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TABLE 1. Updated list of validated named species of Acinetobacter

Commonly found human pathogens
A. baumannii (genospecies 2)
A. nosocomialis (genospecies 13TU)
A. pittii (genospecies 3)
A. calcoaceticus (genospecies 1)

Uncommon organisms in clinical infections 
A. baylyi
A. beijerinckii
A. bereziniae
A. boissieri
A. bouvetii
A. brisouii
A. gerneri
A. grimontiia

A. guillouiae
A. gyllenbergii
A. haemolyticus
A. harbinensis
A. indicus
A. johnsonii
A. junii
A. kookii

A. lwoffii
A. nectaris
A. parvus
A. puyangensis
A. qingfengensis
A. radioresistens 
A. rudis
A. schindleri

A. soli
A. tandoii
A. tjernbergiae
A. towneri
A. ursingii
A. venetianus
 
 

aSynonym of A. junii.
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INTRODUCTION

　Acinetobacter species are aerobic gram-negative bacilli 
that are ubiquitous in natural environments such as soil 
and water. These species are occasionally found as com-
mensals on the skin and throat and in secretions of healthy 
people. It was previously believed that Acinetobacter spe-
cies were not a common human pathogen and that they 
were uncommon causes of infection. However, Acineto-
bacter species are now one of the most common organisms 
isolated from hospital environments and hospitalized 
patients.1 Acinetobacter species have excellent biofilm- 
producing ability and intrinsic and acquired resistance to 
various antibiotic agents, all of which facilitate their sur-
vival in hospital environments. For these reasons, Acineto-
bacter species are frequently found on the skin and in the 
respiratory and urinary tracts of hospitalized patients.

MICROBIOLOGY AND TAXONOMY

　The genus Acinetobacter belongs to the subclass 
γ-Proteobacteria, family Moraxellaceae, and comprises a 
heterogeneous group of aerobic nonhemolytic gram-neg-
ative coccobacilli, which are usually found in diploid for-
mation or chains of variable length. Acinetobacter spp. are 
oxidase-negative, catalase-positive, indole-negative, and 
nitrate-negative. However, identification of individual 

species by their phenotypic traits is difficult, and identi-
fication of individual species by use of current automated 
or manual commercial systems will require further con-
firmation testing. Nowadays, with advancements in mo-
lecular bacterial taxonomy, particularly 16S rDNA se-
quencing and DNA-DNA hybridization, species can be dis-
tinguished more accurately. Currently, the genus Acineto-
bacter contains 34 formally named species (Table 1).2

　Among the Acinetobacter species, Acinetobacter bau-
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TABLE 2. Antimicrobial categories and agents used to define mul-
tidrug resistance (MDR), extreme drug resistance (XDR), and 
pandrug resistance (PDR) in Acinetobacter species

Antimicrobial category Antimicrobial agent

Aminoglycosides

Antipseudomonal carbapenems

Antipseudomonal fluoroquinolones

Antipseudomonal penicillins
+β-lactamase inhibitors

Extended-spectrum cephalospor-
ins

Folate pathway inhibitors

Penicillins+β-lactamase inhibitors
Polymyxins

Tetracyclines

Gentamicin
Tobramycin
Amikacin
Netilmicin
Imipenem
Meropenem
Doripenem
Ciprofloxacin
Levofloxacin
Piperacillin-tazobactam
Ticarcillin-clavulanic acid
Cefotaxime
Ceftriaxone
Ceftazidime
Cefepime
Trimethoprim-sulfametho-

xazole
Ampicillin-sulbactam
Colistin
Polymyxin B
Tetracycline
Doxycycline
Minocycline

MDR: nonsusceptible to ≥1 agent in ≥3 antimicrobial categories,
XDR: nonsusceptible to ≥1 agent in all but ≤2 categories, PDR:
nonsusceptible to all antimicrobial agents listed.
Adapted from reference 11.

mannii, Acinetobacter pittii (genospecies 3), and Acineto-
bacter nosocomialis (genospecies 13TU) (together forming 
the “A. baumannii complex”) are closely related; they are 
considered important nosocomial pathogens and account 
for most clinically significant infections. These three spe-
cies together with another closely related Acinetobacter 
species commonly found in the natural environment, 
Acinetobacter calcoaceticus, are grouped under the term 
“A. calcoaceticus-A. baumannii complex” (ACB complex).

PATHOGENESIS

　Acinetobacter was initially considered to be an organism 
of low virulence, and little is known about its virulence 
mechanisms and host responses. Several specific potential 
virulence mechanisms related to the ability of Acineto-
bacter species to adhere to, colonize, and invade human epi-
thelial cells have been identified. However, despite recent 
advances, many questions regarding the virulence and 
pathogenesis of Acinetobacter species remain unanswered.
　The pathogenic determinants include pilus-mediated bi-
ofilm formation,3 an outer membrane protein A associated 
with apoptosis in human cells,4,5 an iron-acquisition sys-
tem,5,6 lipopolysaccharides,7 and a quorum-sensing sys-
tem.8 Biofilm formation can be considered a key virulence 
factor of many A. baumannii isolates, including carbape-
nem-resistant strains. A biofilm constitutes living bacteria 
attached to a surface as sessile communities,9 which en-
ables bacteria to withstand host immune defense mecha-
nisms, antibiotics, and hydrodynamic shear forces. This al-
lows A. baumannii to colonize and persist on biotic and 
abiotic surfaces, causing infections associated with in-
dwelling medical devices. Recent studies have shown that 
ACB complex species are threefold more likely to form a bio-
film at a liquid-solid interface than are non-ACB complexes 
at 25oC (80-91% versus 5-24%).10 

RESISTANCE MECHANISMS

　Acinetobacter species are a common cause of nosocomial 
infections, and some Acinetobacter isolates are resistant to 
all or almost all β-lactam antibiotics, aminoglycosides, and 
quinolones. However, controversy exists over the terms 
“multidrug resistance” (MDR), “extreme drug resistance” 
(XDR), and “pandrug resistance” (PDR) in gram-negative 
pathogens, and a consensus on their definitions is needed. 
The most recent recommended updated definitions are as 
follows:11 MDR refers to a pathogen being nonsusceptible 
to at least one agent in more than three antimicrobial 
categories. XDR refers to a pathogen being nonsusceptible 
to at least one agent in all but less than two categories. PDR 
refers to a pathogen being nonsusceptible to all anti-
microbial agents (Table 2).
　Resistance mechanisms include inherent antibiotic re-
sistance, antimicrobial-degrading enzymes, efflux pumps, 
target modification, and porin deficiency. The most im-
portant mechanism, however, is the endless capacity of 

Acinetobacter species to acquire antibiotic resistance, lead-
ing to MDR and even PDR.12 There are many mechanisms 
of antibiotic resistance; here we discuss only resistance to 
carbapenem and colistin.
　Resistance to carbapenems is often mediated by serine 
oxacillinases (OXAs; Amber class D), which are encoded by 
the blaOXA-23, blaOXA-40, blaOXA-58, and metallo-β-lactamases 
(MBLs; Amber class B) genes of the VIM, IMP, and SIM 
families.13,14 OXAs are not inhibited by clavulanic acid and 
have been found in most regions of the world, whereas 
MBLs mediate resistance to carbapenems and all other 
β-lactamases, with the exception of aztreonam.14,15 Carb-
apenem resistance in A. baumannii isolates is most fre-
quently due to OXA production, whereas MBL production 
is more prevalent in non-baumannii Acinetobacter isol-
ates.13,16 In A. baumannii, the level of carbapenem resist-
ance provided by OXAs is considerably lower than that 
mediated by MBLs. In particular, some of these enzymes 
do not hydrolyze meropenem.
　The Acinetobacter mechanism of resistance to colistin dif-
fers from the usual mechanism in gram-negative patho-
gens,17 and investigations of these additional regulatory 
factors are ongoing. Currently, two main hypotheses re-
garding the resistance mechanisms exist. The first is the 
loss of lipopolysaccharide,18 and the second is a mutation 
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FIG. 1. Global epidemiology of carbape-
nem-resistant Acinetobacter strains.

in the genes encoding the PmrA and B proteins, which are 
related to increased expression of the PmrAB system and 
amino acid sequence alterations.19 Although acquired coli-
stin resistance remains rare among clinical Acinetobacter 
isolates,20 some Acinetobacter species seem to possess in-
trinsic resistance to colistin without multidrug resis-
tance.21 The emergence of colistin resistance has provided 
a safe and accurate method of determining the suscepti-
bility of Acinetobacter species in a clinical setting. A com-
parison of the Vitek 2, MicroScan, and Etest methods with 
the agar dilution method for assessment of colistin suscept-
ibility22 revealed that MicroScan was unreliable, whereas 
Etest and Vitek 2 were suitable for identification of coli-
stin-resistant and colistin-susceptible Acinetobacter iso-
lates.

EPIDEMIOLOGY

　Carbapenemases have been reported increasingly fre-
quently in Enterobacteriaceae and Acinetobacter species 
over the past 10 years worldwide (Fig. 1). The incidence of 
infections caused by carbapenem-resistant gram-negative 
bacilli in intensive care units (ICUs) has also increased; 
this now represents a global problem. Nosocomial out-
breaks and endemic infections in ICUs are now common-
place because of the widespread use of broad-spectrum an-
tibiotics and medical devices as well as an increase in the 
number of immunocompromised hosts.
　Acinetobacter species comprise 8.4% of ventilator- asso-
ciated pneumonia and 2.2% of central-line-associated 
bloodstream infections in the USA. Carbapenem resist-

ance accounts for 65% of A. baumannii pneumonia in the 
USA and Europe,23 and clonal complex 92 was the most fre-
quently identified worldwide.24 A recent study showed that 
＞60% of A. baumannii isolates causing hospital-acquired 
pneumonia in Asian countries were PDR and carbape-
nem-resistant. Clonal complex 92, corresponding to global 
clone 2, was most prevalent, and OXA-23 oxacillinase was 
responsible for the majority of carbapenem resistance in 
the USA and Europe.25

CLINICAL FEATURES

　Acinetobacter species have become a key concern owing 
to their ability to cause epidemics and nosocomial infe-
ctions. Because of mechanisms that facilitate colonization 
of patients or devices used in hospital settings, Acineto-
bacter catheter or device-related infections are clinically 
important. A. baumannii is increasingly frequently re-
sponsible for nosocomial pneumonia in ICUs, predom-
inantly ventilator-associated pneumonia, the incidence of 
which has increased from 4% (1986) to 7% (2003).26 
Bloodstream infections due to A. baumannii account for 1% 
to 2% of all nosocomial bloodstream infections.27,28 A. bau-
mannii is also a cause of urinary tract infections, commonly 
in patients with urinary tract catheters; surgical-site in-
fections; and nosocomial meningitis.26

TREATMENT OPTIONS

　Most A. baumannii strains are resistant to antibiotics 
such as penicillin, ampicillin, macrolides and second- and 
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TABLE 3. Antibiotics used in infections caused by carbapenem-re-
sistant Acinetobacter species

Regimen Dose (in normal renal function)

Colistin
Sulbactam
Tigecycline

2.5-5 mg/kg/day in 2-4 separate doses
3-4 g/day in 3-4 separate doses
100 mg IV loading, followed by 50 mg IV q 12 h

third-generation cephalosporins, ciprofloxacin, and chlo-
ramphenicol. Infections caused by antibiotic-susceptible 
Acinetobacter strains can be treated with ceftazidime, car-
bapenems, sulbactam, piperacillin/tazobactam, amino-
glycosides, and quinolones (e.g., levofloxacin/ciproflox-
acin) or cefepime, alone or in combination. Single-drug 
therapies with aminoglycosides are generally not recom-
mended because of the high failure rates in Pseudomonas 
aeruginosa infections.29 However, the proportion of Acin-
etobacter infections caused by resistant strains is increas-
ing and outbreaks of strains with PDR have been 
reported.30 The rate of Acinetobacter resistance to amino-
glycosides and piperacillin/tazobactam is higher in Asian 
and European countries than in the USA.31

　A number of studies have reported promising results re-
garding the efficacy of sulbactam against A. baumannii in-
fections; indeed, in cases of sulbactam-susceptible A. bau-
mannii, sulbactam was the preferred treatment option.32,33 
For carbapenem-resistant Acinetobacter baumannii 
(CRAB) infections, sulbactam is more effective than 
polymyxins.34 Most studies prescribed 8 to 9 g of sulbactam 
per day in several doses, assuming normal renal fun-
ction.34,35 Sulbactam is usually manufactured as a com-
pound with ampicillin at a fixed ratio of 2:1. Although sul-
bactam appears to be effective against CRAB infections, an 
increasing number of sulbactam-resistant A. baumannii 
strains have been isolated; a recent study from Taiwan re-
ported that 70% of clinical isolates were resistant to 
sulbactam.36

　Another treatment option for CRAB infections is the 
polymyxins. Among them, polymyxins B and E (colistin) 
are suitable for clinical use and additional studies have 
been conducted on colistin and polymyxin B. Colistin can 
be injected into the bloodstream, ventricles, and spinal cord 
or can be administered as an inhalant. Owing to its renal 
toxicity, polymyxin had been one of the least-used anti-
biotics in practice. However, recently, the emergence of 
MDR in gram-negative bacteria has resulted in an increase 
in their use. Use of polymyxins for A. baumannii infections 
is clinically useful; however, a total cumulative dose of coli-
stin appears to be associated with nephrotoxicity.37 
Therefore, in patients requiring prolonged treatment, pos-
sible renal damage should be considered. Pharmacokinetic 
data on colistin are scarce and no consensus on the opti-
mum method of its administration has been reached. The 
usual recommended dose for adults with normal renal 
function is 2.5 to 5 mg/kg/day as an intravenous colistin 
base in two to four doses (Table 3). However, a recent study 

suggested that a high dose with an extended-interval regi-
men can achieve better results.38 Because colistin has diffi-
culty penetrating the blood-brain barrier, intra-ven-
tricular administration of colistin is recommended for 
CRAB infections and Acinetobacter meningitis, as well 
during the removal of infected hardware.39,40

　Colistin-based combination therapies in patients with 
CRAB infections remain controversial. In a randomized 
controlled clinical trial, a significant increase in the micro-
biological eradication rate was seen for a colistin and ri-
fampicin combination, compared with colistin mono-
therapy, in serious XDR A. baumannii infections. However, 
30-day mortality was not reduced by the addition of ri-
fampicin to colistin.41 In another randomized trial, a coli-
stin/fosfomycin combination exhibited a significantly en-
hanced microbiological response compared to colistin 
alone. However, although the clinical outcomes and mor-
tality rates were lower in the combination therapy group, 
the difference was not statistically significant.42 In a pro-
spective observational study, combination therapy was not 
associated with a reduced mortality rate in MDR A. bau-
mannii infections.43 A recent meta-analysis indicated that 
various colistin-based combination therapy regimens 
showed no evidence of a benefit compared with mono-
therapies in the treatment of infections with carbape-
nem-resistant gram-negative bacteria.44

　Tigecycline, which has shown in vitro activity against 
Acinetobacter species in skin and soft tissue infections45 as 
well as in complicated intra-abdominal infections,46 could 
be used as alternative therapy for CRAB infections. 
However, the use of tigecycline in patients with CRAB in-
fections is limited, because the two major clinical CRAB in-
fections are hospital-acquired pneumonia and cen-
tral-catheter-related bloodstream infections. Tigecycline 
has been associated with an increased risk of mortality 
compared with other agents, most markedly among pa-
tients with hospital-acquired pneumonia.47 Moreover, ti-
gecycline rapidly enters the tissues following admin-
istration, which results in low serum levels, making it in-
appropriate for the treatment of Acinetobacter bact-
eremia.48

　A recent study found that aspergillomarasmine A, a nat-
ural fungal product purified from Aspergillus versicolor, 
was a rapid and potent inhibitor of carapenemase, includ-
ing NDM and VIM, and fully restored the activity of mer-
openem against Enterobacteriaceae, Acinetobacter spp., 
and Pseudomonas spp. possessing either VIM or NDM- 
type alleles both in vitro and in mice.49 Further research 
is essential to evaluate the clinical efficacy, safety, and use-
fulness of this product and its derivatives.

OUTCOMES

　As mentioned previously, the ACB complex accounts for 
most nosocomial infections. Owing to its critical role in no-
socomial infections and high mortality rates, much effort 
has focused on identifying the factors associated with the 
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FIG. 2. Kaplan-Meier curves of survival in 90 patients with A. bau-
mannii bacteremia and 90 patients with non-baumannii ACB 
complex bacteria. Adapted from reference 53.

outcomes of Acinetobacter species infections. Several fac-
tors have been reported to influence the outcomes of 
Acinetobacter infections, including species differences, an-
tibiotic resistance, and use of inappropriate empirical 
therapies. Although carbapenem resistance of other 
non-A. baumannii species has been documented, carbape-
nem resistance occurs most frequently in A. baumannii.50 
This makes determination of the factors directly related to 
outcomes problematic. In an American study of 295 blood-
stream infections caused by Acinetobacter species, the 
crude mortality rate of A. baumannii was higher than those 
of A. pittii and A. nosocomialis (36.9%, 13.0%, and 16.4%, 
respectively).51 Another study in Taiwan reported that bac-
teremia due to MDR stains appeared to be associated with 
a poor outcome, rather than A. baumannii itself.52 In our 
previous study, A. baumannii species, rather than anti-
biotic resistance, was found to be associated with mortality 
(Fig. 2).53 A study using a Galleria mellonella animal model 
reported that larvae survival was higher during infection 
with a non-baumannii ACB complex strain than with car-
bapenem-susceptible and carbapenem-resistant A. bau-
mannii strains without appropriate treatment. No sig-
nificant difference in survival was observed between lar-
vae infected with carbapenem-susceptible and carbape-
nem-resistant A. baumannii.54 These data suggest that the 
factors contributing to the outcomes of Acinetobacter in-
fections are more likely associated with differences in the 
virulence of individual species rather than carbapenem 
resistance. However, further investigation of the innate 
virulence of the various genospecies, and how these find-
ings could be implemented in daily practice, should be car-
ried out. Patients infected with A. baumannii had a mortal-
ity rate ＞30%. The poor outcome emphasizes the im-
portance of aggressive infection control for prevention of 
mortality and the urgent need for new therapeutic agents 
and vaccines.

INFECTION CONTROL AND PREVENTION

　Acinetobacter species are increasingly present in health-
care settings, either as occasional outbreaks or as endemic 
pathogens. Successful control has been reported in many 
healthcare facilities.55-61 However, once Acinetobacter has 
become endemic, it becomes difficult to eradicate from a 
healthcare facility. For this reason, early recognition, ag-
gressive control of spread, and prevention of the establish-
ment of endemic strains are crucial. Strategies for control 
of Acinetobacter outbreaks include active surveillance cul-
tures, environmental surveillance cultures, improved 
hand hygiene, cleaning and disinfection of the environ-
ment, cohort nursing, isolation of patients in single rooms, 
restriction of access to the ICU, appropriate antibiotic use, 
and closing wards for cleaning and disinfection.62

　MDR  A. baumannii contamination of gloves, gowns, and 
hands of healthcare workers occurs after contact with a 
source patient.63 Acinetobacter is easily transmitted from 
healthcare workers and the general environment, includ-
ing medical equipment, to patients. The ability to form a 
biofilm and the presence of dormant cells enables Acineto-
bacter to survive for several weeks on abiotic surfaces un-
der dry conditions.64 Therefore, thorough disinfection of a 
potentially contaminated environment is also important, 
as is the use of a closed tracheal suction system and vas-
cular devices to prevent Acinetobacter contamination.65 
Although some studies have demonstrated successful con-
trol of infection without isolation of infected or colonized pa-
tients,66 implementation of precautions during contact and 
isolation of patients is generally encouraged.67,68 The use 
of patients’ own equipment might facilitate the control of 
outbreaks, and the maintenance of a good hand hygiene 
regimen for healthcare workers is also important.69 
Because previous exposure to antibiotics is considered a 
risk factor for outbreaks and antibiotic resistance, re-
striction of the use of broad-spectrum antibiotics may also 
contribute to a reduction in infections.70

　Once endemic in a healthcare unit, it is extremely diffi-
cult to eradicate A. baumannii. Whether this organism can 
be reduced by strict infection control measures after be-
coming endemic is still under debate. A study of ICU pa-
tients showed that a multifaceted intervention featuring 
active surveillance and environmental cleaning resulted 
in a sustained reduction in the rate of XDR A. baumannii 
colonization and infection and reduced the cost of anti-
biotics and hospitalization.71 Further well-designed ran-
domized controlled trials are needed to validate the effects 
of these strategies in endemic settings.
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