, TKI-resistant

CML is more complex than indicated by the presence of mutations alone, and BCR-ABL—

independent mechanisms of resistance also have a considerable clinical impact.

A range of new pharmacotherapies are in development for the treatment of CML. Although

physicians are likely to have effective treatment options for patients with imatinib-resistant

CML, they now face the challenge of assessing the significance of the large volume of

preclinical and clinical trial data to incorporate emerging treatments into CML treatment

algorithms. Physicians need to be aware of advances in mutational analysis, how best to

identify reasons for resistance in clinical practice, and how to personalize therapy on the

basis of mutation status. Challenges for the future include treatment optimization and

development of strategies to meet the needs of patients with both primary and secondary

resistance to current therapies.
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Figure 1.
Schematic Map of Some of the Most Common Amino Acid Substitutions Identified From

Clinical Specimens in Patients Resistant to Imatinib. The Stars Highlight Regions Involved

in Imatinib Binding. Mutations in Italics Have Been Found to be Single Nucleotide

Polymorphismsa

Abbreviations: A loop = activation loop; P loop = phosphate-binding loop; SH2 = SRC

homology 2; SH3 = SRC homology 3.
aReproduced with permission of the American Society of Hematology, from Soverini S, et

al. Blood 118(5), 2011: 1208–1215,69 permission conveyed through Copyright Clearance

Center, Inc.
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Table 1

European LeukemiaNet Proposed Criteria for Defining Treatment Failure and Suboptimal Response for

Chronic Myelogenous Leukemia

Evaluation Time (mo) Failure of Response Suboptimal Response Warning Signs

0 NA NA High risk; CCA/Ph+a

3 Less than CHR No CyR (Ph+ > 95%) NA

6 No CyR (Ph+ > 95%) Less than PCyR (Ph+ > 35%) NA

12 Less than PCyR (Ph+ > 35%) PCyR (Ph+ 1%−35%) Less than MMolR

18 Less than CCyR Less than MMolRb NA

At any time Loss of CHR; loss of CCyR; mutations
poorly sensitive to imatinib; CCA/Ph+

Loss of MMolR; mutations still
sensitive to imatinib

Increase in transcript levels;c

CCA/Ph−

Abbreviations: CCA = clonal chromosome abnormalities; CCyR = complete cytogenetic response; CHR = complete hematologic response; CyR =
cytogenetic response; MMolR = major molecular response; NA = not applicable; PCyR = partial cytogenetic response; Ph+ = Philadelphia
chromosome positive; Ph− = Philadelphia chromosome negative.

a
CCA/Ph+ at diagnosis is considered to be a warning factor, and its occurrence during treatment is a marker of treatment failure.

b
MMolR indicates a ratio of BCR-ABL1:ABL1 or other housekeeping genes of ≤ 0.1% on the international scale.

c
Two consecutive cytogenetic tests should be performed, and these must show the same CCA in ≥ 2 Ph+ cells.

Reproduced with permission from Baccarani M et al. J Clin Oncol 27(35), 2009: 6041–6051.6 American Society of Clinical Oncology. All rights
reserved.
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Table 3

Current European LeukemiaNet and NCCN Guidelines for Timing of Mutational Analysis5,69

European LeukemiaNet NCCN

At Diagnosis

• Only in AP/BP patients

In Patients Treated With TKIs

• In patients with inadequate initial response (failure to achieve PCyR or BCR-
ABL/ABL ≤ 10% [IS] at 3 mo or CCyR at 12 and 18 mo)

• Loss of response (hematologic or cytogenetic relapse, or 1 log increase in BCR-
ABL transcript levels and loss of MMolR)

• Disease progression to AP or BP

During First-line Imatinib Therapy

• In patients who fail to respond

• In patients with an increase in BCR-
ABL transcript levels and MMolR
loss

• In patients who respond
suboptimally

During Second-line Dasatinib or Nilotinib
Therapy

• In patients who fail to achieve a
hematologic or cytogenetic
response

Abbreviations: AP = accelerated phase; BP = blast phase; CCyR = complete cytogenetic response; IS = international scale; MMolR = major
molecular response; NCCN = National Comprehensive Cancer Network; PCyR = partial cytogenetic response.

Reproduced with permission of the American Society of Hematology, from Soverini S, etal. Blood 118(5), 2011:1208–121569 permission
conveyed through Copyright Clearance Center, Inc.; and adapted with permission from the NCCN Clinical Practice Guidelines in Oncology

(NCCN Guidelines®) for Chronic Myelogenous Leukemia V.4.2013 © National Comprehensive Cancer Network, Inc. All rights reserved. The

NCCN Guidelines® and illustrations herein may not be reproduced in any form for any purpose without the express written permission of the
NCCN. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. NATIONAL COMPREHENSIVE

CANCER NETWORK®, NCCN®, NCCN GUIDELINES®, and all other NCCN Content are trademarks owned by the National Comprehensive
Cancer Network, Inc.
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