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Abstract

Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular
dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically
and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to
EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However,
50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative
disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and
related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-
segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning
in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a
patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was
accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at
the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes
expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-
microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in
muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology
through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning.
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Introduction

The nuclear envelope (NE) is composed of the nuclear

membranes, nuclear lamina and nuclear pore complexes and

encloses the chromatin in eukaryotic cells. Lamin intermediate

filament proteins are the major structural components of the NE

and polymerize to form a fibrous meshwork that underlies the

nucleoplasmic face of the inner nuclear membrane. This nuclear

lamina is attached to the inner nuclear membrane through

interactions with multiple integral inner nuclear membrane (INM)

proteins [1]. Together, these proteins form a structural network

that plays a vital role in supporting the NE and maintaining

nuclear integrity, whilst also contributing to chromatin organiza-

tion and regulation of gene expression (reviewed in [2]).

Mutations in genes encoding NE proteins are associated with a

range of tissue-restricted inherited disorders that can affect striated

muscle, bone, fat or neurons and in some cases cause premature

ageing syndromes [3]. Most strikingly, different mutations in one

gene – the LMNA gene that encodes A-type nuclear lamins – can

cause many diseases, which have collectively been termed

laminopathies [4]. Diseases affecting striated muscle are the most

common of the laminopathies and include autosomal dominant
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and recessive Emery-Dreifuss muscular dystrophy (EDMD2 and

EDMD3, respectively; OMIM#181350), limb-girdle muscular

dystrophy (LGMD) type 2B and dilated cardiomyopathy and

conduction system disease (CMD) type 1A [5–8]. These diseases

share the common feature of cardiomyopathy, but EDMD and

LGMD also involve progressive muscle wasting and weakness. In

all cases, premature sudden death can result from cardiac

arrhythmia and conduction defects.

Striated muscle disease, in particular EDMD, can also be

caused by mutations in genes encoding other NE proteins. An X-

linked form of EDMD (EDMD1; OMIM#310300) is caused by

mutations in EMD, that encodes the integral INM protein emerin

[9]. Together, mutations in LMNA and EMD account for around

40% of cases of EDMD [10]. Rare mutations in the genes

encoding FHL1, TMEM43 (also named LUMA), nesprin-1 and

nesprin-2 have also been reported [11–13]. Interestingly, A-type

lamins, nesprins and emerin all interact with each other [14–16],

contributing to a network that connects the nuclear lamina to the

cytoskeleton, termed the LINC (Linker of Nucleoskeleton and

Cytoskeleton) complex [17]. Furthermore, interactions are often

perturbed by muscle disease-causing mutations, indicating that this

network of interactions plays an important role in muscle function

[12,18,19].

The central components of the LINC complex in mammals are

SUN and nesprin proteins that reside in the INM and outer

nuclear membrane (ONM), respectively. The conserved SUN and

KASH domains of the respective proteins interact in the

perinuclear space to form a bridge spanning the INM, perinuclear

space and ONM that connects the nuclear lamina to the

cytoskeleton. The nucleoplasmic N-termini of the SUN proteins,

SUN1 and SUN2, interact with the nuclear lamina, anchoring the

LINC complex at the NE [20–22]. In turn, the cytoplasmic

domains of the nesprins connect to the cytoskeleton. There are 4

nesprin isoforms encoded by different genes. Giant isoforms of

nesprins-1 and -2 contain an N-terminal calponin homology

domain responsible for actin binding [23,24] and linkage to the

centrosome through microtubules and their motor proteins [25].

Nesprin-3 connects to the cytoplasmic intermediate filament

network through interaction with plectin [26], whilst nesprin-4 is

specific to epithelial cells and connects the NE to microtubules via

the kinesin-1 motor protein [27].

There are several proposed mechanisms to explain the tissue

specificity of EDMD and other laminopathies, which centre

around the ‘‘gene expression’’ and ‘‘structural’’ hypotheses [28].

Current evidence strongly supports the ‘‘structural hypothesis’’,

which suggests that muscle-associated laminopathies primarily

result from weakening of the structural networks of the nuclear

lamina and cytoskeleton and the LINC complex that connects

these two networks [29]. Since myocytes are subject to recurrent

mechanical strain from contractile forces, weakening of these

structural networks renders the cells particularly susceptible to

damage. However, the LINC complex is also vital for correct

myonuclear positioning [30–33] and defects in this process are

implicated in impaired muscle function [34,35].

Despite the genetic studies so far carried out, causative

mutations have been identified in only approximately 50% of

EDMD and related muscle disease cases [10]. It is therefore highly

likely that mutations in additional genes contribute to the disease.

Furthermore, there is significant heterogeneity in disease severity

even within families carrying the same gene mutation [36–40],

which has led to the suggestion of modifier genes [41–43].

Given that SUN1 and SUN2 interact with at least four of the

known muscle disease-associated NE proteins and that these

interactions can be perturbed by disease-causing LMNA and

EMD mutations [44], we investigated whether the SUN1 and

SUN2 genes may also be mutated in some individuals. Screening

of the SUN1 and SUN2 genes in a large cohort of patients with

EDMD and phenotypically related myopathies identified SUN1
and/or SUN2 variants in several patients. Presence of SUN1 or

SUN2 variants correlated with increased disease severity in

patients with EDMD carrying mutations in other genes, thus

identifying SUN1 and SUN2 as modifiers of the EDMD disease

phenotype. We further provide evidence that these mutations

disrupt nuclear-cytoskeletal connection and nuclear positioning,

supporting the hypothesis that muscular dystrophies arise from

defective nuclear-cytoskeletal coupling.

Results

Screening SUN1 and SUN2 genes in a cohort of patients
with EDMD and related myopathies

We analyzed DNA from 175 unrelated patients with EDMD

and related myopathies, who had previously undergone screening

for mutations in the LMNA, EMD, SYNE1/SYNE2 alpha and

beta (encoding short isoforms of nesprin-1 and nesprin-2,

respectively) and FHL1 genes and in whom no causative mutation

had been found. These included both sporadic cases and index

patients from familial cases. Furthermore, there have been several

reports of modifiers of the phenotype of LMNA-linked muscle

diseases [41–43]. We therefore also screened EDMD patients

carrying identified LMNA, SYNE1/SYNE2 alpha and beta and

EMD mutations to determine whether mutation of SUN1 or

SUN2 may influence disease phenotype. Most individuals were of

Caucasian origin, except where otherwise stated.

The 23 exons of the SUN1 gene (see Figure S1) and 19 exons of

the SUN2 gene (ENSG00000100242, ENST00000405510),

including intron/exon boundaries and promoter regions were

analyzed. DNA was amplified using PCR and analyzed by direct

Sanger sequencing. In total, we found 34 single nucleotide

polymorphisms within the coding regions of SUN1 and SUN2,

18 of which were classified as rare, non-synonymous changes

following analysis of their frequencies in sequenced genome

Author Summary

Emery-Dreifuss muscular dystrophy (EDMD) is an inherited
disorder involving muscle wasting and weakness, accom-
panied by cardiac defects. The disease is variable in its
severity and also in its genetic cause. So far, 6 genes have
been linked to EDMD, most encoding proteins that form a
structural network that supports the nucleus of the cell
and connects it to structural elements of the cytoplasm.
This network is particularly important in muscle cells,
providing resistance to mechanical strain. Weakening of
this network is thought to contribute to development of
muscle disease in these patients. Despite rigorous screen-
ing, at least 50% of patients with EDMD have no
detectable mutation in the 6 known genes. We therefore
undertook screening and identified mutations in two
additional genes that encode other components of the
nuclear structural network, SUN1 and SUN2. Our findings
add to the genetic complexity of this disease since some
individuals carry mutations in more than one gene. We
also show that the mutations disrupt connections between
the nucleus and the structural elements of cytoplasm,
leading to mis-positioning and clustering of nuclei in
muscle cells. This nuclear mis-positioning is likely to be
another factor contributing to pathogenesis of EDMD.
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databases (Table S1, Figure S3). Three of these variants did not

segregate with disease in the respective families (Figure S2). In nine

unrelated families or sporadic cases, however, we identified 10 rare

non-synonymous variants in SUN1 and SUN2 for which we have

obtained evidence of pathogenic effects, as deduced from genetic,

phenotypic and/or functional data (Figure 1A).

Putative disease-associated SUN1 and SUN2 variants in
patients with EDMD-like phenotypes

We identified 5 rare, non-synonymous SUN1 and/or SUN2
variants in 3 individuals who lacked mutations in other genes but

had EDMD or related myopathy phenotypes (Table 1). Sporadic

patient MD-11 carried a single SUN2 p.R620C sequence

variation. We had no access to DNA from family members for

this patient, but the high degree of evolutionary conservation of

R620 is supportive of disease-association (Figure S3). Patient MD-

1 carried compound heterozygous SUN1 p.G68D and p.G338S

variants. For patient MD-1 we had access to DNA from family

members and observed apparent recessive inheritance, with one

mutation coming from each of the unaffected parents (Figure 1B).

SUN1 p.G338S was also present in the reference population at

low frequency (see Table S1). These residues are located within the

Figure 1. SUN1 and SUN2 variants identified and associated family pedigrees. (A) Schematic diagram of the SUN1 and SUN2 protein
domain organization and locations of disease-associated variants identified in our cohort. Mutation SUN1 M50T, indicated in purple, did not disrupt
LINC complex function in migration assays and thus may not be truly disease-causing. The mapped lamin A/C (green) and emerin (orange) binding
sites, located in the nucleoplasmic N-terminal domain, are indicated. Regions of high hydrophobicity and the transmembrane domain are shown in
grey and black, respectively. Coiled-coil domains responsible for oligomerization (blue) and the highly conserved SUN domain (red), found within the
luminal C-terminal domain, are also indicated. (B) Pedigree with recessive inheritance of compound heterozygous SUN1 variants. (C) Pedigrees where
severely affected index cases carry SUN1 and/or SUN2 variants in combination with other gene mutations. Filled circles/squares indicate affected
females/males. Circles containing a dot, in family 3, indicate unaffected female carriers of the X-linked EMD mutation. Arrows indicate index patients.
doi:10.1371/journal.pgen.1004605.g001
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poorly conserved N-terminal domain of the protein and, in this

context, are moderately conserved (Figure S3), but functional data

presented below present compelling evidence of the involvement

of both mutations in disease causation. Sporadic patient MD-12

carried heterozygous changes in both SUN1 and SUN2, encoding

SUN1 p.W377C and SUN2 p.E438D, respectively. E438 is

conserved in mammals, whilst W377 is conserved across all species

examined (Figure S3).

SUN1 and SUN2 variants with disease modifying effects in
patients with co-segregating mutations in other genes

Because patients with EDMD-like phenotypes exhibit variable

disease severity that could be explained by mutations or

polymorphisms in additional genes, we screened for SUN1 and

SUN2 variants in patients with known mutations in causative

genes. SUN1 or SUN2 variants were indeed present in some

patients from families with LMNA or X-linked EMD mutations

(Table 2; Figure 1C). These sequence changes correlated with

increased disease severity. In one example, a SUN1 p.A203V

polymorphism in patient MD-3 co-segregated with a previously

reported EMD p.L84Pfs*6 mutation in two brothers with

unusually severe EDMD (Figure 1C, Family 3) [39]. The EMD
p.L84Pfs*6 mutation, which abolishes emerin expression, has been

reported in an unrelated family, where the course of the disease

was significantly milder EDMD with later age of onset and no loss

of ambulation [45]. Another unrelated patient carrying EMD
p.L84Pfs*6 was included in this study but no SUN1 or SUN2
variants were found and their phenotype was similar to that

described by Manilal et al. [45]. In another case, the SUN1
p.G76A mutation, when combined with EMD p.A56Pfs*9 in a

previously described Korean patient (MD-4), led to a very severe

clinical picture with complete atrioventricular block requiring pace

maker implantation at age 14 years [46]. Similarly, SUN1
p.W377C was detected in combination with LMNA p.R453W

in patient MD-5. This individual had severe disease and died early

at the age of 34 years from heart failure. The patient’s son,

carrying LMNA p.R453W only, did not show clinical signs of

contractures or muscular weakness at age 10 years. LMNA
p.R453W is a common EDMD-associated LMNA mutation and is

generally not associated with severe cardiac disease, suggesting

that, in patient MD-5, SUN1 p.W377C had a modifying effect to

increase disease severity [47,48]. The same SUN1 p.W377C

variant was detected in patient MD-12, who had an EDMD-like

phenotype but did not have mutations in EMD or LMNA but

carried a concurrent SUN2 p.E438D variant, as described above.

We detected SUN2 mutations in combination with LMNA
mutations in two additional index cases. Patient MD-6 carried

LMNA p.T528K and SUN2 p.A56P, whilst patient MD-7 carried

LMNA p.R98P and SUN2 p.V378I (Table 2; Figure 1C). In both

cases, the LMNA mutation had arisen de novo, whilst the SUN2

mutation was inherited from an unaffected parent. Again, the

disease expression in both index patients was more severe than is

typical for EDMD [49,50], with early onset at age 1 and 4 years,

respectively, and early heart involvement including heart trans-

plantation before age 20 years (Table 2).

We also identified two SUN2 variants, encoding variants

p.M50T and pV378I, in patient MD-2 who had hypertrophic

cardiomyopathy and also carried a mutation in MYBPC3
(p.G148R), which encodes a myosin binding protein. The same

MYBPC3 mutation was previously reported in a Dutch family,

where a severely affected index patient had compound heterozy-

gous mutations in MYCBP3 but other family members carrying

only p.G148R were either asymptomatic or developed cardiomy-

opathy late in life [51]. This MYBPC3 mutation was present in

both patient MD-2 and his father (Figure 1C; S. Waldmueller,

personal communication). Patient MD-2 presented as a 6 month-

old boy with hypertrophic cardiomyopathy and died at 16 years

from heart failure. His father, who carries the SUN2 p.M50T

variant but not p.V378I, is asymptomatic. Thus, the SUN2
p.V378I variant appears to have a dramatic effect on disease

severity. Notably, this variant is present in the reference

population at low frequency (see Table S1), suggesting that it

may be a relatively common genetic modifier of inherited

cardiomyopathy.

SUN1 and SUN2 disease-associated variants disrupt
centrosome reorientation and nuclear movement in
NIH3T3 fibroblasts

Our genetic results suggest that mutations or polymorphisms in

SUN1 and SUN2 may cause muscular dystrophy and act as

modifiers of EDMD and cardiomyopathy. To obtain additional

evidence that these variants play a role in pathophysiology, we

examined the effects of several variants on a known function of the

LINC complex, namely centrosome orientation and nuclear

movement in migrating cells. SUN2, along with the nesprin-2G

isoform, assembles into transmembrane actin-associated nuclear

(TAN) lines that couple actin cables to the nucleus to move it

rearward and reorient the centrosome toward the leading edge in

migrating NIH3T3 fibroblasts [52,53]. While SUN1 is not in TAN

lines, it also functions in connecting the nucleus to the cytoskeleton

via the LINC complex.

We expressed three myc-SUN1 and three myc-SUN2 variants in

NIH3T3 fibroblasts at the edge of a wounded monolayer by DNA

microinjection and stimulated nuclear movement and centrosome

reorientation with the serum factor, lysophosphatidic acid (LPA).

Upon stimulation, non-expressing NIH3T3 cells or NIH3T3 cells

exogenously expressing wild-type (WT) SUN1 or SUN2, as well as

the variant SUN2 M50T, reoriented their centrosomes (Figure 2A–

B). Notably, SUN2 p.M50T did not appear to influence disease

Table 1. Putative disease-causing variants in SUN1 and SUN2 in patients with EDMD-like phenotypes.

Family Index case SUN1 variant SUN2 variant Other mutations Disease phenotype

1 MD-1 p.G68D p.G338S none none Male; age at onset 10 years; mild muscle weakness; rigid spine;
serum creatine kinase elevation 6X; no cardiac involvement; last
clinical examination at age 10 years; sporadic case.

11 MD-11 none p.R620C none Sporadic EDMD-related myopathy, no other clinical information
available.

12 MD-12 p.W377C p.E438D none Heart rhythm disturbances at age 34 years; partial lipodystrophy
on left lower leg; sporadic case

doi:10.1371/journal.pgen.1004605.t001
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severity in family 2. In contrast, cells expressing the putative disease-

causing SUN1 variants, G68D, G338S or W377C, inhibited

centrosome reorientation by blocking rearward positioning of the

nucleus (Figure 2A–B). Similarly, cells expressing SUN2 A56P or

R620C failed to reorient their centrosome due to an inability to

position their nuclei rearward of the cell centroid (Figure 2A–B). All

of the expressed SUN1 and SUN2 variants had a normal nuclear

localization similar to the wild-type proteins (Figure 2A). The

centrosome orientation defect in cells expressing the SUN variants

occurred due to defective rearward nuclear movement and not

disruption of positioning of the centrosome at the cell centroid

(Figure 2C). Hence, five putative disease-causing or disease-modify-

ing SUN variants blocked rearward nuclear movement in migrating

NIH3T3 fibroblasts and it can be concluded that these mutants

disrupt LINC complex function.

Expression of LINC complex components is altered in
patient myoblasts with compound heterozygous SUN1
mutations

Having established that some of the variants identified in our

patient cohort disrupted LINC complex function in fibroblasts, we

next wished to examine their role in muscle cells. We were able to

obtain primary myoblasts from patient MD-1, carrying compound

heterozygous SUN1 p.G68D/p.G338S variants. To gain initial

insight into the cellular effects of these mutations, we examined

expression of LINC complex components and known SUN1 binding

partners in the myoblasts by immunofluorescence microscopy. Since

nesprin-1 is not significantly expressed in myoblasts [54,55] (Figure

S4), we stained for nesprin-2, lamin A/C, emerin, SUN1 and SUN2.

No obvious defects in localization of SUN1, SUN2 or their

interacting NE partners were observed, but expression of SUN1

and nesprin-2 at the NE was enhanced in the patient myoblasts

(Figure 3A–B). Quantification of fluorescence intensity suggested that

their expression was increased approximately 2-fold.

Since fluorescence intensity does not always provide an accurate

reflection of total protein levels, we then examined total protein

expression level by Western blot and found that SUN1 levels were

elevated 8-fold in the patient versus control myoblasts (Figure 3C,E).

Consistent with the fact that SUN proteins form complexes with, and

are responsible for anchoring of nesprins in the ONM, we also

observed a 4-fold increase in expression of the intermediate-sized

muscle-enriched isoforms of nesprin-2 [55] in the patient myoblasts

(Figure 3D–E). However, it remains possible that the bands observed

are degradation products of nesprin-2 giant. In contrast, levels of

SUN2, lamin A/C and emerin were not significantly altered in the

patient cells (Figure 3C,F). To exclude the possibility that the observed

changes were due to different levels of background differentiation in the

control and patient cultures, we quantified expression of myogenin, an

early marker of myogenic differentiation, and found no detectable level

in either culture (data not shown).

Table 2. SUN1 and SUN2 variants with disease-modifying effects in patients with MYBPC3, EMD and LMNA mutations.

Family Index case SUN1 variant SUN2 variant Other mutations Disease phenotype

2 MD-2 none p.M50T p.V378I MYBPC3 p.G148R Male; age at onset 6 months; hypertrophic cardiomyopathy; at
age 9 years ECG showed cardiac arrhythmia, supraventricular
extrasystols, Echocardiogram: right ventricular septum
hypertrophy, first degree atrioventricular block; no muscular
weakness or dystrophy; sinus tachycardia and bradycardia, mild
left ventricular functional impairment; died at age16 years from
heart failure; sporadic case.

3 MD-3 p.A203V none EMD p.L84Pfs*6 Male; age at onset 2 years; severe contractures of neck,
thoracolumbar spine, elbows, and Achilles tendons; Achillotomia
at age 6; loss of ambulation at age 15; moderate to severe muscle
weakness; left anterior hemi-block and ventricular ectopy at age
23; ventricular dilation at age 33; X-linked EDMD [39].

4 MD-4 p.G76A none EMD p.A56Pfs*9 Male; age of onset 1 year, wasting and weakness of shoulder
girdle and limb-girdle muscles; at age 14 severe contractures of
neck, elbow and Achilles tendons, tendon reflexes absent; at age
14 dilated right atrial and ventricular dilation, atrial fibrillation,
complete AV block and junctional escape rhythm; pacemaker
since age 14; CK elevation 4X; X-linked EDMD [46].

5 MD-5 p.W377C none LMNA p.R453W Male; age of onset 8 years; slowly progressive humero-peroneal
muscular weakness; since age 14 rigid spine, contractures of
elbow and Achilles-tendons; at age 25 cardiac disturbances; AV-
block III; heart pacemaker at age 31; died at age 34 of heart
failure; autosomal dominant EDMD.

6 MD-6 none p.A56P LMNA p.T528K Male; age at onset 1 year; delayed early childhood developmental
mile stones; later difficulties in climbing stairs, muscular
weakness; at age 15 tachycardia, extrasystols; at age 17 intra-
ventricular cardiac conduction defects, contractures of elbow and
Achilles tendons; proximal humero-peroneal muscle atrophy,
rigid spine, Gower’s maneuver; CK elevated 3–5X; de novo LMNA
mutation leading to sporadic EDMD.

7 MD-7 none p.V378I LMNA p.R99P Female; age of onset 4 years, diffuse muscular weakness; later
bilateral contractures of the elbows and ankles, dilated
cardiomyopathy, first degree atrioventricular block; at age 14
heart pacemaker; histopathology showed fibrosis of the heart
muscle; at age 15 heart transplantation; de novo LMNA mutation
leading to sporadic EDMD.

doi:10.1371/journal.pgen.1004605.t002
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To address the mechanism of SUN1 elevation in the patient

myoblasts, we examined SUN1 mRNA levels by qPCR and found no

significant increase in mRNA level compared to the control,

indicating that the p.G68D/p.G338S SUN1 variants do not lead

to increased mRNA levels (Figure S4). However, in analyzing mRNA

levels of other LINC complex-associated proteins, we observed a

statistically significant increase in expression of LMNA, SUN2,

SYNE1 and SYNE2. In contrast, EMD (encoding emerin) expression

was decreased in the patient relative to control myoblasts (Figure S4).

SUN1 interaction with emerin is impaired in MD-1
myoblasts

One hypothesis to explain NE-associated muscle diseases is the

‘‘structural hypothesis’’, which suggests that muscle damage occurs

due to weakening of the protein interaction network supporting

the NE [28,56]. To determine whether muscle disease-associated

SUN1 alterations disrupt interactions with other LINC complex

components, we performed immunoprecipitation with anti-SUN1

antibodies on protein extracts from control and patient MD-1

myoblasts and detected co-precipitating proteins. We observed a

reproducible reduction in SUN1 interaction with emerin in the

patient myoblasts, whilst interaction with lamin A/C was not

obviously perturbed (Figure 4A–B). Consistent with the enhanced

recruitment of nesprin-2 to the NE, interaction of SUN1 with

nesprin-2 was also maintained in the MD-1 myoblasts (Figure 4C).

Larger isoforms of nesprin-2 were enriched in the immunopre-

cipitate compared to the initial lysates, indicating a preferential

interaction of SUN1 with these less abundant isoforms. Thus, the

Figure 2. SUN1 and SUN2 variants disrupt nuclear-cytoskeletal coupling in NIH3T3 fibroblasts. (A) Representative immunofluorescence
micrographs of LPA-stimulated NIH3T3 fibroblasts expressing SUN1 or SUN2 wild-type (WT) or variant proteins. Cells were immunostained for myc
(green), tubulin (red) and DAPI (blue). Location of centrosome (arrows) was determined by the center of microtubule array. Bar, 20 mm. (B)
Quantification of centrosome reorientation in LPA-stimulated NIH3T3 fibroblasts expressing the indicated SUN variants. Significant differences are
indicated by * with a,0.05 based on Student’s t-test when the sample is compared to non-expressing NIH3T3 fibroblasts. (C) Quantification of
nucleus and centrosome position relative to the cell centroid in NIH3T3 fibroblasts expressing the indicated SUN variants. Positive values are toward
the leading edge, negative values toward the cell rear. Data are from at least three independent experiments for each sample. Significant differences
are indicated by * with a,0.05 based on Student’s t-test when the sample is compared to non-expressing NIH3T3 fibroblasts.
doi:10.1371/journal.pgen.1004605.g002
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Figure 3. Expression of LINC complex proteins is increased in patient MD-1 (SUN1 p.G68D/p.G338S) myoblasts. (A) Control and MD-1
myoblasts were fixed in methanol and analysed by immunofluorescence microscopy using SUN1, SUN2, emerin, nesprin-2G and lamin A/C
antibodies, as indicated, together with DAPI staining of DNA. Scale bar, 22 mm. (B) Mean fluorescence intensity of SUN1, SUN2, emerin, nesprin 2 and
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SUN1 p.G68D/p.G338S variants in patient MD-1 appear to

specifically disrupt interaction with emerin.

We confirmed defective interactions with emerin in HEK293

cells transiently expressing GFP-emerin and myc-SUN1 con-

structs. SUN1 was immunoprecipitated using anti-myc antibodies

and co-precipitating GFP-emerin detected by Western blotting.

We observed a significant reduction in interaction of emerin with

both SUN1 G338S and W377C, whilst there was only a modest

lamin A/C was measured in individual DAPI-stained nuclei using an Olympus Scan‘R screening station and analysed using Scan‘R analysis software.
The results are presented as mean 6 S.E. of 1000 cells taken from at least 3 independent experiments. **P#0.05. Significant P-value for SUN1 was
P = 0.009. (C) Total protein extracts from control (C) and patient MD-1 myoblasts were Western blotted using antibodies against LINC complex-
associated proteins, as indicated. (D) Samples prepared as in A were Western blotted using nesprin-2 (N2–N3) antibodies. (E–F) Protein expression
was quantified by densitometric analysis of at least 3 independent experiments. The results are presented as mean 6 S.E. *P#0.05 and **P#0.01.
Each significant P- values are as follows: SUN1 P = 0.05, a-tubulin P = 0.003, nesprin-2 P = 0.002. P- value for emerin was P = 0.06.
doi:10.1371/journal.pgen.1004605.g003

Figure 4. Emerin binding to p.G68D/p.G338S SUN1 is reduced in vivo. (A) SUN1 was immunoprecipitated from control (C) or MD-1 myoblast
soluble lysates using 2383 SUN1 antibodies and samples Western blotted to detect co-immunopreciptated proteins. (B) Densitometric analysis of
SUN1, lamin A/C and emerin bands from immunoprecipitated samples is plotted in arbitrary units (A.U.). (C) SUN1 was immunoprecipitated from
control or MD-1 myoblasts and co-precipitated nesprin-2 was detected using N2–N3 antibody. Size markers (kDa) are indicated. Note that larger
nesprin-2 isoforms are enriched in the immunoprecipitate compared to the lysate. (D) HEK293 cells were co-transfected with myc-SUN1 mutant and
GFP-emerin plasmids and harvested after 48 hours. Co-precipitated GFP-emerin was detected by immunoblotting using GFP antibodies (myc-SUN1
IP). (E) Densitometric values of immunoblotted GFP-emerin bands are reported in arbitrary units (A.U.). (F) Human fibroblasts from an EDMD2 patient
carrying the R401C LMNA mutation were transfected with SUN1-WT or SUN1-W377C cDNAs and fixed 48 hours after transfection. Lamin A/C was
labelled using specific antibodies and revealed by FITC-conjugated secondary antibody (green). SUN1 was detected using Cy3-conjugated anti-myc
antibody (red). Nuclei were counterstained with DAPI. Images show pairs of daughter cells from recent cell divisions. Increased dysmorphic nuclei
with nuclear blebbing and honeycomb structures (arrows) are observed in double-mutant cells. The distance between daughter cells has been
reduced using Photoshop 7 to allow magnification. (G) Percentage of dysmorphic nuclei in EDMD2 cells left untreated (untransfected), transfected
with WT-SUN1 or transfected with W377C-SUN1 is reported in the graph as the mean of three independent experiments. Statistically significant
differences (P,0.05) relative to controls or WT-transfected samples are indicated by asterisks.
doi:10.1371/journal.pgen.1004605.g004
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decrease in interaction with SUN1 G68D (Figure 4D–E). This

correlates with the close proximity of G338 and W377 to the

emerin binding site on SUN1 (see Figure 1A; [44]).

SUN1 W377C increases the severity of nuclear defects in
EDMD2 fibroblasts

Abnormalities in nuclear morphology and a honeycombed

pattern of protein expression at the NE are commonly observed in

EDMD fibroblasts obtained from patients with LMNA or EMD
mutations [57–59]. We did not observe any obvious defects in

nuclear morphology or protein localization in myoblasts from

patient MD-1 (Figure 3A) or in cells transiently expressing a range

of SUN1 or SUN2 mutants (for example, see Figure 2). However,

we sought to determine whether SUN1 mutants have a modifying

effect to increase the severity of nuclear defects when expressed in

combination with mutations in LMNA or EMD. To achieve this,

we expressed SUN1 W377C, found in combination with a LMNA
R453W mutation in patient MD-5, in fibroblasts obtained from an

EDMD2 patient carrying LMNA R401C. Cells expressing SUN1

W377C had a 4-fold increase in the level of nuclear dysmorphol-

ogy, in terms of increase in nuclear blebbing and formation of

honeycomb structures (Figure 4F, arrows), compared to those

expressing WT SUN1 (Figure 4F–G). Cells expressing WT SUN1

had a 2-fold reduction in nuclear abnormalities compared to

untransfected cells, suggesting a protective effect of SUN1 over-

expression.

MD-1 myoblasts exhibit an enhanced rate of
differentiation but myonuclei are disorganized

Exogenous expression of EDMD2-associated lamin A/C

variants and disruption of endogenous lamin A/C, emerin or

the LINC complex all affect myoblast differentiation [60–63].

Furthermore, studies in Drosophila indicate that the LINC

complex is required for correct myonuclear spacing [34]. We

therefore determined whether the myoblasts carrying SUN1

variants had defects in their ability to differentiate to form mature,

multinuclear myotubes. In order to account for inherent

differences in differentiation capacity between cell lines, we

compared MD-1 cultures with a total of 5 control cultures

independently established from different individuals. SUN1

staining was clearly evident at the nuclear envelope of MD-1

myotubes, as previously observed in myoblasts (Figure 5A).

However, we found that the MD-1 myoblasts exhibited an

increased rate of differentiation, both in terms of the number of

myotubes and the number of nuclei per myotube. There was a

striking increase in the percentage of nuclei within myotubes

(defined as muscle-specific caveolin3-positive cells containing at

least 3 nuclei) in patient cultures (2866% versus 5869% in

control and MD-1 cultures, respectively; mean 6 sem) and a 5-

fold increase in myotubes possessing more than 10 nuclei

(Figure 5A–E). Strikingly, 45% of these myotubes displayed gross

nuclear misalignment and clustering, with up to 30 nuclei per

myotube in some instances (Figure 5D,F).

Together with our earlier observation of defective nuclear

repositioning in fibroblasts expressing disease-associated variants

and in double-mutant EDMD2 fibroblasts, these findings suggest-

ed that mutations in SUN1 and SUN2 disrupt connections with

the cytoskeleton, thereby perturbing nuclear anchorage. Studies

have previously shown that SUN1 and SUN2 become concen-

trated at the poles of the nucleus during human primary myoblast

differentiation and that this polarization is linked to correct

myonuclear spacing [32]. We therefore examined SUN1 and

SUN2 polarization in patient MD-1 myotube nuclei and found

that, whilst SUN1 polarization was normal (Figure S5), SUN2

failed to polarize in clustered nuclei (Figure 5D,G). In keeping

with earlier observations in myoblasts, we also found that nesprin-

2 fluorescence intensity was significantly increased in all patient

myotubes (Figure S6). Ultrastructural analysis showed that myo-

nuclear clustering occurred within single MD-1 myotubes

(Figure 5H) and further demonstrated that enlarged highly

differentiated myotubes with misaligned nuclei were devoid of

detectable sarcomeric structures that were visible in controls

(Figure 5H, arrowheads).

Pericentrin recruitment and microtubule nucleation at
the NE is defective in MD-1 myotubes

During myotube formation, the microtubule network is

reorganized into a parallel array along the longitudinal axis of

the myotube and is nucleated from the nuclear surface, which

becomes the primary microtubule organizing centre (MTOC) of

the cell [64]. As part of this process, centrosomes undergo partial

disassembly and centrosomal proteins, including c-tubulin,

pericentrin and PCM-1, become concentrated at the nuclear

periphery [65,66]. We hypothesized that SUN proteins contribute

to centrosomal protein recruitment to the NE and that polariza-

tion of SUN proteins at the nuclear poles may promote linear

nuclear organization in myotubes. We therefore investigated the

recruitment of centrosomal proteins to the NE during myogenesis,

using pericentrin as a marker. In control myotubes we found that

pericentrin was recruited to the NE and there was a suggestion

that it concentrated at the poles of the nuclei, in a similar manner

to SUN2 (Figure 6A). In contrast, pericentrin failed to accumulate

to any significant degree at the nuclear surface in MD-1 myotubes

and was instead found in cytoplasmic foci. These findings support

our hypothesis that SUN proteins are involved in the recruitment

of pericentrin to the NE in myotubes.

We next investigated whether microtubule nucleation from the

NE was disrupted in the patient myotubes by observing

microtubule regrowth following nocodazole-induced depolymer-

ization. In control cells, microtubules could be clearly observed

emanating from around the nuclear surface after nocodazole

wash-out for 30 minutes (Figure S7). In contrast, the microtubule

network in patient cells was very disorganized and often did not

appear to be attached to the NE, suggesting a defect in

microtubule nucleation, anchoring or organization. To investigate

this further, we performed a short 5-minute nocodazole wash-out

to detect sites of microtubule nucleation. Microtubule asters

regrowing from the nuclear envelope were observed in control

myotubes (Figure 6B, panel a) and committed myoblasts (Fig-

ure 6B, panel b). Microtubule nucleation correlated with sites of

pericentrin concentration at the nuclear poles (arrows in

Figure 6B). In MD-1 myotubes and committed myoblasts,

microtubules were seen to nucleate mainly from multiple sites in

the cytoplasm, corresponding with the locations of cytoplasmic

pericentrin foci (Figure 6B, arrowheads). Counting fifty myotubes

per sample, we could demonstrate that the mean number of

microtubules nucleating from myotube nuclei was significantly

reduced in MD-1 (Figure 6D).

These data suggested that centrosome attachment to the

nucleus may also be disrupted in myoblasts from this patient.

We therefore examined nuclear-centrosomal distance in MD-1

myoblasts and indeed observed a 2-fold increase in separation

between the nucleus and centrosomes in the patient myoblasts

compared to controls (mean distance 4.34 mm versus 2.07 mm,

respectively) (Figure 6C,E).

To confirm that loss of pericentrin recruitment to the NE was a

direct consequence of SUN1 mutation, we observed pericentrin
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Figure 5. Enhanced rate of differentiation, nuclear misalignment and clustering in MD-1 myotubes. (A) Immunofluorescence staining of
MD-1 myotubes using SUN1 (green) and desmin antibodies (red). Chromatin was stained with DAPI (blue). Scale bar, 30 mm. (B) Graphical
representation of the percentage of nuclei within myotubes counted in MD-1 and in five independent control cultures. (C) Phase contrast image of
living control and MD-1 cultured myotubes (arrows) showing myonuclear clustering in patient cells. Scale bar, 10 mm. (D) Immunofluorescence
staining of control and MD-1 myotubes with SUN2 (green) and caveolin 3 (red) antibodies. Arrows indicate SUN2 polarization at the nuclear poles in
control cells. (E–F) Graphical representation of the percentage of myotubes with more than 10 nuclei and the percentage of myotubes with
myonuclear clustering in control and MD-1 cultures. Data are presented as mean values 6 S.D. of three independent experiments (50 myotubes per
sample were counted). (G) Graphical representation of the percentage of committed myoblast and myotube nuclei with enrichment of SUN2 staining
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localization in C2C12 myotubes following transient transfection with

myc-SUN1 variants. Pericentrin was absent from the NE of

myonuclei expressing SUN1 G68D, G338S and W377C variants,

but exhibited clear nuclear rim staining in myonuclei expressing WT

SUN1 (Figure 7 A–B). Thus, all 3 mutants tested acted in a dominant

manner in C2C12 cells to displace pericentrin from the NE.

Finally, to directly link the SUN1 mutants to the nuclear

clustering phenotype observed myotubes of patient MD-1, we

assessed the degree of nuclear clustering in myotubes expressing

WT SUN1 and the G68D, G338S and W377C variants. Whilst

22% of myotubes expressing WT SUN1 displayed myonuclear

clustering, this value was increased by 2-fold in the cultures

at the nuclear pole(s). Data are presented as mean values 6S.D. of 3 independent experiments (200 nuclei per sample). (H) Transmission electron
microscopy analysis of control and MD-1 myotubes (see Materials and Methods for details). Sarcomeric structures are evident in control myotubes
(arrowheads), whereas they are absent from MD-1 myotubes showing myonuclear clustering. Arrows indicate myonuclei. Scale bar, 10 mm.
doi:10.1371/journal.pgen.1004605.g005

Figure 6. Impaired pericentrin localization and microtubule nucleation at the nuclear envelope in MD-1 myotubes. (A) Beta-tubulin
(red) and pericentrin (green) double immunofluorescence staining of control and MD-1 myotubes. Chromatin was stained with DAPI (blue). Scale bar,
10 mm. Arrows indicate apparent pericentrin accumulation at the nuclear poles. (B) Control and MD-1 myotubes were treated with nocodazole
followed by 5 min recovery in culture medium to allow microtubule regrowth. Samples were then fixed and stained as in panel A. Panels a and c
show myotubes, whilst panels b and d show committed myoblasts from control and MD-1 cultures, respectively. Arrows in control cells indicate sites
of microtubule regrowth at the nuclear poles, co-inciding with pericentrin localization. Arrowheads in patient cells indicate microtubule regrowth
from cytoplasmic pericentrin foci. (C) Control and MD-1 myoblasts were fixed in methanol and subjected to immunofluorescence analysis using c-
tubulin antibodies to stain the centrosome and DAPI to stain the DNA. Distances between centrosomes and the nuclear periphery (mm) are indicated.
Scale bar, 10 mm. (D) The number of microtubules nucleating from individual myotube nuclei prepared in B was counted and is presented as the
mean 6S.D (n = 50 nuclei per sample). * p,0.05 as calculated using the Student’s t-test. (E) Nucleus-centrosome distance was measured in 100
control and MD-1 myoblasts prepared in C, in two independent experiments, using Leica LAS AF Lite software and analysed using SPSS software. The
median values (thick black lines) were 0.96 and 2.43 mm for control and MD-1 cells, respectively. P = 0.00012. # and * correspond to mild and extreme
outliers, respectively.
doi:10.1371/journal.pgen.1004605.g006
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expressing each of the 3 SUN1 variants (Figure 7C). These

findings confirm that the SUN1 p.G68D and p.G338S mutations

are the primary cause of the failure to recruit pericentrin to the NE

and the defective nuclear positioning in myotubes from patient

MD-1 and further indicate that this is likely to be common to

muscle from patients carrying other SUN1 mutations, including

p.W377C.

In summary, our data demonstrate that muscle disease-associated

alterations in SUN proteins result in loss of nuclear connectivity to

the cytoskeleton. In myotubes, SUN1 mutations disrupt connec-

tions with centrosomal components and the microtubule network,

in particular impairing microtubule organization and nucleation

from the NE. This in turn is likely to lead to impaired myonuclear

positioning in multinuclear myotubes, which we propose may be an

important contributor to muscle dysfunction.

Discussion

We have identified a total of 11 SUN1 and 7 SUN2 rare, non-

synonymous variants in our cohort of EDMD and related

myopathy patients. Ten of these variants, identified in nine

unrelated families, had putative pathogenic effects as deduced

from genetic and functional analyses.

Multiple modes of inheritance of SUN1 and SUN2
mutations

Our data add to an increasingly complex picture concerning the

genetics of EDMD and related myopathies, where multiple genes,

either alone or in combination, can cause or modify the disease

phenotype. The SUN1 and SUN2 variants appear to be inherited

in highly variable manners, with or without the presence of a

mutation in a second gene. In 2 families (families 1 and 2), SUN1
or SUN2 variants were inherited from each of the unaffected

parents of the index patients, strongly supporting an autosomal

recessive mode of inheritance in those families. One sporadic case

carried heterozygous mutations in both the SUN1 and SUN2
genes, suggesting that mutations in the 2 genes could have additive

effects, as has been observed in Sun1/Sun2 knockout mice [30]. In

other instances, the index case carried only one SUN1 or SUN2

Figure 7. Exogenously expressed SUN1 mutants impair pericentrin recruitment to the nuclear envelope. (A) Differentiated C2C12
myotubes transfected with wild-type (WT) SUN1, or the indicated mutants, were labelled with anti-myc (red) and anti-pericentrin antibodies (green).
Desmin antibody (violet) was used as a muscle differentiation marker. Nuclei were counterstained using DAPI. Samples were observed using a Nikon
laser confocal microscope. Bar, 10 mm. (B–C) Transfected myotubes prepared as in A were quantified for the absence of pericentrin staining at the
nuclear envelope (B) and myonuclear clustering (C). Thirty myotubes per sample were counted in two independent experiments. Differences for all
mutants were statistically significant with respect to wild-type-transfected myotubes (P,0.01).
doi:10.1371/journal.pgen.1004605.g007
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variant and often represented a sporadic case, suggestive of either

a dominant de novo mutation or presence of a concurrent

mutation in another, as yet unidentified, gene.

We also identified SUN1 or SUN2 variants in individuals from

4 families harbouring known LMNA or EMD mutations. In all

cases, the SUN1/SUN2 mutation alone did not cause disease in

other family members. However, disease severity was significantly

increased in the individuals carrying both mutations compared to

family members, or unrelated individuals, carrying only the

LMNA or EMD mutation. Furthermore, their phenotype was on

the severe end of the spectrum, as defined by Yates et al. [50].

These findings suggest that some SUN1/SUN2 variants act as

modifiers to increase disease severity. There has been much

speculation as to the existence of modifier genes in EDMD due to

high variability in disease phenotype between affected individuals

within families [37,38,41,47] and there is now some evidence to

support this. In a family with X-linked EDMD caused by an EMD
p.Y105X mutation, disease severity was increased in one

individual due to a second mutation present in the LMNA gene

[42]. Similarly, an individual with severe disease and carrying a

LMNA p.R644C mutation was found to carry a second mutation

in the gene encoding desmin [42].

In our cohort, for some cases (such as patient MD-3) the

increased severity was expressed as clinically more severe muscular

dystrophy [39]. In other cases, the additional presence of a SUN1/
SUN2 mutation was associated with more severe cardiac disease.

For example, patient MD-5 from family 5, carrying both LMNA
p.R453W and SUN1 p.W377C mutations, developed cardiac

disturbances at age 25 and died from heart failure at age 34, which

is much earlier than is typical for EDMD patients [50].

Furthermore, LMNA p.R453W is a relatively common mutation

that has been reported in at least 15 individuals with EDMD and is

usually associated with mild disease [8,48,67–70]. Thus, it is likely

that the SUN1 mutation carried by patient MD-5 contributed to

their increased disease severity. We also identified SUN1
p.W377C in combination with SUN2 p.E438D in a sporadic

case, supporting the idea that a mutation in a second gene is

required for disease causation in this instance. Further support for

a modifying role for the p.W377C mutation came from the ability

of this mutant to worsen nuclear dysmorphology when expressed

in LMNA R401C patient fibroblasts.

Individuals MD-6 and MD-7 (carrying a SUN2 variant in

addition to LMNA T528K and R99P mutations, respectively) also

had more severe disease than is typical for EDMD, with early

onset at age 1 and 4 years, respectively, and unusually early

requirement for heart transplantation. In each of these sporadic

cases, the LMNA mutation arose de novo and so no comparisons

can be made with family members, however, their clinical

phenotype is consistent with the suggestion that the SUN2
variants contribute to increased disease severity. Whilst our genetic

and cell-based data strongly support a modifying role for SUN
mutations in some patients, studies involving larger patient cohorts

will be necessary to prove this conclusively.

For 8 of the rare, non-synonymous variants identified in our

cohort, there was a lack of compelling evidence of their disease

association. However, given the complex interplay between muta-

tions in different genes, more investigation is required before entirely

ruling out their involvement. In particular, SUN1 p.V846I was found

in an isolated sporadic case and thus no co-segregation analysis could

be performed to support its disease association. Yet this is a mutation

of highly conserved residue (Figure S3) that lies within the SUN

domain that is involved in nesprin binding. Thus it will be important

in the future to utilize functional studies to investigate the impact of

such mutations on LINC complex interactions.

Despite our findings increasing the number of known EDMD-

associated genes to 8, still almost 50% of patients in our cohort

have no identified mutations in any of these genes. Most of these

patients represent sporadic cases, with no family history of disease,

making mutation screening difficult. Furthermore, since 6 of the

known genes each account for only a small percentage of cases, it

is likely that there are multiple genes remaining to be identified.

Proteins associated with the LINC complex are clearly very strong

candidates and there are several such proteins that should be

examined as a priority, including Samp1 [71,72].

Muscular dystrophy-associated SUN1 and SUN2 variants
disrupt nuclear-cytoskeleton connection and nuclear
positioning

Through the various nesprin isoforms expressed at the ONM,

the LINC complex mediates attachment to all three cytoskeletal

filament networks [17,73]. In this study, we have demonstrated, in

several different systems, that muscular dystrophy-associated

mutations in SUN1 or SUN2 impair nuclear coupling to the

both actin and microtubule networks and disrupt nuclear

movement and positioning.

In mouse NIH3T3 fibroblasts, five out of the six SUN1 and

SUN2 variants that we examined inhibited rearward movement of

the nucleus, which has previously been shown to be achieved

through LINC complex attachment to actin cables closely

associated with the nuclear surface [53]. Our data strongly

indicate that at least five of the variants identified in our patient

cohort have a negative functional impact upon nuclear-cytoskel-

etal connection via the LINC complex, which is likely to be a

major contributor to muscle disease pathophysiology. One of the

variants examined, SUN2 p.M50T, did not impair rearward

nuclear movement, suggesting that this variant is not disease-

causing and this is entirely possible given the complex genetics in

the individual carrying this mutation (patient MD-2). In agree-

ment with our findings, EDMD-associated lamin A variants were

recently shown to cause a similar defect in nuclear movement in

NIH3T3 cells [52] and disrupted nuclear-cytoskeletal coupling

[74].

We also observed defects in nuclear positioning in differentiat-

ing myotubes derived from patient MD-1, carrying compound

heterozygous SUN1 p.G68D/p.G338S mutations, which is

consistent with recent findings that proper SUN1 and SUN2

recruitment to the NE is required for myonuclear spacing [32]. In

strong support for a direct role of SUN proteins, nuclear

positioning in skeletal muscle is disrupted in double Sun1/Sun2

knockout mice or in mice with targeted disruptions of nesprin-1/

nesprin-2 and this leads to clustering similar to that observed in

our patient myotubes [30,31,75]. Thus, the phenotype we

observed in patient MD-1 is consistent with a defect in the LINC

complex. Several recent studies have shown that myonuclear

position is controlled by nuclear attachment to the microtubule

network and that this is mediated by the LINC complex

[34,35,76–78]. At the onset of myoblast differentiation, proteins

involved in microtubule nucleation redistribute from the centro-

some to the NE. Our observations of impaired pericentrin

recruitment and microtubule nucleation/organization at the NE

in the patient myotubes therefore support a model whereby

mutations in SUN proteins impair nuclear-microtubule connec-

tion and prevent correct positioning of myonuclei (Figure 8). It is

also well established in other systems that unanchored nuclei float

freely in the cytoplasm and tend to clump together, as observed in

MD-1 myotubes [34,77,79].

It is currently not clear how the mutant SUN proteins, which

are located at the INM, mediate disruption of microtubule
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attachment to the NE. Studies have indicated that nesprins are

important for microtubule association with the NE, through their

interaction with microtubule motor proteins [77,80]. However, we

did not obtain any evidence that the central SUN1-nesprin-2

LINC complex interaction was perturbed in MD-1 myoblasts,

suggesting that the defect may lie elsewhere. Instead, SUN1

interaction with emerin was disrupted and, consistent with this,

both emerin mRNA and protein levels were reduced in myoblasts

from patient MD-1. Impairment of SUN1/SUN2 interaction with

emerin has also been observed in cases of EDMD1 due to

mutations in emerin itself [44]. Furthermore, EDMD has been

associated with defects in emerin interaction with lamin A/C and

nesprins [18,19]. Interestingly, emerin has been shown to partially

localize at the ONM, where it may contribute to centrosomal

attachment to the NE and, in agreement with our findings, others

have observed increased centrosomal separation from the nucleus

in EDMD1 cells [81,82]. Thus, dysregulation of emerin may play

a role in disease causation.

Contribution of SUN mutations to muscle disease
pathophysiology

To date, most studies have focused on the role of the nuclear

lamina and LINC complex in cellular resistance to mechanical

strain in support of the ‘‘structural’’ hypothesis of laminopathy

disease causation. There is now strong evidence to indicate that

defects in these structural networks make a significant contribution

to the pathophysiology of EDMD and related disorders [29].

Given our observations of defective interaction networks in SUN-

mutated cells and uncoupling of nuclear-cytoskeletal connections,

it is therefore likely that the variants we have discovered in SUN1

and SUN2 also impact upon cell mechanics. Nuclear dysmor-

phology is a common feature of laminopathy cells and, whilst the

exact cause and effect of this phenomenon is not understood, it is

likely to reflect changes in the organization of the nuclear lamina

and its interactions with the nuclear envelope [83], together with

increased susceptibility to mechanical deformation. The exacer-

bation of nuclear dysmorphology, induced by SUN1 W377C

expression in LMNA R401C fibroblasts, again highlights a role for

SUN proteins in NE organization and integrity.

Our findings in patient MD-1 myotubes further indicate that

defects in nuclear positioning may play a significant role in disease

pathogenesis, particularly since a link has also been made between

loss of myonuclear anchoring and impaired muscle function

[34,35]. Myonuclear positioning defects have been observed at the

myotendinous junctions of LmnaH22P/H22P and Lmna knock-out

mice, and in EDMD patients with mutations in LMNA [33,84].

However, to our knowledge, ours is the first observation of such a

pronounced myonuclear mispositioning phenotype in humans. It

will be important, in future studies, to demonstrate directly that

uncoupling of the nucleus from the microtubule network through

SUN mutation does lead to muscle disease in vivo with

physiological expression levels of SUN mutants.

In summary, our data clearly implicate defects in pericentrin

recruitment, microtubule nucleation/organization and nuclear-

cytoskeletal attachment in NE-associated muscular dystrophy

pathogenesis and are in agreement with the bulk of results

showing SUN1/SUN2 involvement in nuclear positioning and cell

migration. It remains to be determined precisely how centrosomal

components are recruited to the nuclear envelope in differentiating

myotubes and how defects in this process result in misalignment of

myonuclei in muscular dystrophy.

Materials and Methods

Ethics statement
This study involved the use of human DNA samples and myoblasts

derived from muscle biopsies. These were obtained following

informed consent using protocols and consent forms approved by

the Ethics Committee of Ernst-Moritz-Arndt University, Greifswald.

Patients and controls
EDMD patients for this study were selected based on the results

of a routine diagnostic mutational analysis of EMD, LMNA, FHL1,

SYNE1 and SYNE2. 175 pseudo-anonymized patients negative for

mutations in these genes and 70 patients known to carry mutations

in the genes encoding the LINC components emerin, lamin A/C

and nesprin 1 or 2 alpha and beta were tested for mutations in

SUN1 and SUN2. The clinical features of these unrelated,

predominantly Caucasian index cases were within the diagnostic

criteria for EDMD [50] despite the variable clinical expression.

Mutation analysis
Primer pairs for all the coding exons and flanking intronic

sequences of SUN1 (UNC84A, ENSG00000164828; see Fig. S1)

Figure 8. Schematic model of nuclear positioning and microtubule connections during differentiation of normal and SUN1/2
mutant myoblasts. (A) In myoblasts, the close positioning of centrosomes (red) to the outer nuclear surface is disrupted by SUN1/2 mutants, which
is likely to be accompanied by impaired microtubule (green) association with the NE. (B) Upon commitment to differentiation in normal myoblasts,
pericentrin and other centrosomal proteins redistribute from the centrosome to the nuclear surface, which becomes the major site of microtubule
nucleation. In mutant committed myoblasts, pericentrin fails to associate with the NE and there is impairment of microtubule nucleation from the
nuclear surface. (C) After cell fusion to form myotubes, the microtubules reorganize into overlapping parallel arrays along the long axis of the cell.
The myonuclei become positioned evenly along the length of the cell in a microtubule-dependent manner with the involvement of dynein and
kinesin motor proteins. In mutant myotubes, nuclei are clumped in a disorganized fashion and we propose that this is due to an inability to interact
with the microtubule network.
doi:10.1371/journal.pgen.1004605.g008
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and SUN2 (UNC84B, ENSG00000100242, ENST00000405510)

were designed using Primer-Blast (http://www.ncbi.nlm.nih.gov/

tools/primer-blast/index.cgi; Table S2). To standardize the

sequencing reaction, all primers were tagged with an M13-tail

(forward: 59-GTAAAACGACGGCCAGT-39 reverse: 59-CAG-

GAAACAGCTATGAC-39). Amplifications were performed in

25 ml volumes using Amplikon-Taq Polymerase (Biomol) under

the following thermal conditions: initial denaturation at 94u for

5 min followed by 35 cycles of denaturation (94uC for 15 sec),

annealing at the appropriate temperature for 15 sec (see Table S2)

and elongation (72uC for 1 min). A final elongation (72uC for

7 min) preceded a 4uC cooling step

Direct Sanger sequencing was used to analyse PCR products.

Excess dNTPs and primers were removed using ExoSAP-IT

(Affymetrix). Sequencing reactions were performed using ABI

BigDye Terminator v3.1 Cycle Sequencing Kit with addition of

5% DMSO to the reaction mix. M13-oligonucleotides were used

as sequencing primers. The reactions were analysed on a 3130xl

GA DNA Sequencer (Applied Biosystems) according to the

manufacturer’s instructions. All DNA variations identified were

validated using a second independent DNA sample.

Analysis of the frequency of DNA variations
Unique and rare sequence variations were tested for their

frequency in 400 alleles of a Caucasian reference population.

Additionally, sequence variations found in a patient of Turkish

origin were tested in 138 alleles of a Turkish reference population.

Co-segregation of DNA variations with the disease was analysed in

patient families if available. For estimating the frequency of DNA

variations found, restriction digestion and high resolution melting

(HRM) were performed using patient DNA as positive control.

Restriction enzymes cutting specifically at the DNA variation were

selected using NEB-cutter (http://tools.neb.com/NEBcutter2/).

HRM products amplified with LightCycler 480 High Resolution

Melting Master (Roche) were analysed on a LightCycler 480 II

(Roche) according to the manufacturer’s instructions. Samples

showing abnormal signals were examined by restriction endonu-

clease digestion or direct sequencing. The frequency of changes

found in patients of different origin was estimated from online

accessible genome sequencing data (Table S1).

Real-time PCR
RNA was extracted from patient MD-1 and control myoblasts

using TRIzol (Invitrogen) according to the manufacturer’s

instructions. Real-time PCR was performed using a RealTime

ready custom panel and LightCycler 480 Probes Master (Roche),

with primers as described in Supplementary Material Table S3,

and evaluated on a LightCycler 480 II (Roche), according to the

manufacturer’s instructions. Values for each gene were normalised

to both actin and GAPDH.

Plasmid constructs and site-directed mutagenesis
For plasmid constructs, the pCMVTag3B vector (Stratagene)

was used to fuse a myc tag to the N-terminus of SUN1. The 916

amino acid version of the SUN1 cDNA, lacking the ATG start

codon, was generated by PCR amplification in two stages. First,

codons 2–362 were amplified using primers 59-CACAGAATTC-

GATTTTTCTCGGCTTCACAT-39 and 59-CACAGTCGA-

CCTATCCGATCCTGCGCAAGATCTGC-39 with IMAGE

clone 40148216 as template and inserted into pCMVTag3B via

the EcoRI and SalI sites. This introduced a BglII site via a silent

mutation at codon 356–358. Codons 352–916 were then amplified

using 59-TTACTTCTTGCTGCAGATCTTGCGCAGGAT-

CGG-39 and 59-GAGAGTCGACTCACTTGACAGGTTCGC-

CATG-39 from an oligo dT-primed reverse transcription of U2OS

cell mRNA and cloned into the BglII-SalI sites of the initial

construct. EDMD-associated mutations were introduced using the

QuikChange II site-directed mutagenesis kit (Stratagene), accord-

ing to the manufacturer’s instructions.

Antibodies
Anti-human SUN1 2383 and anti-human SUN2 2853 antibod-

ies have been described previously [44]. Anti-SUN1 Atlas

antibody (HPA008346) was obtained from Sigma prestige

antibodies. Anti-nesprin-2 (N2N3) antibody was kind gift from

Q. Zhang (King’s College London) and has been described

previously [16]. Anti-nesprin-2G has been reported previously

[53]. Anti-nesprin-2 monoclonal antibody (IQ562) was purchased

from Immuquest. Monoclonal anti-emerin antibody was a kind

gift from G. Morris (Center for Inherited Neuromuscular Disease,

Oswestry, UK). Anti-lamin A/C (sc-6215) and GFP antibodies

were purchased from Santa Cruz Biotechnologies. Anti- GAPDH

(MAM374) was obtained from Millipore. Anti-a-tubulin (T9026),

anti-b-actin (A5441), anti-c-tubulin (T6557), anti-myc and anti-

desmin antibodies were purchased from Sigma. Anti-caveolin 3

monoclonal antibody (610420) was purchased from Transduction

Laboratories and anti-desmin polyclonal antibody (MONX10657)

was purchased from Monosan. Anti-pericentrin polyclonal anti-

body (Ab4448) was obtained from Abcam.

Cell culture and transfection
Myoblasts from patient MD-1 and controls were routinely

cultured in high-glucose DMEM supplemented with 20% foetal

bovine serum plus antibiotics penicillin, streptomycin and

amphotericin B, at 37uC and 5% CO2, and were used between

passages 3 and 7. Myoblasts at confluence were allowed to

differentiate into myotubes in the same culture medium for 8–15

days, replacing the medium every 5 days. HeLa cells were cultured

in DMEM supplemented with 10% FBS and antibiotics. For

emerin co-immunoprecipitation experiments, HEK293 cells were

transfected with the appropriate pCMVTag3-SUN1 constructs

together with GFP-emerin [85] using Fugene 6 (Promega),

according to the manufacturer’s instructions. pCMVTag3-SUN1

constructs were transfected into C2C12 mouse myotubes using the

Amaxa Nucleofector (Lonza), according to the manufacturer’s

instructions. Cultures were fixed 24 hours after transfection and

processed for immunofluorescence analysis.

Centrosome reorientation and nuclear movement assay
NIH3T3 fibroblasts were cultured in 10% calf serum in DMEM

(Gibco) as previously described [86]. Following serum starvation

for two days, confluent monolayers were ‘‘wounded’’ by removing

a strip of cells and nuclei of cells at the edge of the wound were

microinjected with the appropriate myc-tagged SUN1 or SUN2

DNA plasmids. After expression for 2 hr, cells were stimulated

with 10 mM LPA for 2 hr, fixed in 4% paraformaldehyde,

extracted with Triton X-100 and stained with antibodies to

tyrosinated a-tubulin (rat monoclonal antibody at 1/40 of culture

supernatant), myc (mouse monoclonal antibody from clone 9E10,

Roche) and DAPI (Sigma) followed by appropriate secondary

antibodies. Stained samples were observed with a Nikon TE300

microscope using a 406 Plan Apo N.A. = 1.0 or 606 Plan-Apo

N.A. = 1.4 objective and filter cubes optimized for DAPI,

fluorescein/GFP, and rhodamine. Images were acquired with

CoolSNAP HQ camera (Photometrics) driven by Metamorph

software (MDS Analytical Technologies) and further processed in

Image J. Centrosomes were considered oriented if they were

localized in the pie-shaped sector between the nuclear membrane
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the leading edge scored, as described [86,87]. Random orientation

is ,33% by this measure. Nuclear and centrosome position

relative to the cell centroid were determined as described [88].

Data were plotted as % of the cell radius to normalize for

differences in cell size.

Cell extracts, immunoprecipitation, and immunoblotting
To prepare total cell extracts for immunoblotting, cells were

scraped into cold 16phosphate-buffered saline (PBS), pelleted by

centrifuging at 2006g for 5 min and then pellets were resuspended in

lysis buffer (10 mM HEPES [pH 7.4], 5 mM EDTA, 50 mM NaCl,

1% Triton X-100, 0.1% SDS) supplemented with 1 mM PMSF and

protease inhibitor cocktail (Roche) and an equal volume of Laemmli

buffer was then added. For human myoblast immunoprecipitations,

cells were grown on 10 cm dishes and then immunoprecipitated as

described previously (Haque et al., 2006) using 2 mg of SUN1 2383

antibody. 5% of the initial lysate was retained for immunoblot

analysis. All samples were boiled in an equal volume of 26Laemmli

buffer, resolved on 6% or 7.5% or 10% polyacrylamide gels, followed

by semidry transfer onto nitrocellulose membrane. Membranes were

probed using the appropriate primary antibodies and dilutions:

hSUN1 ATLAS (1:400), hSUN2 2853 (1:500), lamin A/C (1:2000),

emerin (1:1500), nesprin-2 N2N3 (1:1500), a-tubulin (1: 10,000), b-

actin (1:20,000), GAPDH (1: 10,000). Primary antibodies were

detected using horseradish peroxidase-conjugated secondary antibod-

ies (Sigma), and visualization was performed using ECL reagents

(Geneflow).

Indirect immunofluorescence microscopy
Myoblasts and myotubes grown on glass coverslips were fixed in

methanol at 220uC and processed for indirect immunofluorescence

microscopy as previously described (Haque et al., 2006). For SUN1

staining, cells were instead fixed in 4% paraformaldehyde and

permeabilized with 0.5% Triton X-100 at room temperature for

5 min. Cells were washed in PBS and incubated with antibodies

diluted in PBS–3% bovine serum albumin, using hSUN1 2383 (1:150),

hSUN2 2853 (1:100), lamin A/C (1:400), emerin (1:500), nesprin-2G

(1:300), c-tubulin (1:500) pericentrin (1:50), caveolin 3 (1:30) and

desmin (1:100) antibodies. Secondary antibodies were goat anti-rabbit

AlexaFluor 488, donkey anti-mouse AlexaFluor 594 and donkey anti-

goat AlexaFluor 594 (Molecular Probes Inc.). DNA was stained with

50 mg/ml 49,6-diamidino-2-phenylindole (DAPI; Sigma). Coverslips

were mounted in 80% glycerol–3% n-propyl gallate (in PBS) or

ProLong gold antifading reagent (Invitrogen). Fluorescence microscopy

was performed with a Nikon TE300 inverted microscope with an

ORCA-R2 charge-couple device camera (Hamamatsu) and Volocity

software (PerkinElmer). Where required fluorescence microscopy was

also performed with Leica TCS SP5 confocal laser scanning

microscope and Leica LAS AF software. Images were processed with

Adobe Photoshop (Adobe Systems). Quantification of fluorescence

intensity was performed using an Olympus Scan‘R microscope with a

206 objective. Approximately 1000 nuclei from 3 independent

experiments were randomly selected by their DAPI signal, and the

intensity of SUN1, SUN2, emerin, lamin A/C and nesprin-2 was

measured within the DAPI-stained region.

Electron microscopy
Myotubes (at passage 2–3) from patient and age-matched

controls were fixed in 2.5% glutaraldehyde-0.1 M cacodylate

buffer pH 7.4 for 3 h at 4uC. After post-fixation with 1% osmium

tetroxide (OsO4) in cacodylate buffer for 2 h, samples were

dehydrated in an ethanol series, infiltrated with propylene oxide

and embedded in Epon resin. Ultrathin sections (60 nm thick)

were stained with uranyl acetate and lead citrate (10 min each)

and were observed at 0u tilt angle with a Geol Jem 1011

transmission electron microscope, operated at 100 kV. At least 30

myoblasts/myotubes per sample were observed.

Statistical analysis
In all cases, statistical analysis was performed using a Student’s

t-test to compare differences in values obtained for patient/mutant

versus control samples.

Supporting Information

Figure S1 Transcript variant of SUN1 used in this study. (A)

The 23-exon SUN1 isoform used for our investigations contained

exons 4 to 26 of ENST00000456758. The start codon used is the

same used in isoform ENST00000405266. (B) The resulting

isoform encodes 916 residues and corresponds to the full length

mouse isoform of SUN1 that predominates in most tissues [89].

Alternating exons are indicated in black and blue. Residues

spanning splice sites are indicated in red.

(TIF)

Figure S2 Pedigrees of MD families with index patients carrying

heterozygous SUN1 or SUN2 variants that do not co-segregate with

disease. Index cases are indicated by arrows. There was no evidence of

increased disease severity in the index cases carrying the SUN1
variants.

(PDF)

Figure S3 Evolutionary conservation of SUN1 and SUN2

mutated residues. All rare, non-synonymous variants identified

in SUN1 and SUN2 are shown. Those for which there is strong

genetic and/or functional evidence of disease-association are

indicated in red. The mutated residues and their equivalents in

other species are highlighted in beige.

(PDF)

Figure S4 SUN1 mRNA levels are not altered in MD-1

myoblasts. Expression level of the indicated genes was assessed

by quantitative real-time PCR using total RNA isolated from

control and MD-1 myoblasts. Values are expressed relative to two

control genes, ACTB and GAPDH, and show the average of 2

independent experiments performed in duplicate 6S.E. Signifi-

cant P-values are as follows: SUN2 P = 0.019, LMNA P = 0.009,

SYNE1 P = 0.0016, SYNE2 P = 0.01.

(PDF)

Figure S5 SUN1 can polarize in MD-1 myotubes. SUN1 (green)

and caveolin (red) immunofluorescence staining in control and

patient MD-1 myotubes, along with DAPI (blue) staining of DNA.

Arrowheads indicate nuclei in which SUN1 is enriched at the

poles.

(TIF)

Figure S6 Nesprin-2 expression is elevated in patient MD-1

myotubes. (A) Nesprin-2 staining in myotubes from control and

patient MD-1. Immunofluorescence labeling was performed with

nesprin-2 monoclonal (red) and desmin (green) antibodies. Desmin

was used as a muscle cell marker. (B) Nesprin-2 fluorescence

intensity was measured using the NIS software analysis system and

50 myotubes per sample were analysed. Data are presented as

mean value 6S.D. Significant P-value for patient MD-1 was

0.042. Scale bar, 10 mm.

(TIF)

Figure S7 The number of microtubules nucleating from the

nuclear envelope is reduced in MD-1 myotubes. Beta-tubulin (red)

and pericentrin (green) double immunofluorescence staining in

SUN1 and SUN2 Variants in Muscular Dystrophies

PLOS Genetics | www.plosgenetics.org 16 September 2014 | Volume 10 | Issue 9 | e1004605



untreated control and MD-1 myotubes, or following nocodazole

treatment and 30 min recovery in culture medium. Chromatin

was stained with DAPI (blue). Scale bar, 10 mm. Higher

magnification (36) of nuclear envelopes in nocodazole-treated

cells is shown on the right of each picture.

(TIF)

Table S1 Single nucleotide changes found in coding regions of

SUN1 and SUN2 and their frequencies in sequenced genome

databases. Rare, non-synonymous variants are highlighted in bold,

with blue shading. *Patient MD-1 was of Turkish origin, therefore

150 alleles from ethnically matched controls were also screened for

mutations p.G68D and p.G338S.

(PDF)

Table S2 Primer sequences and annealing temperatures for

genomic amplification of SUN1 and SUN2 exons.

(PDF)

Table S3 Primers used for real-time PCR.

(PDF)
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