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Abstract

Small-interfering RNA (siRNA) is both a powerful tool in research and a promising therapeutic

platform to modulate expression of disease-related genes. Malignant tumors are attractive disease

targets for nucleic acid-based therapies. siRNA directed against oncogenes, and genes driving

metastases or angiogenesis have been evaluated in animal models and in some cases, in humans.

The outcomes of these studies indicate that drug delivery is a significant limiting factor. This

review provides perspectives on in vivo validated nanoparticle-based siRNA delivery systems.

Results of recent advances in liposomes and polymeric and inorganic formulations illustrate the

need for mutually optimized attributes for performance in systemic circulation, tumor interstitial

space, plasma membrane, and endosomes. Physiochemical properties conducive to efficient

siRNA delivery are summarized and directions for future research are discussed.
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Introduction

First discovered in plants, RNA interference (RNAi) is a naturally occurring phenomenon.

This form of post-transcriptional gene silencing results in either direct cleavage via small-

interfering RNA (siRNA) or translational repression via microRNA [1]. Molecular

mechanisms of RNAi have been reviewed elsewhere [2–4]. Cleavage of one target mRNA

does not consume the guide strand. Hence, a few siRNA molecules introduced into

cytoplasm can lead to complete or significant degradation of target mRNA. Fire et al. first

demonstrated RNAi experimentally by introducing double-stranded RNA (dsRNA) into

Caenorhabditis elegans in 1998 [5]. Shortly thereafter, Elbashir et al. demonstrated that

synthetic siRNA could silence endogenous genes in mammalian cells [6]. The first

successful RNAi in mice was conducted using siRNA-targeting the polymerase-encoding

region of the hepatitis C viral genome [7]. These early studies established the foundation for
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subsequent rapid expansion of research in transforming RNAi as research tools to clinical

therapeutics [8–10]. Unlike antisense oligodeoxynucleotides, siRNA operates exclusively in

cytosol and nuclear import is not needed. The non-consuming feature of siRNA silencing

should result in superior pharmacological potency.

Despite operating on enzymatic efficiency, development of siRNA into therapeutics is

limited by several intrinsic properties. siRNA have been shown to cause cellular and

physiological toxicities [11]. RNAi may interfere with endogenous microRNA pathways

because both compete for the same RNAi machinery [12, 13]. siRNA may exert

“microRNA-like” off target effects due to partial complementarity [14]. siRNA may induce

innate immune responses in sequence dependent or independent manners [15, 16]. These

biological limitations could be circumvented or minimized by careful screening of

sequences or with chemical modifications. Advances in these efforts have been reviewed

elsewhere [17].

A second hurdle is poor delivery efficiency in vivo. This can be addressed through chemical

modifications and the use of carriers or delivery systems [18]. Soutschek et al. were the first

to demonstrate silencing of an endogenous gene via systemic administration of chemically

modified siRNA [19]. Cholesterol conjugated siRNA targeting apoB degraded the apoB

mRNA effectively in mouse liver and jejunum. The accumulation of cholesterol-siRNA in

liver was facilitated by binding to human serum albumin (HSA). Delivery systems have

been designed to improve efficacy. apoB-specific siRNA encapsulated in stable nucleic

acid-lipid particles (SNALP) reduced both apoB mRNA and protein in cynomolgus monkey

by 80 % [20]. These early in vivo evidences raised expectations in ultimately transforming

siRNA into drugs. Currently, more than 10 siRNA-based products are being tested in

clinical trials, mainly in phases I and II (Table 1). These include treatments for age-related

macular degeneration (AMD), kidney injury, and liver fibrosis, although most are directed at

various forms of cancer.

Cancer initiation, progression, and metastasis are associated with mutated and/or abnormally

expressed genes [21]. Many of these genes encode proteins that are thought to be

“undruggable” using small molecules and monoclonal antibodies [22]. Traditional small

molecules have a limited range of chemical interactions in multi-domain kinases while

monoclonal antibodies can only approach extracellular targets. Targeting upstream

messenger RNA (mRNA) by siRNA appeared to be the next logical strategy. Indeed,

effective in vivo gene silencing and tumor growth inhibition have been reported by

delivering siRNA targeting mRNAs of oncogenes. Results gleaned from these studies

indicate that pharmacokinetics is a critical attribute of efficacy. For advanced metastatic

cancers, siRNA must circulate in the blood stream sufficiently long enough to allow

partition into tumors.

Nanoparticles have been employed in cancer drug delivery for decades with several products

approved by the FDA [23, 24]. Nanoparticles accumulate in tumor tissues selectively by

leaky vasculature and impeded lymphatic drainage underpinning the enhanced permeation

and retention (EPR) effect [25]. The circulating half-lives and tissue distribution of

nanoparticles can be tuned by manipulating size and surface properties. Most commonly,
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this is accomplished by polyethylene glycol (PEG) coating and ligand incorporation [26].

This narrative highlights the technical challenges and focuses on systems with demonstrated

efficacy in animals or humans.

Physiological Barriers to Particle-Based siRNA Delivery

Nanoparticle formulations are meant to overcome several physiological barriers of siRNA

trafficking (Fig. 1). In plasma, siRNA is rapidly removed by RNase and opsonization.

siRNA must be protected from phagocytic cells residing in liver, spleen, and lung,

collectively known as the mononuclear phagocyte system (MPS), which eliminates

particulates from circulation [27]. Engineering a hydrophilic and surface with near-neutral

zeta potentials [28, 29] and particle size between 10 to 150 nm appear to minimize MPS

removal [29, 30]. Below 10 nm, the particles tend to be eliminated rapidly through renal

clearance [29]. Long-circulating particulates have been developed to stay in blood

circulation for an extended period of time. Therefore, the particles would cross the vascular

endothelium and selectively accumulate in tumor via the EPR effect before they are cleared

from circulation [18, 25].

Once extravasated to tumors, nanoparticles would have to diffuse through the extracellular

matrix (ECM), a dense network consisting polysaccharides and fibrous proteins. ECM

retards the diffusion of particulates via size-dependent entanglement and electrostatic

interactions [31]. The hydrophilic (electro-negative) glycocalyx and hydrophobic lipid

bilayer of cell membrane resist binding and entry of siRNA. Having a slightly positive

surface and incorporation of a receptor ligand facilitates uptake of nanoparticles into cells

[32]. But endocytosed substances are typically channeled for lyso-endosomal degradation

[33]. Three major strategies have been proposed to facilitate endosome escape. Cationic

lipids interacting with anionic endosome membrane electrostatically destabilize the

enclosure by inducing the formation of inverted hexagonal phase [34, 35]. pH buffering

materials such as polyethyleneimine (PEI) and polymers containing imidazole induce

osmotic swelling and rupture of the endosome via influx of chloride ions, commonly

referred to as the “proton sponge” effect [36, 37]. Synthetic fusogenic peptides, mimicking

viral fusion domains, have also been utilized to enhance endosome escape [38]. Once

escaped from endosomes, nanoparticles must release siRNA into the cytoplasm in order for

RNA-induced silencing complex (RISC) assembly and subsequent hybridization with target

mRNA to take place. Therefore, an ideal nanoparticle siRNA delivery system must be

mutually optimized in siRNA complexation, accumulation and penetration in tumor, cellular

uptake, endosome escape, and siRNA release. These can be achieved through the

manipulation of material chemistry, hydrodynamic size, and surface properties. This review

focused on examples of siRNA-nanoparticle systems that have been validated in animals or

in some cases, humans.

Lipid-Based Systems

Various forms of lipid-based nanoparticles have been developed for systemic delivery of

siRNA into tumors. These include liposomes, solid-lipid nanoparticles (SLN), and
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reconstituted high-density lipoprotein (rHDL) nanoparticles. Examples of each are discussed

highlighting physiochemical composition and in vivo performance.

Cationic Liposomes

Liposomes are one of the first nucleic acid delivery systems characterized, dating back to the

late 1980s [39, 40]. Cationic liposomes have been extensively investigated owing to their

high encapsulation efficiency, effective transfection, and ease of surface modification [23].

Li et al. first developed a liposomal system with a solid core, termed lipid-protamine-DNA

(LPD) [41]. Protamine and calf DNA were used to complex with siRNA. This complex is

then encapsulated within cationic liposomes made of 1,2-dioleoyloxy-3-trimethylammonium

propane (DOTAP) and cholesterol. The liposomes are further modified with two other

lipids: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG (DSPE-PEG) and DSPE-

PEG-anisamide (DSPE-PEG-AA). DSPE-PEG prevents aggregation and macrophage

uptake, while DSPE-PEG-AA promotes cellular internalization via the sigma receptor over-

expressed on tumor cells. Tissue distribution studies showed that tumor-bearing mice

cleared the LPD nanoparticles from circulation more rapidly than tumor-free mice. More

than 70 % of injected siRNA were found in tumors 4 h after a single-tail vein injection [41].

The impressive tumor accumulation is attributed to high surface coverage of DSPE-PEG

which shields the particle charge effectively [42]. The compact protamine-nucleic acids core

enhances structural integrity of the inner lipid layer, thereby allowing stable display of

DSPE-PEG on the exterior. Coating the liposomes with anisamide has no effect on tumor

extravasation but enhances cellular uptake; compared to 5 % for nanoparticles without the

ligand, siRNA presented in 30 % of cells when delivered using the anisamide nanoparticles

[41].

In a subsequent design, calf DNA in LPD was replaced with hyaluronic acid to reduce

immunogenicity [43, 44]. Another change was replacing protamine with a recombinant

tetrameric form of the histone protein H2A (TH) in order to improve de-complexation [45].

TH is degraded in endosomes by cathepsin D, an endogenous protease, resulting in release

of siRNA. A single intravenous injection (0.25 mg/kg) reduced expression of a target gene

(luciferase) by 66 % in the H460 human lung cancer model. The hyaluronic acid-TH

liposomes are noted for significantly improved silencing efficiency compared to previous

designs. Zhang et al. and Li et al. also developed a liposome formulation with calcium

phosphate [46, 47]. In this format, siRNA is complexed with calcium phosphate into a

cationic solid core before coating with the anionic dioleoylphosphatidic acid (DOPA). Other

lipids, DOTAP, DSPE-PEG, and DSPE-PEG-AA, are added to the initial DOPA complex to

form the final liposomes. Calcium phosphate dissolves immediately upon exposure to the

acidic pH (5.5 to 6.5) in endosomes; this results in the swelling and bursting of the vesicles

and release of siRNA (decomplex upon dissolution of calcium phosphate) into the

cytoplasm [46].

Santel et al. have developed a liposomal siRNA formulation using a cationic lipid

AtuFECT01, a neutral fusogenic helper lipid 1,2-diphytanoyl-sn-glycero-3-

phosphoethanolamine (DPhyPE), and DSPE-PEG [48]. The enhanced uptake by vascular

endothelial cells, attributed to the positive charges of cationic lipids, suggests a potential
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novel anti-angiogenic therapy [48]. Incorporation of siRNA-targeting protein kinase N3

(PKN3) into these liposomes resulted in inhibition of primary tumor growth and lymph node

metastases in human prostate cancer and pancreatic cancer models in mice [49]. This

formulation is currently in a phase I clinical trial.

Pirollo et al. have formulated a transferrin receptor (TfR)-targeted liposomal system,

composed of DOTAP and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) [50].

This design is unique in that DOPE is conjugated with a pH-sensitive histidinylated

oligolysine (HoKC). The protonated lysine side chains render positive charges for siRNA

complexation, while the imidazole groups enhance endosome release through pH buffering

[51]. Efficient delivery of a fluorescent dye-labeled siRNA was demonstrated in both

primary tumors and lung metastases. When administrated into mice carrying human

pancreatic carcinoma (PANC-1), the cancer was found sensitized for apoptosis by

gemcitabine [50].

Sato et al. synthesized a pH-sensitive cationic lipid, YSK05, for siRNA delivery [52, 53].

YSK05 contains an N-methyl piperidine ring, which becomes protonated only in acidic

endosomes. In addition, the limited pegylation facilitates the interactions between fusogenic

lipids and endosome membrane. The liposome formulation consists of YSK05, cholesterol,

1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), PEG-dimyristoyl-sn-glycerol

(PEG-DMG). When polo-like kinase 1 (PLK1) siRNA was delivered using the system, a

single intravenous injection at 3 mg/kg resulted in 50 % reduction in target mRNA and

proteins in a human renal cell cancer model [53].

Sonoke et al. used pegylated liposomes made of palmitoyl-oleoylphosphatidylcholine

(POPC) and a cationic lipid CLZ-42 to deliver B cell lymphoma 2 (Bcl-2)-targeting siRNA

[54]. Treated mice showed slower tumor growth and survived longer. Liver uptake was

found dependent upon the length of the acyl chains in phosphatidylcholine (PC) conjugated

to PEG (PEG-PC). Shorter (C-12 to C-16) and unsaturated acyl chains results in higher liver

uptake compared to longer (C-17 and C-18) and saturated acyl chains. PC with longer acyl

chain (C-18) have higher gel-to-liquid-crystalline temperature (Tc), resulting in rigid

liposomes that might resist internalization by liver resident macrophages [54].

Li et al. reached similar conclusions regarding the effects of lipids projecting PEG. SNALP

modified by PEG-lipids with different lipid chain lengths (C14, C16, or C18) showed

different gene-silencing efficiencies in vitro and in vivo [55]. With a shorter lipid anchor,

PEG dissociated rapidly from SNALP, resulting in stronger gene-silencing effect in vitro but

short plasma half-life in vivo. Thus, increasing the length of the lipid anchor may prolong

systemic circulation. On the other hand, pegylation can be counterproductive; the steric PEG

brush can impede fusion between cationic lipids and anionic endosomal membrane [56].

This can be circumvented by using an acid-labile linker as a mechanism to shed PEG from

in endosomes. Another method was proposed by Auguste et al. in using a block polymer

(PEG-DMA) composed of PEG and cationic poly(2-(dimethylamino)ethyl methacrylate)

(DMA) [57]. 1,2-dioleoyl-3-dimethylammonium-propane (DAP), which would be

protonated only at acidic pH, is used to form liposomes with 1,2-dioleoyl-sn-glycero-3-

phosphatidylcholine (DOPC). PEG-DMA is subsequently adsorbed onto the DOPC-DAP
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liposomes to extend circulation. In acidic endosomes, the repulsive forces between

protonated DAP and DMA shed PEG-DMA from the liposomes. Superior performance of

the PEG-DMA coated DOPC-DAP liposomes was evidenced by enhanced green

fluorescence protein (GFP) gene knockdown in vitro [57]. In another study, Koren et al.

conjugated PEG to 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (DPPE) with the

pH-sensitive hydrazone bond. Desorption of PEG in acidic pH resulted in exposure of cell-

penetrating peptide moieties [58]. Therapeutic benefits of these systems remain to be

investigated in vivo.

Gene silencing may be decoupled from vesicle uptake into cells. In addition to endocytosis,

siRNA can be directly released into the cytoplasm through fusion of the cell membrane and

liposomal lipids [59]. Blocking clathrin, caveolin, and lipid raft-mediated endocytosis have

no apparent effects on gene silencing efficiency. While depleting cholesterol does not affect

cellular uptake, gene silencing can be compromised as a function of temperature [59].

Evidences are accumulating to suggest that endocytosis is responsible for cellular uptake of

the majority of siRNA, but gene silencing may depend on other processes. Consequently,

intracellular trafficking of siRNA-loaded lipid particles became the focus of several studies

[60, 61]. Sahay et al. found out that exocytosis diminishes delivery efficiency [60]. Gilleron

et al. have estimated that only 1–2 % of siRNA actually reached the cytosol [61]. Additional

studies are undergoing to resolve the fate of siRNA after liposome internalization.

Cationic liposomes are associated with toxicities in humans. These include inflammation,

hepatotoxicity, and hematologic toxicity [62, 63]. Recent studies also indicated that cationic

lipids enhance siRNA-mediated innate immune responses. Ma et al. has demonstrated that

intravenous injection of DOTAP-siRNA complex induces types 1 and 2 interferons in mice

while DOTAP or siRNA injected separately were largely inert [64]. The authors

hypothesized that macrophages are sensitized by the DOTAP lipids to respond to siRNA.

On the other hand, toxicities associated with cationic lipids may be harnessed for cancer

therapy. For instance, two novel lipids N,N-distearyl-N-methyl-N-2-(N0-arginyl) aminoethyl

ammonium chloride (DSAA) and N,N-distearyl-N-methyl-N-2[N′-(N2-guanidino-L-

lysinyl)] aminoethyl ammonium chloride (DSGLA) designed by Chen et al. contain

guanidinium groups that generate reactive oxygen species (ROS). Synergistic antitumor

effects with siRNA have been documented with these ROS-generating DSAA and DSGLA-

containing liposomes [65, 66].

Neutral Liposomes

Neutral lipids have been used to avoid toxicities associated with cationic lipids. Efficient

gene silencing has been shown by liposomes made of the neutral DOPC without surface

modification. Delivery efficiency of this liposome has been demonstrated in ovarian

carcinoma [67–72], colorectal tumor [73, 74] and melanoma tumor models [75]. In one

study, DOPC-derived liposomes were shown to improve accumulation of siRNA in ovarian

tumors 10-fold compared to cationic DOTAP-liposomes. DOPC liposomes loaded with

EphA2-specific siRNA inhibited tumor growth by 67–82 % after 3 weeks of combination

therapy with paclitaxel [67]. This formulation is currently in a phase I clinical trial for

advanced cancers. The favorable tumor distribution and uptake is attributed to the near-
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neutral surface of the liposomes. Plasma circulation is enhanced because macrophages

preferentially take up negatively charged particles [76]. A neutral surface enhances

distribution within the tumor interstitium because positively charged particles bind to cells

in the periphery, thus blocking further distribution [77]. Mechanisms of tumor cell uptake

and siRNA release were not reported in these studies. Sustained delivery was demonstrated

by combining DOPC liposomes with mesoporous silicon [78]. The electrostatic interactions

between cationic mesoporous silicon (+8 mV) and anionic DOPC liposomes (−2.7 mV)

provide a mechanism to control siRNA loading and release. A single intravenous injection

of silicon-triple dose of EphA2-siRNA DOPC liposomes (15 µg) resulted in specific gene

silencing for 3 weeks without significant increase in pro-inflammatory cytokines. This

remains the first report of sustained siRNA gene knockdown in vivo.

It is clear that extravasation of siRNA must be accompanied by tumor penetration for

efficient gene silencing. Kostarelos et al. have studied liposomal surface charge, mean

diameter, and lipid bilayer fluidity on penetration into prostate carcinoma spheroids [77].

They concluded that surface charge inversely correlated with liposome penetration and

distribution in tumors. This explains in part the success of liposomes formulated with neutral

lipids. Cationic lipids with low surface charge density and PEG coating may provide the

same advantage.

Other Lipid-Based Nanoparticle Systems

In addition to liposomes, other lipid-containing particles have been explored. Cationic SLN

has been tested for delivering c-Met specific siRNA in an orthotopic glioblastoma model

[79]. The SLN consists of cholesteryl oleate, glyceryl trioleate, DOPE, cholesterol, and 3β-

[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-cholesterol). siRNA is

conjugated to PEG through a disulfide bond and loaded onto the SLN via electrostatic

interactions. These SLN crossed the blood brain barrier (BBB) and accumulated in tumors

48 h after intravenous injection. Downregulation of c-Met and tumor growth inhibition

appeared to be dose-dependent [79]. rHDL nanoparticles represent another strategy. Tumors

over-express type B1 scavenger receptors to capture HDL needed for hyper-proliferation.

Shahzad et al. developed rHDL nanoparticles containing 4 mg of siRNA complexed with

oligolysine [80]. These rHDL-siRNA nanoparticles, 10 nm in diameter and a charge-neutral

surface, have been demonstrated effective in models of ovarian tumors colorectal

metastases. While liver expresses high levels of scavenger receptors for HDL, hepatic

toxicities were not observed [80].

Wolfrum et al. have investigated the delivery mechanism of a lipid-conjugated siRNA in

mice [81]. They found that siRNA conjugated to cholesterol, bile acids, and long-chain fatty

acids effectively knocked down liver apoB mRNA. The high transfection efficiency of the

lipid-conjugated siRNA is attributed to spontaneous association with endogenous

lipoproteins and subsequent internalization through hepatic receptors. The lag time between

infusion and binding to endogenous lipoproteins makes siRNA vulnerable to elimination.

Pre-assembled siRNA and lipoproteins (high- or low-density lipoproteins) may improve

siRNA delivery [81].
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Polymeric siRNA Delivery Systems

The use of non-lipidic cationic polymers for nucleic acid delivery dated back to the early

1990s [82]. Nano-sized particles are generated from electrostatic interactions between

siRNA and synthetic polymers that include cyclodextrin derivatives, PEI, and

polyamidoamine (PAMAM). In addition, naturally occurring polymers, proteins, and

oligopeptides have been explored owing to their biodegradable and biocompatible

properties. Molecular weight, charge density, and chemical structure of the polymer are

known parameters affecting delivery efficiency [83].

Synthetic Polymers

Cyclodextrin-Containing Polymers—Davis and coworkers have constructed a siRNA

delivery system around β-cyclodextrin (β-CD) [84]. The cyclodextrin-containing polymer

(CDP) comprises four functional units: docking cavity (β-CD), pH buffering (imidazole),

charge center (amidine), and spacer (methylene). A therapeutic formulation consisting of

ribonucleoside-diphosphate reductase subunit M2 (RRM2) siRNA, CDP, adamantane-

conjugated PEG (AD-PEG), and AD-PEG-transferrin (AD-PEG-Tf) appeared to be effective

RNAi in patients [85]. However, the phase I safety study was terminated recently. Upon

mixing, the components self-assemble into nanoparticles. siRNA is complexed via

electrostatic interactions with protonated amidines while the imidazoles facilitate endosome

escape AD-PEG and AD-PEG-Tf complex with β-CD through inclusion of AD in the

cyclodextrin cavity [84]. These PEG form a thick brush layer (12.5 nm) on the surface that

stabilizes the nanoparticles as colloids [84]. Structure-activity relationships of CDP siRNA

systems have been thoroughly studied [86–89]. The average spacing between β-CD and

amidine charge centers is important as the former may block interactions between the

charged centers and siRNA. The distance between individual charge centers is also

important. Increasing the distance decreases toxicity, but at the expense of siRNA-binding

efficiency. Similar to liposomal systems, addition of targeting ligands does not alter tissue

distribution but significantly improves cellular uptake and therapeutic efficacy in vivo [90,

91].

Polyethyleneimine—PEI is proven to be nucleic acid carriers owing to their high

transfection efficiencies in vitro [92, 93]. The primary amines capture nucleic acids through

electrostatic interactions while the tertiary amines mediate endosome escape. PEI

nanoparticles are internalized by caveolae or clathrin-dependent endocytosis. Different

routes of endocytosis lead to different intracellular trafficking of PEI-siRNA polyplexes

[94]. The fraction internalized via caveolae circumvents lyso-endosomal degradation [94].

Those taken up by clathrin-mediated endocytosis might still escape endosomes through the

“proton sponge” effect. Limitations of PEI include the propensity to aggregate, slow release

of siRNA, immune cells activation, and cytotoxicity [95]. PEI has been modified chemically

to improve delivery attributes. Internalization mechanism, transfection efficiency, and

toxicities can be tuned by manipulating configuration (linear or branched) and molecule

weight. For instance, in HUH-7 carcinoma cells, linear PEIs are internalized mainly by

clathrin-mediated endocytosis while branched PEIs are endocytosed via both clathrin and

caveolae [96]. Compared to linear PEIs, branched PEIs exhibit higher transfection
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efficiencies [93]. Both efficiency and toxicity increase with higher molecular weight [97].

PEIs employed in siRNA delivery typically have molecular weights between 5 to 25 kDa.

Werth et al. have developed a 4–10 kDa branched PEI (PEI F25-LMW) [98]. PEI and

vascular endothelial growth factor (VEGF) siRNA complexed at a high N/P ratio (33) were

injected intraperitoneally. Synergistic therapeutic effects were observed when combined

with bevacizumab in a prostate carcinoma model [99]. In addition, efficient knockdown of

specific genes and tumor growth inhibition have been shown in glioblastoma [100] and

colon carcinoma [101] models.

Optimization of PEI includes N-acylation [102], cross-linking low MW PEI with degradable

bonds [103–105], ligand incorporation [106, 107], carbohydrate attachment [108], lipid

conjugation [109–113], and pegylation [114]. Kim et al. modified a branched PEI with the

integrin binding peptide Arg-Gly-Asp (RGD) through a PEG spacer [115]. At an N/P ratio

of 10, the resulting nanoparticles loaded with vascular endothelial growth factor receptor 1

(VEGFR1) siRNA inhibited the growth of murine colon adenocarcinoma for 11 days.

Schiffelers also reported on the inhibition of tumor angiogenesis and growth through

intravenous administration of vascular endothelial growth factor receptor 2 (VEGFR2)

siRNA PEI nanoparticles grafted with RGD via PEG [116]. Zheng et al. synthesized an

amphiphilic PEI-polycaprolactone-PEG triblock copolymer. This polymer renders fourfold

higher exposure of siRNA in mice [117]. In another design, pegylated siRNA form nano-

sized micelles with PEI [118]. These micelles contain siRNA and PEI as the inner core

stabilized by a PEG outer shell. Both intravenous and intratumoral injection resulted in

VEGF knockdown and tumor growth inhibition in mice. Shim et al. designed acid-

degradable ketalized linear PEI (KL-PEI) as siRNA delivery systems [119]. KL-PEI and

siRNA self-assemble into nanoparticles, which are then coated with PEG through chemical

conjugation to surface primary amines. The siRNA cargo is released when the ketal

branches are hydrolyzed in endosomes. A single intravenous injection with 20-µg siRNA

was able to silence the target gene in vivo. In another example, a matrix metalloproteinase 2

(MMP-2) sensitive copolymer (PEG-pp-PEI-PE) was synthesized [120]. This copolymer

self-assembles into micelles and siRNA can be loaded via electrostatic interactions with PEI.

Up-regulated MMP-2 in tumor tissue sheds PEG, which exposes PEI for enhanced cell

uptake. The micelles were able to deliver paclitaxel and siRNA into 14.4 % of tumor cells

after intravenous injection.

An important consideration for PEI-nucleic acid polyplexes is the excess PEI used in many

formulations. Boeckle et al. found excess PEI as the major cause of toxicity as a function of

dose [121]. Free PEI molecules compete for cellular association and diminish uptake of

polyplexes. On the other hand, excess PEI may enhance endosome escape through acid

buffering. Contribution by excess PEI content in PEI-siRNA polyplexes should be carefully

examined.

Polyamidoamine—PAMAM is an important system in siRNA delivery owing to the ease

with which molecule weight and charge density can be manipulated. Surface primary amines

bind siRNA and interior tertiary amines mediate endosome escape. Freeman et al.

constructed an endosome burst model for dendrimers using multiscale modeling with burst

threshold set at reaching 5 % critical area strain within 15 min [122, 123]. The likelihood of
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endosome burst is found determined by the number and pKa of tertiary amines. The fourth-

generation (G4) PAMAM, which has 128 tertiary amines with pKa estimated around 6.7, is

predicted to induce burst at 1.8 mg/mL [123]. This is attainable with typical doses without

intolerable toxicities given the small volume of endosomes [123].

The affinity between siRNA and PAMAM is determined by malleability of the polymer

structure [124]. Flexibility facilitates siRNA binding and rigidity weakens the interactions

with siRNA. The fifth-generation (G5) PAMAM is favored for siRNA delivery due to its

pH-dependent flexibility-rigidity transition. G5 PAMAM can easily accommodate siRNA at

neutral pH, but becomes rigid in acidic endosomes to release siRNA. Overhangs in siRNA

play a role in G5 PAMAM-mediated gene silencing [125]. Complementary overhangs,

(dA)n/(dT)n (n=5 or 7), in siRNA can facilitate formation of concatemers via cross-bridging.

Sticky siRNA showed considerably higher gene silencing potency than non-complementary

counterparts. Liu et al. synthesized a G5 PAMAM with a triethanolamine (TEA) core that

forms stable nanoparticles with “sticky” heat shock protein 27 (Hsp27) siRNA. Potent

Hsp27 knockdown was shown in a prostate cancer model after intratumoral injection [126].

Another version of PAMAM is to conjugate with an alkyl chain; this amphiphilic dendrimer

has a critical micelle concentration as low as 15 µM. Hsp27 siRNA encapsulated in these

PAMAM micelles reduced Hsp expression by 50 % after intratumoral injection.

Transfection efficiency can be inhibited by the proton pump inhibitor, bafilimycin A,

indicating that the buffering capacity of these PAMAM plays a role [127]. Patil et al.

designed an internally cationic G4 PAMAM-OH dendrimer by quaternization of internal

tertiary amines and hydroxylation of surface primary amines [128]. This modification

enhances siRNA protection and decreases toxicity. The efficiency of delivery depends on

degree of quaternization and targeting ligands; in this case, luteinizing hormone releasing

hormone (LHRH). At 85 % quaternization, encapsulation and endosome escape appear

mutually optimized.

Other Synthetic Polymers

Bioreducible conjugation has been incorporated in siRNA delivery systems. For instance,

Chen et al. described polymerized N,N′-cystamine bisacrylamide and modified with N,N′-

dimethyldipropylenetriamine (DMDPTA) and cholesterol (rPAA-CH) [129]. Cholesterol

mediates endocytosis and DMDPTA facilitates endosome escape by the “proton sponge”

effect. Cleavage of the double disulfide bonds results in release of siRNA cargo. In vivo

VEGF silence was achieved with 57 % cholesterol grafted. Lin et al. synthesized a pegylated

polycaprolactone (PCL)-grafted poly(2-dimethyl)-aminoethylmethacrylate (PDMAEMA)

with disulfide linkages (PECssD) [130]. PECssD forms nanoparticles with PEG and

PDMAEMA at the surface and PCL as the hydrophobic core. Once internalized,

PDMAEMA-siRNA complexes dissociate from the nanoparticles and destabilize the anionic

endosome membrane. Tumor growth inhibition of PLK1 siRNA-loaded particles was

demonstrated in a Hela-luc xenograft mouse model. Pegylated PCL was conjugated to a

cationic cytoplasm-responsive cell penetrating peptide (CHHRRRRHHC; C: Cys; H: His; R:

Arg) [131]. The polymer adapts a V shape in forming micelles, which orients hydrophilic

PEG and peptide on the surface. Cysteine residues cross-link through disulfide bonds.

siRNA can be loaded via cationic arginines, and the cell perpetrating peptides facilitate cell
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uptake. Histidines mediate endosome escape. siRNA will be released in reductive cytoplasm

in which disulfide bonds break. The efficacy of the VEGF siRNA in the micelles was

evidenced in that tumor growth was completely suppressed for 8 days.

Natural Polymers

Chitosan—Chitosan is deacetylated chitin, a linear polysaccharide found in exoskeletons

of shellfish. Deacetylation generates primary amines that are protonated at physiological pH.

Chitosan has a lower charge density and cytotoxicity than PEI [132]. Efficient siRNA

delivery is associated with chitosan that weigh 40–150 KDa and are greater than 80 %

deacetylated [133]. Han et al. have developed a RGD-tagged chitosan nanoparticles proved

effective in a human ovarian carcinoma model [134]. Conjugation of RGD improves tumor

localization after intravenous injection. Pille et al. utilized chitosan-coated

polyisohexylcyanoacrylate (PIHCA) nanoparticles to deliver siRNA into MDA-MB-31

human breast tumors in nude mice [135]. The cationic surface was used to load a Ras

homolog gene family member A (RhoA)-specific siRNA. The results indicated retarded

tumor growth and angiogenesis without significant systemic toxicities. Comparable

antitumor effects were obtained at a lower dose when the particles were injected

intratumorally [136]. Yang et al. modified chitosan with the cell penetrating peptide,

transactivator of transcription (TAT) [137]. The resultant TAT-g-CS survivin siRNA was

able to inhibit tumor growth and metastasis in a mouse breast cancer model.

Proteins and Oligopeptides

Endogenous proteins and synthetic oligopeptides have been used for delivering siRNA.

These include HSA [138], transferrin [139], atelocollagen [140], poly (Pro-Hyp-Gly) [141],

cholesteryl oligoarginine [142, 143], and MPG-8, a 21-residue amphipathic peptide [144].

Son et al. introduced thiol groups to both VEGF siRNA and HSA to form disulfide-bonded

complexes of the two. This strategy increases the amount of the siRNA in PC-3 prostate

tumors by 1.6-fold, with evidence of retarded tumor angiogenesis [138]. The use of an

endogenous plasma protein reduces the risk of toxicity. The same group also thiolated

transferrin to form nanoparticles with 5′ thiol-modified siRNA. siRNA self-polymerizes

through double-sulfide bonds (polysiRNA), and forms nanoparticle with thiolated

transferrin. Nanoparticles were internalized via transferrin receptor mediated endocytosis,

and were able to silence the target gene (green fluorescence protein) in a mouse melanoma

model [139]. Similarly, gelatin was thiolated to deliver thiol-modified polysiRNA [145].

The mechanism of endosome escape was not examined in these studies. Atelocollagen is

obtained from pepsin digestion of collagen from calf dermis. This purified type 1 collagen

possesses positive charges and forms complexes with siRNA with diameters ranging from

100 to 300 nm [146]. Kawata et al. prepared nanoparticles by mixing PLK1 siRNA and

atelocollagen solutions, which inhibited liver metastases effectively after multiple

intravenous injections [140]. In another study, arginine-grafted bioreducible poly (disulfide

amine) polymers were shown to form nano-sized complexes with siRNA [147]. Reduction

of disulfide bonds in acidic endosomes leads to release of the siRNA. Size of these

complexes is controlled by the N/P ratio. Efficacy has been tested with siRNAs targeting

Bcl-2, VEGF, and Myc in B16-F10 melanoma. Injecting encapsulated siRNA at 0.3 mg/kg
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intravenously twice led to 50 % growth inhibition of the tumor compared to 15–25 % with

naked siRNA treatments [147].

Inorganic siRNA Delivery Systems

Inorganic materials have wide-ranging applications in drug delivery and imaging [148].

These include nanostructures of gold, carbon (nanotubes), cadinum (quantum dots), iron

oxide, and calcium phosphate. In general, inorganic substances are biologically inert and

afford excellent controls over physical properties [148].

Gold Nanoparticles

Among the inorganic materials, gold nanoparticles (AuNP) are probably the most popular.

Such metallic spheres can be fabricated into different sizes and can be thiolated [149].

siRNA can be loaded onto AuNP through gold-thiol chelation or electrostatically by

precoating the particles with cationic materials [149]. Internalization of siRNA-loaded

AuNP are mediated by scavenger receptors known to endocytose polyanionic molecules

through a “quadruplex-like structure” [150]. As in the case with other forms of

nanoparticles, pegylation and ligand incorporation improve plasma half-life and cellular

uptake. Conde et al. reported tumor growth inhibition in a lung adenocarcinoma model by

intratracheal instillation of c-myc siRNA/RGD AuNP [151]. In this design, siRNA is

thiolated and loaded onto AuNP along with RGD attached through a thiolated PEG-COOH

spacer. These AuNP also carry positive charged azide groups to enhance binding to cell

membranes. Lu et al. achieved successful tumor-specific nuclear factor kappa-B (NF-κB)

p65 knockdown by targeted hollow AuNP in a human HeLa cervical cancer model [152].

siRNA targeting NF-κB p65 is functionalized with a sulfhydryl group at the 5′ end of the

sense chain. Folic acid is introduced via a thiolated PEG linker (F-PEG-TA) as a mean for

targeted cellular uptake. After intravenous injection, near infrared (NIR) irradiation was

applied to tumors to break the Au–S bond and release the siRNA. Specific silencing of NF-

κB p65 in tumors was shown.

Carbon Nanotubes

Carbon nanotubes (CNT) are cylindrical structures composed of carbon atoms. The

mechanism for CNT to penetrate cell membrane has not been fully revealed yet but they

could mediate efficient cell uptake without apparent cell damage [153]. Pristine CNT are

neutral and insoluble, therefore the application of CNT in siRNA delivery requires

functionalization. Podesta et al. functionalized carbon nanotube with amines (f-CNT). A low

dose of siRNA (4 µg) was complexed with f-CNT (32 µg), which suppressed growth of

human epithelial lung carcinoma in nude mice after five intratumoral injections [154].

Calcium Phosphate

Pittella et al. developed a nanoparticle system for siRNA delivery based on calcium

phosphate [155, 156]. A PEG-block-charge-conversional polymer (PEG-CCP), which

undergoes anionic to cationic conversion in acidic endosomes, forms hybrid micelles with

calcium phosphate and siRNA. The charge conversion leads to nanoparticle disassembly in

endosome. The cationic PEG-CCP destabilizes endosome, and siRNA will be released into
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cytoplasm. This system was able to deliver about 40-ng siRNA per gram of tumor tissue,

and the target gene was silenced in Hela-Luc tumors [156]. Besides those examples

discussed above, iron oxide nanoparticles [157] and layered double hydroxide nanoparticles

[158] have been employed for siRNA delivery. Like calcium phosphate, the rapid

dissolution in acidic endosome compartment provides the advantage of desirable endosome

escape and siRNA release.

Future Directions

The efficacy and safety of siRNA therapeutics have been examined in animal models and

clinical trials. The hope is the launch of a new anticancer regimen that suppresses expression

of proteins that drive malignant transformation and progression. siRNA lacks desired

pharmaceutical attributes, but gaps can be bridged by concurrent optimization in

multifunctional delivery systems. The review attempts to provide an account of the design

and performance of siRNA nanoparticles (Table 2).

Studies of liposomes, polymeric nanoparticles, and inorganic nanoparticles in solid tumor

models illustrated several essential attributes. A strong cationic component is needed for

sufficient siRNA complexation. Pegylation allows prolonged circulation by minimizing

adsorptive interactions with plasma proteins and eventual removal by phagocytes. Particles

with sizes ranging between 10 and 100 nm tend to accumulate in tumors and avoid renal

clearance. Slightly positive zeta potential can stabilize the particle colloids and facilitate

interactions with cell membrane. Addition of targeting ligands tends to enhance cellular

uptake. Gene silencing requires mechanisms for endosome escape. Charge density needs to

be optimized to enable cargo release in cytoplasm but with limited premature disassembly.

These factors parallel lessons learned from gene and antisense oligodeoxynucleotide

delivery [159–164]. Alternatively, all of these functional domains can be incorporated into

one polymer by chemical synthesis (e.g., Dynamic PolyConjugate) [165–167].

Rational design of siRNA delivery system requires multiscale pharmacokinetic optimization

of systemic and cellular processes [168]. Future studies of siRNA delivery may focus on the

following areas. Pegylation renders long-circulating vehicles. However, anti-PEG antibodies

have been detected in mice [169]. Dextran, a hydrophilic carbohydrate, has been studied to

minimize the interactions with plasma proteins [170]. Exploring polymers to shield the

charges without immune stimulation can advance the design of siRNA delivery systems. As

ligands of toll-like receptors (TLR) [15], dsRNA may act as adjuvant to generate high titers

of anti-vehicle antibodies after repeated dosing [169]. This imposes limits on the dose and

frequency of a given therapy. Another observation is that extravasation and penetration vary

quantitatively among tumor types. Accumulation of siRNA-nanoparticle in tumor tissue is

relatively low. Using physically guided targeting (i.e., magnetic) may improve cellular

exposure. An example of this is iron oxide nanoparticles that designed to deliver siRNA

[157]. Drug penetration depends on the extent of vascularization [171], with highly

vascularized tumors being more sensitive [172]. Therefore, characteristics of each tumor

type should guide the design. Intriguingly, intracellular studies have shown a disconnection

between endocytosis and gene silencing [59], which may be resolved by careful studies of

siRNA intracellular trafficking. Cytotoxicity of cationic lipids and polymers is an important
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limiting factor. Combinatorial synthesis and high throughput screening have been utilized to

generate low-toxicity lipids for siRNA delivery to liver [173, 174]. Efficient target gene

silence also requires the timely release of siRNA into cytoplasm. The acidic environment of

endosome and the reductive potential of cytoplasm can be exploited to trigger the

breakdown of nanoparticle [175, 176]. Taken together, system optimization is best achieved

by using integrated and tailored approaches in characterizing complexation, distribution,

penetration, cellular uptake, and trafficking in parallel in relevant models for specific tumor

types [55, 177].
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Fig. 1.
Biological barriers to siRNA-particles trafficking. Extracellular barriers RNase

degradation, opsonization, macrophage uptake, renal clearance, extravasation, extracellular

matrix (ECM) trapping, and internalization. Intracellular barriers endosome escape and

siRNA release
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