Skip to main content
. 2014 Sep 11;5:452. doi: 10.3389/fpls.2014.00452

Figure 2.

Figure 2

Model of signaling events during micropylar pollen tube attraction and double fertilization in Arabidopsis. (A) The micropylar opening of the ovule is formed by the inner and outer integuments. The female gametophyte is “naked” at its micropylar pole containing one egg (colored in blue) and two synergid cells (colored in green and red) representing the egg apparatus. The central cell surrounds the egg apparatus. The synergid cells are the main sources of pollen tube attractants. Among other components, they secrete LURE peptides, which bind to pollen expressed LIP1/2 receptors thus directing pollen tube growth. Calcium transporters are involved in pollen tube growth control. The plasma membranes of synergid cells harbor a high concentration of receptors like FER and LRE, especially in the region of the filiform apparatus. Upon pollen tube perception NTA is relocated to the plasma membrane by FER activity likely regulated by Ca2+ oscillations inside the synergid cells. (B) The pollen tube bursts when it reaches a certain point beyond the filiform apparatus and releases its cytoplasmic contents including the two sperm cells. Pollen tube burst depends on the presence and activation of FER-, LER-, NTA-, and VDD-dependent signaling cascades culminating in the death of the receptive synergid cell (indicated by diffusing red color). Released sperm cells are located at the gamete fusion side, between the two female gametes. The two sperm cells are connected to each other, likely involving tetraspanins. The male gametes adhere to female gametes by GEX2 located at their surface. After activation, the egg cell secrets EC1 leading to sperm cell activation and HAP2/GCS1 localization to the plasma membrane. HAP2/GCS1 and tetraspanins at the surface of gametes may be involved in mediating membrane fusion. Unknown egg and central cell-specific fusogenic proteins as well as EC1 receptor are indicated by question marks in green, black, and purple, respectively.