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Abstract

Many of the type 2 diabetes loci identified through genome-wide association studies localize to non-protein-coding intronic
and intergenic regions and likely contain variants that regulate gene transcription. The CDC123/CAMK1D type 2 diabetes
association signal on chromosome 10 spans an intergenic region between CDC123 and CAMK1D and also overlaps the
CDC123 39UTR. To gain insight into the molecular mechanisms underlying the association signal, we used open chromatin,
histone modifications and transcription factor ChIP-seq data sets from type 2 diabetes-relevant cell types to identify SNPs
overlapping predicted regulatory regions. Two regions containing type 2 diabetes-associated variants were tested for
enhancer activity using luciferase reporter assays. One SNP, rs11257655, displayed allelic differences in transcriptional
enhancer activity in 832/13 and MIN6 insulinoma cells as well as in human HepG2 hepatocellular carcinoma cells. The
rs11257655 risk allele T showed greater transcriptional activity than the non-risk allele C in all cell types tested. Using
electromobility shift and supershift assays we demonstrated that the rs11257655 risk allele showed allele-specific binding to
FOXA1 and FOXA2. We validated FOXA1 and FOXA2 enrichment at the rs11257655 risk allele using allele-specific ChIP in
human islets. These results suggest that rs11257655 affects transcriptional activity through altered binding of a protein
complex that includes FOXA1 and FOXA2, providing a potential molecular mechanism at this GWAS locus.
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Introduction

Type 2 diabetes is a complex metabolic disease with a

substantial heritable component [1]. Over the past seven years,

genome-wide association studies (GWAS) have successfully iden-

tified over 70 common risk variants associated with type 2 diabetes

[2–5]. Association signals at many of these loci localize to non-

protein-coding intronic and intergenic regions and likely harbor

regulatory variants altering gene transcription. In recent years

great advances have facilitated identification of regulatory

elements genome-wide using techniques including DNase-seq

and FAIRE-seq (formaldehyde-assisted isolation of regulatory

elements), which identify regions of nucleosome depleted open

chromatin, and ChIP-seq (chromatin immunoprecipitation),

which identify histone modifications to nucleosomes and tran-

scription factor binding sites. Several studies have successfully

integrated trait-associated variants at GWAS loci with publicly

available regulatory element datasets in disease-relevant cell types

to guide identification of regulatory variants underlying disease

susceptibility [6–10].

The CDC123 (cell division cycle protein 123)/CAMK1D
(calcium/calmodulin-dependent protein kinase ID) locus on

chromosome 10 contains common variants (MAF..05) strongly

associated with type 2 diabetes in Europeans (rs12779790,

P = 1.2610210) [3], East Asians (rs10906115, P = 1.561028) [4],

and South Asians (rs11257622, P = 5.861026) [5]. Fine-mapping

using the Metabochip identified rs11257655 as the lead SNP [2].

The index variant and proxies (r2..7) span an intergenic region of

at least 45 kb between CDC123 and CAMK1D and overlap the 39

end of CDC123 [3]. None of the type 2 diabetes-associated

variants at this locus are located in exons. Analysis of the beta cell

function measurements HOMA-B and insulinogenic index,

derived from paired glucose and insulin measures at fasting or

30 minutes after a glucose challenge, demonstrated association of

the risk allele at the CDC123/CAMK1D locus with reduced beta

cell function, suggesting the beta cell as a candidate affected tissue
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[2,11]. Another intronic variant (rs7068966, r2 = 0.18 EUR,

1000G Phase 1) located 50 kb away from rs12779790 is associated

with lung function [12].

The transcript(s) targeted by risk variant activity at this locus

remain unknown. CDC123 is regulated by nutrient availability in

yeast and is essential to the onset of mRNA translation and protein

synthesis through assembly of the eukaryotic initiation factor 2

complex [13,14]. Evidence from previous GWA studies suggest

cell cycle dysregulation as a common mechanism in type 2

diabetes; for example, type 2 diabetes association signals are found

close to the cell cycle regulator genes, CDKN2A/CDKN2B and

CDKAL1 [15]. CAMK1D is a member of the Ca2+/calmodulin-

dependent protein kinase family which transduces intracellular

calcium signals to affect diverse cellular processes. Upon calcium

influx in granulocyte cells and hippocampal neurons, CAMK1D

activates CREB-dependent gene transcription [16,17]. Given the

roles of cytosolic calcium in regulation of beta cell exocytotic

machinery and of CREB in beta cell survival, CAMK1D may have

a role in beta cell insulin secretion. In cis-eQTL analyses, the

rs11257655 type 2 diabetes risk allele was more strongly and

directly associated with increased expression of CAMK1D than

CDC123 in both blood and lung [18,19].

In this study we aimed to identify the variant(s) underlying the

association signal at the CDC123/CAMK1D locus using genome-

wide maps of open chromatin, chromatin state and transcription

factor binding in pancreatic islets, hepatocytes, adipocytes and

skeletal muscle myotubes. We measured transcriptional activity of

variants in putative regulatory elements using luciferase reporter

assays, and identified a candidate cis-acting SNP driving allele-

specific enhancer activity in two mammalian beta cell-lines as well

as hepatocellular carcinoma cells. We then evaluated DNA-

protein binding in sequence surrounding this variant and

identified allele-specific binding to key islet and hepatic transcrip-

tion factors. Thus, our study provides strong evidence of a

functional variant underlying the type 2 diabetes association signal

at the CDC123/CAMK1D locus acting through altered regulation

in type 2 diabetes-relevant cell types.

Results

Prioritization of type 2 diabetes-associated SNPs with
regulatory potential at the CDC123/CAMK1D locus

To identify potentially functional SNPs at the CDC123/
CAMK1D locus, we considered variants in high LD (r2$.7,

EUR, 1000G Phase 1 release) with GWAS index SNP

rs12779790. To further prioritize variants for functional follow

up, we used genome wide maps of chromatin state (Figure 1) in

available type 2 diabetes-relevant cell types including pancreatic

islets, liver hepatocytes, skeletal muscle myotubes and adipose

nuclei. Variant position was evaluated with respect to DNase- and

FAIRE-seq peaks and several histone modifications, including

H3K4me1 and H3K9ac. DNase and FAIRE are established

methods of identification of nucleosome depleted regulatory

regions [20], while H3K4me1 and H3K9ac are post-translational

chromatin marks often associated with enhancer regions [21,22].

We also assessed chromatin occupancy by transcription factors

using available genome wide ChIP-seq data sets. Of 11 variants

meeting the LD threshold, two SNPs were found to overlap

chromatin signals. One SNP, rs11257655 (r2 = .74 with GWAS

index SNP rs12779790), located 15 kb from the 39 end of

CDC123 and 84 kb from the 59 end of CAMK1D, was a

particularly plausible candidate overlapping islet, liver and HepG2

cell line DNase peaks, islet and liver FAIRE peaks, H3K4me1 and

H3K9ac chromatin marks, and FOXA1 and FOXA2 ChIP-seq

peaks in HepG2 cells (Figure S1). A second SNP, rs34428576

(r2 = .71 with rs12779790), overlapped a HepG2 DNase peak and

displayed occupancy by FOXA1 and FOXA2 binding in HepG2

cells (Figure 1). No SNPs overlapped with DNase peaks in skeletal

muscle myotubes.

Allele-specific enhancer activity of rs11257655 in islet
and liver cells

To evaluate transcriptional activity of the SNPs in predicted

regulatory regions, 150–200 bp surrounding each SNP allele was

cloned into a minimal promoter vector and luciferase activity was

measured in two beta cell lines, 832/13 rat insulinoma and MIN6

mouse insulinoma cells, and in HepG2 liver hepatocellular

carcinoma cells. Four to five independent clones for each allele

were generated and enhancer activity was measured in duplicate

for each clone. A 151-bp region including rs11257655 (and

rs36062557 due to proximity, r2 = .38 with rs11257655) showed

differential allelic enhancer activity in both orientations in all three

cell lines (Figure 2). The risk allele rs11257655-T showed

significantly increased luciferase activity compared to the non-risk

allele rs11257655-C (forward: 832/13 P = 6.361023, MIN6

P = 1.761025; HepG2 P = 8.061025; reverse: 832/13

P = 2.261023, MIN6 P = 9.961025; HepG2 P = 2.061023).

Enhancer activity represents greater than a 1.4-fold (HepG2,

MIN6) to 2.1-fold (832/13) increase in transcriptional activity

relative to the non-risk allele in both the forward and reverse

orientations. Compared to an empty vector control, enhancer

activity was greatest in the islet cell lines (risk allele: 832.13, 4-fold;

MIN6, 10-fold; HepG2, 1.6-fold).

A 179-bp region surrounding the second candidate SNP

rs34428576 showed only moderate allele-specific activity, and

only in the reverse orientation, in HepG2 cells (P = .02) and no

allele-specific activity in islet cells (Figure S2).

To verify that rs11257655 and not rs36062557 accounted for

allele-specific effects, we used site-directed mutagenesis to

construct the remaining haplotype combinations. The T risk

allele of rs11257655 exhibited .1.8 fold increased transcriptional

activity compared to the non-risk allele C independent of

Author Summary

GWAS have identified more than 1200 loci contributing to
risk of disease, including more than 70 loci associated with
type 2 diabetes. With a majority of associated variants
localized to non-coding regions of the genome, focus has
moved to identifying the functional variants explaining the
association signals. One mechanism by which variants may
act is to affect activity of enhancer elements regulating
target gene expression. In this study, we take advantage of
recent advances in genome-wide annotation of human
regulatory elements to prioritize candidate functional
variants at the CDC123/CAMK1D locus. We identify two
T2D-associated variants that overlap predicted regulatory
enhancer elements. We demonstrate that one variant,
rs11257655, shows allele-specific transcriptional enhancer
activity in mammalian cell lines relevant to type 2 diabetes.
We also show differential protein-DNA binding suggesting
that the rs11257655 type 2 diabetes- risk allele increased
transcriptional activity through binding a protein complex
that includes FOXA1 and FOXA2. This study demonstrates
that genome-wide maps of regulatory elements are a
useful resource to guide identification of variants differ-
entially affecting transcriptional activity and provides
insight into molecular mechanisms underlying a T2D
susceptibility locus.
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rs36062557 genotype (Figure 3A, B). In contrast, altering alleles of

rs36062557 on a consistent rs11257655 background showed no

significant effect on transcriptional activity. Taken together, these

data confirm that rs11257655 exhibits allelic differences in

transcriptional enhancer activity and suggest it functions within

a cis-regulatory element at the CDC123/CAMK1D type 2

diabetes-associated locus.

Alleles of rs11257655 differentially bind FOX transcription
factors

To assess whether alleles of rs11257655 differentially affect

protein-DNA binding in vitro, biotin-labeled probes surrounding

the T (risk) or C (non-risk) allele were incubated with 832/13,

MIN6 or HepG2 nuclear lysate and subjected to electrophoretic

mobility shift assays (EMSA). Band shifts indicative of multiple

DNA-protein complexes were observed for both rs11257655

alleles (Figure 4A, 4B, 4C). In EMSAs from all three cell nuclear

extracts, protein complexes were observed for the probe contain-

ing the T allele that were not present for the probe containing the

C allele (832/13, arrow a; MIN6, arrows b, c, d; HepG2, arrows e,

f) suggesting differential protein binding dependent on the

rs11257655 allele. Competition of labeled T-allele probe with

excess unlabeled T-allele probe more efficiently competed away

allele-specific bands than excess unlabeled C-allele probe,

demonstrating allele-specificity of the protein-DNA complexes

(Figure 4A, 4B, 4C). rs11257655 did not show a differential

protein binding pattern in EMSA using 3T3-L1 mouse adipocytes.

To examine transcription factor binding to rs11257655, we used a

DNA-affinity capture assay. We observed one protein band

showing allele-specific binding to the T allele (Figure 4D) that

was identified as transcription factor FOXA2 using MALDI

TOF/TOF mass spectrometry.

A search in the JASPAR CORE database provided further

evidence that the rs11257655 SNP is located within predicted

binding sites for FOXA1 and FOXA2, with only the T risk-allele

predicted to contain a FOXA1 and FOXA2 consensus core-

binding motif (Figure 4E) [23]. To assess binding to FOXA1 and

FOXA2, we performed supershift experiments incubating DNA-

protein complexes with antibodies for these factors. Incubation of

the T allele-protein complex with FOXA1 antibody resulted in a

band supershift in 832/13 and HepG2 cells (asterisk, Figure 4A,

4C) A FOXA2-mediated supershift was observed in 832/13,

MIN6 and HepG2 cells (asterisk, Figure 4A, 4B, 4C). Differences

in antibody species reactivity may account for the lack of a visible

FOXA1-mediated supershift in MIN6 cells. Collectively, these

results suggest that rs11257655 is located in binding sites for a

transcriptional regulator complex including FOXA1 and/or

FOXA2, which bind preferably to the rs11257655-T allele in

beta cell and liver cell lines.

FOXA1 and FOXA2 occupancy at rs11257655 in human
islets

To evaluate whether FOXA1 and FOXA2 bind differentially to

rs11257655 in a native chromatin context, we performed allele-

specific ChIP in human islets with different rs11257655 genotypes.

FOXA1 was enriched 7.2-fold compared to IgG control in islets

carrying a T allele while FOXA1 was not enriched in islets

homozygous for C allele (Figure 5A). Although less robust,

FOXA2 was enriched 4.2-fold in islets carrying a T allele

compared to IgG control (Figure 5B). This direction of enrich-

ment is consistent with the EMSA data (Figure 4). A region 28 kb

Figure 1. Regulatory potential at type 2 diabetes-associated SNPs at the CDC123/CAMK1D locus. A) The 11 SNPs in high LD (r2$.7, EUR)
with GWAS index SNP rs12779790. Arrows indicate the two SNPs that overlap islet, liver, and HepG2 open chromatin and epigenomic marks and that
are located near to HepG2 ChIP-seq peaks; these two SNPs were tested for allele-specific transcriptional activity. B) DNase hypersensitivity peaks
identified in two pooled islet samples from the ENCODE Consortium. C) FAIRE peaks identified in one representative islet sample from the ENCODE
Consortium. D) H3K4me1 histone modifications from the Roadmap Epigenomics Consortium. E) FOXA1 and FOXA2 ChIP-seq peaks and signal from
ENCODE. Image is taken from the UCSC genome browser, February 2009 (GRCh37/hg19) assembly (http://genome.ucsc.edu) [51]. The 59 end of
CAMK1D begins after position 12,390,000.
doi:10.1371/journal.pgen.1004633.g001
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downstream of rs11257655 with no evidence of open chromatin

(chr10 control) was used as a negative control (Figure S3). These

findings strengthen the conclusion that rs11257655 is part of a

bona fide cis-regulatory complex binding FOXA1 and/or FOXA2

in human islets.

CDC123 and CAMK1D transcript levels
To determine whether CDC123 or CAMK1D are expressed in

type 2 diabetes-relevant tissues, we measured and confirmed

expression of both transcripts in human islets and hepatocytes

(Figure S4A, S4B). These data are supported by RNA-seq

evidence that both genes are expressed in islets [24]. Based on

our results showing islet beta cells as a target tissue of risk variant

regulatory activity, we assessed whether glucose treatment

regulated CDC123 and CAMK1D transcript level. Glucose-

mediated transcriptional changes in one of these genes might

point to the more plausible candidate important in beta cell

biology. In MIN6 cells treated with low (3 mM) and high (20 mM)

concentrations of glucose for 16 hours, CAMK1D expression

increased (P = .004; Figure S4C) while CDC123 expression

remained unchanged (P = .22; Figure S4D). In 832/13 cells,

CDC123 levels were significantly higher in cells stimulated with

high glucose (P = 1.661025; Figure S4E). We could not assess the

effect of glucose on CAMK1D levels in 832/13 cells because this

transcript level was below detection limits. While we confirm

expression of CAMK1D and CDC123 in islets and hepatocytes,

future studies over-expressing the target gene(s) in these tissues

Figure 2. Haplotype containing type 2 diabetes-associated
SNPs displays differential transcriptional activity. Enhancer
activity was tested in 832/13, MIN6 and HepG2 cells for the type 2
diabetes non-risk (white bars) and risk (black bars) haplotypes in the
forward and reverse orientations with respect to the genome. Risk
refers to the rs11257655 variant; rs36062557 is included in the
haplotype due to proximity. The haplotype containing risk allele
rs11257655-T shows greater transcriptional activity than the non-risk
allele rs11257655-C in both orientations with respect to a minimal
promoter vector in 832/13 cells (A), MIN6 cells (B) and HepG2 cells (C).
Error bars represent standard deviation of 4–5 independent clones for
each allele. Firefly luciferase activity was normalized to Renilla luciferase
activity, and normalized results are expressed as fold change compared
to empty vector control. P values were calculated by a two-sided t-test.
doi:10.1371/journal.pgen.1004633.g002

Figure 3. rs11257655 drives differential transcriptional activ-
ity. Site-directed mutagenesis was carried out to separate the effects of
rs36062557 from rs11257655. Enhancer activity was tested in 832/13
and MIN6 and cells for the type 2 diabetes non-risk (white bars) and risk
(black bars) haplotypes in the forward orientation. The risk allele
rs11257655-T shows greater transcriptional activity than the non-risk
allele rs11257655-C independent of rs36062557 genotype in 832/13
cells (A) and MIN6 cells (B). Error bars represent standard deviation of 2–
4 independent clones for each allele. Results are expressed as fold
change compared to empty vector control. P values were calculated by
a two-sided t-test.
doi:10.1371/journal.pgen.1004633.g003
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would be necessary to establish the mechanisms by which

increased expression leads to diabetes risk.

Discussion

Integration of genome-wide regulatory annotation maps with

disease-associated variants identified through GWAS has great

potential for elucidation of gene-regulatory variants underlying

association signals. In this study, we expand the lexicon of disease-

associated functional regulatory variation by examining the type 2

diabetes-association signal at the CDC123/CAMK1D locus. We

prioritized candidate cis-regulatory variants and tested whether

prioritized variants exhibited allele-specific transcriptional

enhancer activity. We provide transcriptional reporter and

protein-DNA binding evidence that rs11257655 is part of a cis-
regulatory complex differentially affecting transcriptional activity.

Additionally, we validate FOXA1 and FOXA2 as components of

this regulatory complex in human islets.

In recent years, progress has been made in following up

mechanistic studies of GWAS type 2 diabetes-association signals

[6,7,9,25–30], but challenges remain in sifting through the many

associated variants at a locus to identify those influencing disease.

We hypothesized that a common variant with modest effect

underlies the association at the CDC123/CAMK1D locus and

evaluated the location of high LD variants (r2$.7; n = 11) at the

locus relative to known transcripts and to putative DNA regulatory

Figure 4. Alleles of rs11257655 differentially bind FOXA proteins in rat 832/13 insulinoma cells, mouse MIN6 insulinoma cells and
human HepG2 hepatoma cells. EMSA using 832/13 (A), MIN6 (B) and HepG2 (C) nuclear extract shows differential protein-DNA binding of
rs11257655 alleles. The probe containing risk allele rs11257655 -T shows allele-specific protein binding (arrows a–e) compared to the probe
containing non-risk allele C. Excess unlabeled probe containing the T allele (T-comp) more efficiently competed away allele-specific bands than
unlabeled probe for the C allele (C-comp). Incubation of 832/13 and HepG2, nuclear extract with FOXA1/FOXA2 antibodies disrupt the DNA-protein
complex formed with T allele-containing DNA probe (arrow a, d, e) and result in band supershifts (asterisks). Incubation of MIN6 nuclear extract with
FOXA2 antibody decreases the DNA-protein complex formed with T allele-containing DNA probe (arrow b) and results in a band supershift. To
enhance visualization of protein complexes, free biotin-labeled probe is not shown. (D) DNA affinity-capture identified differential binding of FOXA2
at rs11257655 alleles in 832/13 cells. (E) The T allele of rs11257655 is predicted as a FOXA1 and FOXA2 consensus core-binding motif.
doi:10.1371/journal.pgen.1004633.g004
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elements. We identified two variants that overlapped putative islet

and/or liver regulatory regions and none located in exons. We did

not assess variants in lower LD (r2,.7), and additional functional

SNPs may exist at this locus acting through alternate functional

mechanisms untested in the current study.

Based on our observation of type 2 diabetes-associated SNPs in

regions of islet and liver open chromatin, we measured transcrip-

tional activity in two mammalian islet cell models, rat 832/13 and

mouse MIN6 insulinoma cells and in one hepatocyte cell model,

human HepG2 hepatocellular carcinoma cells. In agreement with

our previous observations [7], we found good concordance in

allelic transcriptional activity of human regulatory elements across

the two rodent islet cell types. Of the two SNPs predicted to be

located in predicted enhancer regions, rs11257655 but not

rs36062557 demonstrated allele-specific effects in islets and liver,

suggesting that rs11257655 is a lead functional candidate. The

rs11257655-T allele associated with type 2 diabetes risk displayed

increased enhancer activity relative to the C allele, suggesting that

increased expression of one or more genes, possibly CAMK1D or

CDC123, may be associated with type 2 diabetes. Our subsequent

analysis of protein binding revealed complexes that favored the

rs11257655-T allele in 832/13, MIN6 and HepG2 cells.

Consistent with predictions that the rs11257655-C allele may

disrupt binding to the FOXA1 and FOXA2 transcription factors,

we demonstrated that only the T allele of rs11257655 leads to

FOXA1- and FOXA2-mediated supershifts. The ChIP enrich-

ment of FOXA1 and FOXA2 in human islets from carriers of the

T allele is concordant with EMSAs using nuclear extract from

mouse and rat cell lines, further demonstrating the utility of rodent

islet cell models to characterize human regulatory elements. Our

results suggest that a cis-regulatory element surrounding

rs11257655 may act in both islet and liver cells. Although we

provide evidence that rs11257655 alleles differentially bind

FOXA1 and FOXA2 in vivo, it is important to note that this

enrichment was detected in isolated human islets. Future

experiments will be needed to validate effects of rs11257655

within a whole organism environment. For example, recently

zebrafish have been used to assay the regulatory potential of DNA

sequences [31,32].

FOXA1 and FOXA2 are members of the FOXA subclass of the

forkhead box transcription factor family and are essential

transcriptional activators in development of endodermally-derived

tissues including liver and pancreas [33,34]. In mature mouse b-

cells, ablation of both transcription factors compared to ablation of

FoxA2 alone leads to more pronounced impaired glucose

homeostasis and insulin secretion, indicating that both factors

are important in maintenance of the mature beta cell phenotype

[35]. In addition, FoxA2 integrates the transcriptional response of

mouse adult hepatocytes to a state of fasting [36]. FOXA1 and

FOXA2 are thought to act as pioneer transcription factors,

scanning chromatin for enhancers with forkhead motifs and

opening compacted chromatin through DNA demethylation and

subsequent induction of H3K4 methylation, epigenetic changes

that likely render enhancers transcriptionally competent by

allowing subsequent recruitment of transcriptional effectors [37–

39]. Our data demonstrate increased transcriptional activity and

increased binding of FOXA1 and FOXA2 to the rs11257655-T

allele, suggesting that rs11257655 may be functioning as part of a

transcriptional activator complex. Recent experiments in pancre-

atic islets support a role for FOXA transcription factors in

activation of islet enhancers [40]. This same study also showed

that FOXA2 binds in pancreatic islets in the T2D-associated

region surrounding rs11257655. Further experiments, such as

ChIP-seq of additional transcription factors, may identify other

key factors present in the activator complex.

Both CAMK1D and CDC123 are candidate transcripts affected

by variation at this locus. Cis-eQTLs in both blood and lung

support an effect on CAMK1D but not CDC123. In blood, initial

eQTL evidence for both genes were further analyzed by

conditional analyses on the T2D lead SNP or rs11257655. The

conditional analyses abolished the cis-eQTL signal for CAMK1D
but not for CDC123, providing evidence that the T2D GWAS

signal and the CAMK1D cis-eQTL signal are coincident [18]. In

lung, the GTEx consortium identified an eQTL for CAMK1D
with rs11257655 as a lead associated variant (P = 1.161027); this

and other T2D GWAS variants are the strongest cis-eQTLs for

CAMK1D, while no significant eQTL is observed for CDC123
[19]. For both eQTLs, the rs11257655 type 2 diabetes risk allele is

associated with increased CAMK1D transcript level, consistent

with the direction of transcriptional activity we observed for this

Figure 5. rs11257655-T allele shows increased binding to
FOXA1 and FOXA2 in human islets. FOXA1 (A) and FOXA2 (B) ChIP
in human islets shows enrichment at rs11257655 compared to IgG
control. Islets containing one copy of the rs11257655-T allele show 7.2-
fold greater FOXA1 enrichment and 4.2-fold greater FOXA2 enrichment.
rs11257655 CT heterozygotes are more significantly enriched than
rs11257655 CC homozygotes for FOXA1 (one-sided t-test, P = .06) and
FOXA2 (one-sided t-test, P = .026). A negative control region 28 kb
downstream of rs11257655 was not enriched in FOXA1- and FOXA2-
bound chromatin (Figure S3A and S3B). Error bars represent standard
error of two to three islets for each represented genotype.
doi:10.1371/journal.pgen.1004633.g005
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allele in islet and liver cells. Many eQTLs are predicted to be

shared among tissues [41], and a recent study of the beta cell

transcriptome reports good concordance of eQTL direction

(R2 = .74–.76) between beta cells and blood-derived lymphoblastoid

cell lines, fat and skin [42], suggesting that the CAMK1D eQTL

may also exist in islets. Some eQTLs differ across tissues, and

evidence of a consistent eQTL in islets would be valuable. Knockout

mice provide further evidence supporting CAMK1D as a target

gene. In FoxA1/FoxA2 beta cell-specific knockout mice, Camk1d
expression was reported to be slightly reduced (1.8 fold, P = 0.13)

[35], consistent with our conclusion that rs11257655 is part of a

transcriptional activator complex that includes FOXA1 and

FOXA2. Together, these data suggest that CAMK1D is a more

plausible target for differential regulation by rs11257655 alleles.

The mechanism by which CAMK1D may act in type 2 diabetes

biology is unclear. CAMK1D is a serine threonine kinase that

operates in the calcium-triggered CaMKK-CaMK1 signaling

cascade [17,43]. In response to calcium influx, CAMK1D activates

CREB- (cAMP response element-binding protein) dependent gene

transcription by phosphorylation [17]. CREB is a key beta cell

regulator important in glucose sensing, insulin exocytosis and gene

transcription and b-cell survival [44], and FOXA2 has been shown

to be necessary to mediate recruitment of CREB in fasting-induced

activation of hepatic gluconeogenesis [36]. CAMK1D also has been

reported to regulate glucose in primary human hepatocytes [45]. It

is important to note that we cannot rule out cell cycle regulator

CDC123 as a target for regulation by rs11257655.

In conclusion, we extend follow up studies of GWAS-identified

type 2 diabetes-associated variants to the CDC123/CAMK1D
locus on chromosome 10. We identify rs11257655 as part of a cis
regulatory complex in islet and liver cells that alters transcriptional

activity through binding FOXA1 and FOXA2. These data

demonstrate the utility of experimentally predicted chromatin

state to identify regulatory variants for complex traits.

Materials and Methods

Selection of SNPs for functional study
Variants were prioritized for functional study based on linkage

disequilibrium (LD) and evidence of being in an islet or liver

regulatory element based on data from the ENCODE consortium

[46]. Of 11 variants meeting the LD threshold (r2$.7, EUR, with

the GWAS index SNP rs12779790, 1000G Phase 1 release), two

SNPs showed evidence of open chromatin [6,9,20,47], histone

modifications [21,22,48] or transcription factor binding and were

tested for evidence of differential transcriptional activity.

Cell culture
Two insulinoma cell lines, rat-derived 832/13 [49] (C.B.

Newgard, Duke University) and mouse-derived MIN6 [50] were

maintained at 37uC with 5% CO2. 832/13 cells were cultured in

RPMI 1640 (Cellgro/Corning) supplemented with 10% FBS,

1 mM sodium pyruvate, 2 mM L-glutamine, 10 mM HEPES and

0.05 mM b-mercaptoethanol. MIN6 cells were cultured in

DMEM (Sigma), supplemented with 10% FBS, 1 mM sodium

pyruvate, 0.1 mM b-mercaptoethanol. HepG2 hepatocellular

carcinoma cells were cultured in MEM-alpha (Gibco) supple-

mented with 10% FBS, 1 mM sodium pyruvate and 2 mM L-

glutamine.

Generation of luciferase reporter constructs, transient
DNA transfection and luciferase reporter assays

Fragments surrounding each of rs11257655 (151 bp) and

rs34428576 (179 bp) were PCR-amplified (Table S1) from DNA

of individuals homozygous for risk and non-risk alleles. Restriction

sites for KpnI and XhoI were added to primers during

amplification, and the resulting PCR products were digested with

KpnI and XhoI and cloned in both orientations into the multiple

cloning site of the minimal promoter-containing firefly luciferase

reporter vector pGL4.23 (Promega, Madison, WI). Fragments are

designated as ‘forward’ or ‘reverse’ based on their orientation with

respect to the genome. Two to five independent clones for each

allele for each orientation were isolated, verified by sequencing,

and transfected in duplicate into 832/13, MIN6 and HepG2 cell

lines. Missing haplotypes of rs36062557-rs11257655 constructs

were created using the QuikChange site directed mutagenesis kit

(Stratagene).

Approximately 161025 cells per well were seeded in 24-well

plates. At 80% confluency, cells were co-transfected with

luciferase constructs and Renilla control reporter vector

(phRL-TK, Promega) at a ratio of 10:1 using Lipofectamine

2000 (Invitrogen) for 832/13, and using FUGENE-6 for MIN6

and HepG2 cells (Roche Diagnostics, Indianapolis, IN). 48 h

after transfection, cells were lysed with passive lysis buffer

(Promega), and luciferase activity was measured using the Dual-

luciferase assay system (Promega). To control for transfection

efficiency, raw values for firefly luciferase activity were divided

by raw Renilla luciferase activity values, and fold change was

calculated as normalized luciferase values divided by pGL4.23

minimal promoter empty vector control values. Data are

reported as the fold change in mean (6 SD) relative luciferase

activity per allele. A two-sided t-test was used to compare

luciferase activity between alleles. All experiments were carried

out on a second independent day and yielded comparable allele-

specific results.

Electrophoretic mobility shift assay (EMSA)
Nuclear cell extracts were prepared from 832/13, MIN6, and

HepG2 cells using the NE-PER nuclear and cytoplasmic

extraction kit (Thermo Scientific) according to the manufacturer’s

instructions. Protein concentration was measured with a BCA

protein assay (Thermo Scientific), and lysates were stored at 2

80uC until use. 21 bp oligonucleotides were designed to the

sequence surrounding rs11257655 risk or non-risk alleles: Sense 59

biotin- GGGCAAGTGT[C/T]TACTGGGCAT 39, antisense 59

biotin- ATGCCCAGTA[G/A]ACACTTGCCC 39 (SNP allele in

bold). Double-stranded oligonucleotides for the risk and non risk

alleles were generated by incubating 50 pmol complementary

oligonucleotides at 95uC for 5 minutes followed by gradual cooling

to room temperature. EMSA’s were carried out using the

LightShift Chemiluminescent EMSA Kit (Thermo Scientific).

Binding reactions were set up as follows: 16 binding buffer,

50 ng/mL poly (dINdC), 3 mg nuclear extract, 200 fmol of labeled

probe in a final volume of 20 mL. For competition reactions, 67-

fold excess of unlabeled double-stranded oligonucleotides for

either the risk or non-risk allele were included. Reactions were

incubated at room temperature for 25 minutes. For supershift

assays, 4 mg of polyclonal antibodies against FOXA1 (ab23738;

Abcam) or FOXA2 (SC6554X; Santa Cruz Biotechnology) was

added to the binding reaction and incubation proceeded for a

further 25 minutes. Binding reactions were subjected to non-

denaturing PAGE on DNA retardation gels in 0.56TBE (Lonza),

transferred to Biodyne nylon membranes (Thermo Scientific) and

cross-linked on a UV-light cross linker (Stratagene). Biotin labeled

DNA-protein complexes were detected by chemiluminescence.

EMSAs were carried out on a second independent day and yielded

comparable.
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DNA affinity capture assay
DNA affinity capture was carried out as previously described

[7]. Briefly, dialyzed nuclear extracts (300 mg) were pre-cleared

with 100 ml of streptavidin-agarose dynabeads (Invitrogen) cou-

pled to biotin-labeled scrambled control oligonucleotides. For

DNA-protein binding reactions, 40 pmol of biotin labeled probe

for either rs11257655 allele (same probe as for EMSA) or for a

scrambled control were incubated with 300 mg nuclear extract,

binding buffer (10 mM Tris, 50 mM KCL, 1 mM DTT),

0.055 mg/mL poly (dINdC) and H20 to total 450 mL at room

temperature for 30 minutes with rotation. 100 mL (1 mg) of

streptavidin-agarose dynabeads were added and the reaction

incubated for a further 20 minutes. Beads were washed and DNA-

bound proteins were eluted in 16 reducing sample buffer

(Invitrogen). Proteins were separated on NuPAGE denaturing

gels and protein bands stained with SYPRO-Ruby. Protein bands

displaying differential binding between rs11257655 alleles were

excised from the gel and subjected to matrix assisted laser

desorption time-of-flight/time-of-flight tandem mass spectrometry

(MS) and analysis at the University of North Carolina proteomics

core facility. For peptide identification, all MS/MS spectra were

searched against all entries, NCBI non-redundant (NR) database,

using GPS Explorer Software Version 3.6 (ABI) and the Mascot

(MatrixScience) search algorithm. Mass tolerances of 80 ppm for

precursor ions and 0.6 Da for fragment ions were used. In

addition, two missed cleavages were allowed and oxidation of

methionine was a variable modification.

Chromatin Immunoprecipitation (ChIP) assays
Human islets from non-diabetic organ donors were provided by

the National Disease Research Interchange (NDRI). Use of

human tissues was approved by the University of North Carolina

Institutional Review Board. Islet viability and purity were assessed

by the NDRI. Islets were warmed to 37uC and washed with

calcium- and magnesium-free Dulbecco’s phosphate-buffered

saline (Life Technologies) prior to crosslinking. For chromatin

immunoprecipitation (ChIP) studies, approximately 2000 islet

equivalents (IEQs) were crosslinked for 10 min in 1% formalde-

hyde (Sigma-Aldrich) at room temperature. Islets were lysed and

chromatin was sheared on ice using a standard bioruptor

(Diagenode; 20–22 cycles of 30 s sonication with 1 min rest

between cycles) to a size of 200–1000 bp. IP dilution buffer (0.01%

SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris at

pH 8.1, 167 mM NaCl, protease inhibitors) was added, 5% of the

volume was removed and used as input, and the remainder was

incubated overnight at 4uC on a nutating platform with FOXA1

or FOXA2 antibody or a species-matched IgG as control.

Antibodies used for ChIP were the same as for EMSA; FOXA1

(Abcam) and FOXA2 (Santa Cruz). Protein A agarose beads

(Santa Cruz) were added and incubated for 3 h at 4uC. Beads were

then washed for 5 minutes at 4uC with gentle mixing, using the

following solutions: Low Salt Buffer (0.1% SDS, 1% Triton X-100,

2 mM EDTA, 20 mM Tris, 150 mM NaCl); High Salt Buffer

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris,

500 mM NaCl); LiCl buffer (1 mM EDTA, 10 mM Tris, 250 mM

LiCl, 1% NP-40, 1% Na-Deoxycholate), twice; and TE buffer

(Sigma-Aldrich), twice. Chromatin was eluted from beads with two

15-minute washes at 65uC using freshly prepared Elution Buffer

(1% SDS/0.1 M NaHCO3). To reverse crosslinks, 5 M NaCl was

added to each sample to a final concentration of 0.2 M, and

incubated overnight at 65uC; to remove protein, samples were

incubated with 10 uL 0.5 M EDTA, 20 uL 1 M Tris (pH 6.5) and

3 uL of Proteinase K (10 mg/mL) at 45uC for 3 hours. DNA was

extracted with 25:24:1 phenol:choloform:isoamyl alcohol,

precipitated with 100% ethanol with 1 ml glycogen as a carrier,

and resuspended in TE (Sigma). qPCR was performed in triplicate

using SYBR Green Master Mix. Primers were designed to amplify

a 99-bp region surrounding rs112576555; 59-CTACT-

GCTTCTCCGGACTCG 939 and 59- TGGCCTCAAGAGG

GAGATAA -39. Primers for a 133-bp control region not

overlapping open chromatin and located 27 kb away were 59-

GCACCCATGGTACTGAAACC -39 and 59- CTTTTCCCG

AGGAAGGAACT -39. Dissociation curves demonstrated a single

PCR product in each case without primer dimers. Fold

enrichment was calculated as FOXA1/FOXA2 enrichment

divided by IgG control. A one-sided t-test was performed to

compare enrichment based on the direction of binding observed

using EMSA.

Effect of glucose on Cdc123 and Camk1d transcript level
To measure effects of glucose on expression of Cdc123 and

Camk1d, 832/13 cells and MIN6 cells were washed with PBS and

preincubated for 2.0 h in secretion buffer (114 mm NaCl, 4.7 mm

KCl, 1.2 mm KH2PO4, 1.16 mm MgSO4, 20 mm HEPES,

2.5 mm CaCl2, 0.2% BSA, pH 7.2. For GSIS, cells were

incubated in secretion buffer for an additional 2 hours or 16 hours

in the presence of 3 mM or 20 mM glucose and then harvested for

RNA.

RNA isolation and quantitative real-time reverse-
transcription PCR

Total cytosolic RNA was isolated using the RNeasy Mini Kit

(Qiagen). RNA concentrations were determined using a Nanodrop

1000 (Thermo Scientific, Wilmington, DE, USA). For real-time

reverse transcription (RT)–PCR, first-strand cDNA was synthe-

sized using 8 ul of total RNA in a 20 ml reverse transcriptase

reaction mixture (Superscript III First strand synthesis kit; Life

Technologies). cDNA was diluted to contain equivalent to 20–

55 ng/ml input RNA. To measure total human mRNA levels of

CDC123, CAMK1D and B2M, gene-specific primers and fast

SYBR Green Master Mix (Life Technologies) were used (Table

S2). TaqMan designed gene expression assays (Life Technologies)

were used to measure Cdc123, Camk1D and Rsp9 (housekeeping

gene) mRNA levels of mouse and rat cells. All PCR reactions were

performed in triplicate in a 10-ml volume using a STEPOne Plus

real-time PCR system (Life Technologies). Serial 3-fold dilutions of

cDNA from pooled human tissues, 832/13 or MIN6 cells as

appropriate were used as a reference for a standard curve.

Statistical significance was determined by two-tailed t-tests.

Supporting Information

Figure S1 Regulatory potential at rs11257655 and rs36062557.

UCSC genome browser (hg18) diagram showing that rs11257655

and rs36062557 overlap regions of open chromatin, detected by

DNase hypersensitivity and FAIRE, and histone modifications,

including H3K4me1 and H3K9ac in islet, liver, and HepG2 cells.

H3K27ac and H3K4me3 histone modifications are also shown.

rs11257655 and rs36062557 are also located near to HepG2

ChIP-seq peaks for FOXA1 and FOXA2. DNA sequences

amplified to evaluate transcriptional activity in dual-luciferase

reporter assays and to evaluate enrichment of binding to FOXA1

and FOXA2 are indicated.

(TIF)

Figure S2 Transcriptional activity at rs34428576. Enhancer

activity was measured in 832/13 cells (A) and HepG2 cells (B) for

alleles of rs34428576. No difference was observed between alleles
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in 832/13 cells. In HepG2 cells, moderate allele-specific activity

was observed only in the reverse orientation. Error bars represent

standard deviation of 4–5 independent clones for each allele.

Results are expressed as fold change compared to empty vector

control. P values were calculated by a two-sided t-test.

(TIF)

Figure S3 Chromosome 10 region not overlapping open

chromatin does not show binding to FOXA1 and FOXA2 in

human islets. A negative control region 28 kb downstream of

rs11257655 was not substantially enriched in FOXA1- (A) and

FOXA2- (B) bound chromatin. Error bars represent standard

error of two to three islets for each represented genotype.

(TIF)

Figure S4 CDC123 and CAMK1D expression and response to

glucose. (A, B) Evidence that CAMK1D and CDC123 are

expressed in various human tissues. cDNA from human islets,

hepatocytes, blood and adipocytes was analyzed by real-time PCR

using gene-specific primers for CAMK1D (A) and CDC123 and
B2M (B). mRNA level was normalized to B2M. (C, D, E) Effect of

glucose stimulus on CAMK1D and CDC123 expression level.

832/13 and MIN6 insulinoma cells were treated with low (3 mM)

and high (15 mM) glucose for 16–18 hours. cDNA was analyzed

by real-time PCR using TaqMan gene expression assays for
CAMK1D (C) and CDC123 (D, E). mRNA level was normalized
to RSP9. High glucose treatment resulted in a significant increase
in CAMK1D mRNA level (C) but not CDC123 in MIN6 cells (D).
High glucose treatment resulted in increased CDC123 mRNA level
in 832/13 cells. Error bars represent the standard deviation of 4–5

samples for each treatment. P values were calculated by a two-

sided t-test.

(TIF)

Table S1 DNA sequences amplified for luciferase activity assays.

(DOCX)

Table S2 PCR primers for quantitative real-time PCR in human

tissues.

(DOCX)
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