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Abstract
Helicobacter pylori  (H. pylori ) is a pathogenic, extra-
cellular bacterium that colonizes the stomach in ap-
proximately 50% of the world population. It strongly 
interacts with the gastric epithelium and mostly causes 
asymptomatic gastritis. The colonization of H. pylori  
leads to ulcer development in around 20% of infected 
patients and may progress to gastric cancer or mucosa-
associated lymphoid tissue lymphoma in 1%. Thus, H. 
pylori  is the major cause of gastric cancer worldwide. 
It has been classified as a class Ⅰ carcinogen by the 
World Health Organization. Since its discovery in the 
early eighties by Warren and Marshall, research has 
been focused on the investigation of H. pylori  biology, 
host-pathogen interaction, prevention and treatment. 
Although H. pylori  induces a strong humoral and local 
cellular immune response, the pathogen is not cleared 
and establishes a chronic infection after encounters in 
childhood. The ability to colonize the stomach is medi-
ated by several virulence factors that change the host 
environment, promote adhesion to the epithelium, 
influence the gastric inflammation and induce immune 
evasion. H. pylori  can be eradicated by antibiotic treat-
ment in combination with a proton-pump inhibitor, but 
efficacy is decreasing. Current therapies are expensive, 
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have side effects and contribute to increasing antibiotic 
resistance, underlining the need for novel therapeutics.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Helicobacter pylori  (H. pylori ) is a carcinogenic 
pathogen colonizing the human stomach. In the advent 
of rising antibiotic resistance, it is of major interest to 
introduce novel therapies. Immunization is a potent 
candidate although all efforts to generate an effective 
vaccine have failed as yet. The host-pathogen interac-
tion and especially the immune-modulating capacity of 
H. pylori  contribute to this development of resistance 
to treatment. In this review potential solutions with a 
focus on the immune response to the pathogen are dis-
cussed.
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INTRODUCTION
In the last 20 years substantial effort has been put into 
the development of  a Helicobacter pylori (H. pylori) vaccine. 
In different animal models immunization strategies have 
been tested[1] which led to the reduction of  colonization, 
but few strategies conferred protection in terms of  steril-
izing immunity[2]. Vaccines were composed of  different 
antigens and adjuvants applied by different routes and 
delivery systems. Some immunization strategies were test-
ed in humans, but with disappointing results[3]. Although 



several vaccines induced antigen-specific immunity there 
was only one publication that reported a slight reduction 
of  H. pylori[4]. This raises several questions regarding suc-
cessful vaccination against H. pylori. What is a protective 
antigen? Which adjuvant can induce a protective immune 
response? And finally, what impact has the host-pathogen 
interaction that modifies the host immune system on a 
successful vaccine and is it possible to circumvent these 
influences? These questions will be addressed in this re-
view, with regard to the host immune response against H. 
pylori and the experience of  vaccination that we have till 
now.

IMMUNE RESPONSE AGAINST H. PYLORI
An encounter with H. pylori leads to the activation of  the 
innate and adaptive immune system. The recognition of  
antigen induces the activation of  antigen presenting cells 
(APCs)[5]. It is unclear if  the APCs responsible for recog-
nition reside in the stomach itself. Recent data indicate a 
role of  APCs located in the Peyer’s patches (PPs) in sam-
pling for antigen from dead bacteria[6]. It has been clearly 
demonstrated that antigen presentation, co-stimulation 
and cytokine production are controlled by toll-like recep-
tors (TLRs)[7]. Immune recognition of  H. pylori involves 
TLR2 and TLR5[8]. The local immune response towards 
H. pylori in the stomach is characterized by the presence 
of  CD4+ T-cells in the gastric lamina propria with a 
mainly T-helper type 1 (Th1) phenotype[9]. Infection also 
induces IgG and IgA antibody responses detectable in 
the serum and in the mucosa[10]. Despite the generation 
of  broad innate and adaptive immune responses, H. pylori 
is not cleared, thus chronically colonizing the stomach.

Dendritic cells in H. pylori infection
The hallmark of  dendritic cells (DCs) is their potential to 
take up and present antigens very efficiently[11]. In the gut 
several DC subsets can be found. The most prominent 
CD103+ DCs have the ability to induce regulatory T-cells 
(Treg)[12] as well as imprinting gut homing properties via 
α4β7 integrin expression[13]. A DC subset expressing 
CX3CR1, negative for CD103, were described as antigen 
sampling cells that extend their dendrites into the lu-
men[14]. These data are still controversial and the CX3CR1 
cells are not classified as a true DC subset. Most knowl-
edge of  gut-residing DCs comes from the intestine but 
H. pylori is a pathogen of  the stomach and interacts with 
the gastric epithelium. The role of  DCs in the gastric tis-
sue is less well defined. On the one hand, no organized 
lymphoid structures are present, and it is not clear if  
antigen sampling from the gastric lumen exists. On the 
other hand, it has been described that recognition of  
H. pylori takes place in the small intestine[6]. The coccoid 
form of  H. pylori was found to interact with PP DCs and 
mice lacking PPs fail to induce gastritis thus indicating 
the priming site of  H. pylori within the PPs. Nevertheless, 
DCs can be isolated from the stomach, but their role in 
local pathogen recognition has to be evaluated.

Most work on DC-H. pylori interaction was performed 
in vitro or ex vivo. DCs from human and mouse origin 
have been proven to induce a pro-inflammatory pheno-
type. Infection of  human monocyte-derived DCs with 
H. pylori led to the maturation of  the DCs with increasing 
expression of  MHC Ⅱ and co-stimulatory molecules[5]. 
Furthermore, IL-12 production was observed, and in co-
culture experiments naïve T-cells differentiated to a Th1 
phenotype characterized by the expression of  interferon 
(IFN)γ and tumor necrosis factor (TNF)α. Notably, the 
authors could observe that Escherichia coli (E. coli) induced 
this phenotype more efficiently. Similar co-culture experi-
ments were performed by Khamri et al[15]. They could ob-
serve an increased IL-23 production by the DCs inducing 
Il-17-producing T-cells. The finding that H.pylori induces 
a less inflammatory phenotype then E. coli or Acetinobacter 
lwoffi[16] indicates that H. pylori is a weak stimulus or is able 
to actively suppress the DC activation. Furthermore, DCs 
activated with H. pylori were able to convert naïve T-cells 
to Treg[17]. Whether the in vitro generated DCs mirror the 
phenotype and activity of  the cells in the gut mucosa is 
not well known.

More recent data that addressed the tolerogenic effect 
of  DCs in H. pylori infection was generated in an in vivo 
mouse model. Diphtheria toxin (DT)-dependent deple-
tion of  DCs in a CD11c-DTR (DT receptor) transgenic 
mouse was evaluated in the context of  H. pylori infec-
tion[18]. DC depletion in neonatally infected mice resulted 
in reduced colonization concomitant with an increase in 
gastritis and IFNγ-producing T-cells. Applying the DC 
depletion in a vaccination model also decreased the bacte-
rial burden and promoted vaccine efficacy[19]. This pheno-
type was associated with more pronounced gastritis and 
IFNγ/IL-17 production. These results demonstrate that 
DCs seem to be relevant not only to mount but also to 
suppress an effective immune response against H. pylori. 

B-cells in H. pylori infection
The infection with H. pylori induces a local and systemic 
antibody response including IgM, IgG and the mucosal 
active IgA isotypes[20]. Serum of  infected patients is suc-
cessfully used in H. pylori diagnosis including different an-
tigen recognition[21]. In a mouse model it could be shown 
that B-cell knockout mice are colonized to the same level 
as control animals after two weeks of  infection. How-
ever, after two and four months the bacterial burden in 
the B-cell deficient mice decreased significantly accompa-
nied with CD4+ T-cell infiltration and increased inflam-
mation[22]. These data suggest that the B-cell response 
may be beneficial for H. pylori. Furthermore, the chronic 
infection with H. pylori seems to prevent apoptosis of  
B-cells indicating a possible influence on the generation 
of  mucosa-associated lymphoid tissue lymphoma[23]. In 
vaccination experiments it could be shown that B-cells do 
not participate in the post immunization gastritis, because 
B-cell knockout mice exhibit similar inflammation after 
prophylactic vaccination to the controls[22]. Thereby, the 
efficacy of  the vaccine was similar to that seen in wild-
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type animals. Thus, antibody responses may not promote 
protection. Nevertheless, the role of  B-cells during vac-
cination against H. pylori should be reconsidered in the 
context of  neutralizing antibodies. Blocking essential fac-
tors of  H. pylori could be a promising strategy in future 
vaccination approaches.

T-cells in H. pylori infection
T-cells play a major role in protection against H. pylori 
through the adaptive arm of  the immune system. Mouse 
knockout models showed that CD4+ T-helper-cells (Th) 
are responsible for clearing the bacteria in the stomach, 
whereas B-cells have a minor contribution to protective 
immunity after vaccination[24]. CD4+ T-cells consist of  
different subsets with effector (Th1, Th2, Th17) and 
regulatory (Treg) properties. After infection with H. pylori, 
antigen uptake takes place in PPs by DCs, where naïve 
T-cells are located[6]. After activation they acquire intes-
tine-specific migration patterns to reach the stomach, the 
site of  infection, and can confer protection. One crucial 
homing receptor is the α4β7 integrin. T-cells that do 
not express α4β7 are not able to protect gastric mucosa 
against H. felis infection, as shown by Michetti et al[25] in 
transfer experiments. 

Th1/Th2
The expression of  the transcription factor T-bet (T-box 
21) and the secretion of  the effector cytokines IFNγ, 
IL-2 and TNFα characterize Th1 T-cells, and account for 
cell-mediated immunity. This is also defined by antibody-
mediated responses of  certain subclasses of  the IgG 
antibody family, specifically IgG2a. Th2 T-cells express 
Gata3 and secrete IL-4, IL-5 and IL-13, supporting hu-
moral immunity, particularly those that are involved in al-
lergy, dominated by the IgG1 antibody isotype. For a long 
time it was thought that Th2 confers protection against 
H. pylori. This view was changed by findings showing that 
during H. pylori infection a pronounced Th1-type CD4+ 
T-cell response develops with increasing numbers of  mu-
cosal T-cells[26] and the induction of  gastritis[27]. Studies in 
IFNγ and IL-4 deficient mice confirmed the important 
role of  a Th1 immune response and the development 
of  inflammation connected with H. pylori infection[28]. 
Nevertheless, H. pylori infection induces a Th1 response 
which neither eliminates the pathogen nor confers pro-
tection against reinfection[29,30]. Immunization studies 
with predominant Th1 responses, characterized by IL-12 
and IFNγ production, indicated that protection is due to 
a Th1 phenotype[31], with the overall conclusion of  a pro-
tective role for a Th1-type T-cell response. 

TH17
Another recently described effector subset are Th17 
T-cells, distinct from Th1 or Th2 cells, characterized by 
the transcription factor Rorgt and the secretion of  a sub-
set of  cytokines, i.e., IL-17, IL-22 and IL-26[32-34]. They are 
most abundant at steady state in gut-associated tissues, 
particularly the small intestinal lamina propria[35,36], where 

they are thought to coordinate early mucosal responses 
to pathogens[37,38]. Specifically, Th17 T-cells have signifi-
cant roles in protecting the host from bacterial and fungal 
infections, particularly at mucosal surfaces[39,40]. The coex-
pression of  IL-17 and IL-22 by Th17 cells regulates the 
production of  antimicrobial proteins in mucosal epithe-
lium[41]. On the other hand, several reports show their po-
tential to induce autoimmune tissue injury[42,43]. There is a 
reciprocal developmental pathway for the autoimmunity 
inducing effector Th17 and regulatory (Foxp3+) T cells 
that inhibit the pathogenic Th17 autoimmune cells[44,45]. 

While transforming growth factor (TGF)β1 is neces-
sary for induction of  Th17 differentiation, IL-21 and 
IL-23 are involved in generation and stabilization of  the 
Th17 cell subset, which express the IL-23 receptor[46-48]. 
The role of  Th17 cells in H. pylori infection has not been 
clear till now, although a few reports link the IL-23/IL-17 
cytokine axis to infection-induced gastritis[49]. IL-23 is 
overexpressed in the gastric tissue of  H. pylori-infected 
patients. Blocking IL-23 in cultured lamina propria leu-
cocytes from infected patients leads to decreased IL-17 
production. Furthermore, the treatment of  H. pylori-
infected mice with anti IL-17 antibody led to a more 
pronounced Th1 phenotype and increased gastritis[50]. 
The conclusion that IL-17 has a less inflammatory effect 
on the H. pylori infection was indirectly confirmed by the 
observation that IL17-/- mice showed a reduced colo-
nization after infection, with a concomitant decrease of  
neutrophil infiltration[51]. This could indicate that IL-17/
Th17 induces more inflammation, whereas Th1 leads 
to increased protection. A different result was observed 
by blocking the IL-17 signaling pathway. Algood et al[52] 
infected IL-17RA-deficient mice (IL17RA-/-) with H. 
pylori. Although one month after infection no differences 
were observed between knock-out and wild-type mice, 
eight weeks later IL17RA-/- animals showed higher colo-
nization. This was accompanied by enhanced H. pylori se-
rum antibody levels, more inflammation and an increase 
in B-cells and plasma cells in the gastric tissue. Like in 
IL-17-/- mice, the receptor-deficient mice had decreased 
neutrophil infiltration. Furthermore, elevated levels of  
IL-17 and IL-21 were observed in IL17RA-/- animals[52]. 
This implicates that IL-17 positively acts on neutrophil 
recruitment, whereas IL-17 signaling on B-cells regulates 
their attraction to the gastric tissue by a negative feedback 
loop.

On the other hand, in vaccination settings, the induc-
tion of  IL-17 secretion seems to directly correlate with 
decreased H. pylori colonization. Mice immunized with H. 
pylori lysate showed an induction of  Th17 cells and gastric 
infiltration of  neutrophils, which correlated with protec-
tion[53]. In addition, the group of  Michetti recently showed 
in a H. felis model that vaccine-induced IL-17 production 
reduced bacterial colonization, indicated by increased infil-
tration of  IL-17-producing CD4+ T-cells (Th17), whereas 
anti IL-17 treatment inhibited reduction of  Helicobacter as 
described before[54]. Nevertheless, it is still possible that 
the observed vaccine-induced grade of  protection is due 
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(LT), Alum or Freund’s adjuvants. Combinations of  more 
than one antigen often showed better protection[62,63]. In 
recent years several new vaccine approaches have been 
introduced. These are comprised of  new antigens, new 
antigen combinations or new adjuvants.

A new vaccine candidate is the 20 kD outer mem-
brane lipoprotein Lpp20[64]. It has been shown to protect 
mice from H. pylori infection by passive anti-Lpp20 anti-
body transfusion[65]. Li et al[64] mapped two MHC Ⅱ-re-
stricted peptide antigens of  Lpp20 that induced similar 
proliferative T-cell responses as the recombinant protein 
and showed an additive effect when used in combination. 
If  this antigen will generate successful protection, data 
has to be evaluated.

AhpC (alkyl hydroperoxide reductase) was recently 
tested as a novel subunit vaccine[66]. It is described as an 
essential, immunogenic antioxidant protein of  H. pylori 
that protects the bacteria from oxidative stress. This 
study investigated the prophylactic efficacy of  AhpC for 
mucosal (oral) and systemic (subcutaneous) application. 
Mucosal administration with CT significantly reduced 
bacterial colonization. Although not significant, systemic 
vaccination with Alum led to sterilizing immunity in 50% 
of  the animals. A similar picture was observed for the 
therapeutic efficacy of  systemically administered AhpC 
(over 60% protection). Furthermore, O’Riordan et al[66] 
tested mannosylated AhpC (mAhpC) in both approaches 
by subcutaneous application with Alum. mAhpC was 
generated through expression in yeast instead of  E. coli. 
In the prophylactic setting, sterilizing immunity was ob-
served in over 70% of  the animals and almost 50% in 
the therapeutic setting. These data exhibit very promising 
results regarding efficacy. Another important observation 
is that AhpC or mAhpC alone (without adjuvant) has an 
almost similar effect without showing strong humoral 
immunity. What drives the protective effect of  the non-
adjuvanted protein has to be further investigated. 

Additional antioxidant proteins from H. pylori were 
tested as single- and multi-component vaccines[67]. In this 
prophylactic approach mice were immunized with re-
combinant superoxide dismutase (SOD), catalase (KatA) 
and/or thiolperoxidase (Tpx) comparing systemic (sub-
cutaneous) vs mucosal (intranasal) immunization. Both 
routes induced significant reduction in colonization for 
the single antigens as well as for their combination (Tri-
Vac). Interestingly, there was no additive effect in the Tri-
Vac group. Further important information from the study 
is that the mucosal immunization with Tri-Vac and CT 
induced lower levels of  antibody responses compared to 
the single antigens. This was not observed in the systemic 
approach formulated with ISCOMATRIX. If  the dif-
ferential antibody induction is due to the route of  admin-
istration or the different adjuvant used, this could be an 
important issue regarding recombinant, multi-component 
vaccines and a potential loss of  efficacy.  

Another concept to apply a multi-component vac-
cine is protein fusion. The combination of  the outer 
membrane proteins Omp22 and HpaA was tested in a 

to an increased IL-17 secretion according to higher levels 
of  Th17 cells. Taken together, the distinct role of  Th17 
cells and/or IL-17 in H. pylori infection needs to be fur-
ther clarified with better defined mouse models in which 
Th17 cells can be selectively manipulated. 

Treg
Besides the reported immune-modulatory effect of  H. py-
lori on effector T-cells, it has also been described that the 
pathogen can induce immune-suppressive mechanisms, 
such as the induction of  Treg. Several papers show a 
correlation of  H. pylori infection and an increase of  Treg 
in human gastric tissue[55-57]. This effect was much more 
pronounced in tumor compared to tumor-free gastric 
mucosa[58]. The severity of  gastritis seems to be accompa-
nied by increased numbers of  Treg in the inflamed gas-
tric mucosa[55], which is also observed in mouse models 
of  H. pylori infection[56]. Additionally, Rad et al[56] could 
show that depletion of  Treg led to a more severe gastritis 
as reflected by an increase in gastric macrophages, T- and 
B-cells, and a reduction of  H. pylori colonization. The H. 
pylori-induced inflammation seems to be suppressed by 
IL-10 producing Treg, because IL-10 deficient Treg are 
less efficient in the suppression of  gastritis[59]. The accu-
mulation of  Treg in H. pylori-infected gastric tissue is also 
especially pronounced in children, presumably due to the 
preference of  the early immune system to induce toler-
ance by the induction of  peripheral Treg. The group of  
Anne Müller could show that neonatal infection in mice 
with a cagPAI proficient H. pylori strain induces tolerance 
to the pathogen, depicted by higher colonization and less 
pathology[60]. In context with the tightly regulated gut im-
munity, Treg seem to support H. pylori colonization and 
the development of  a chronic state of  infection by sup-
pressing protective immune responses. 

VACCINATION AGAINST H. PYLORI
Over the last decades many experimental approaches to 
mediate protection against H. pylori infection have been 
carried out. Thereby, different vaccine formulations with 
different antigens, adjuvants and application routes have 
been tested. Several protocols led to significant bacte-
rial reduction in prophylactic as well as therapeutic ap-
proaches; however, they almost never reached sterilizing 
immunity. The most promising vaccine-induced immune 
reaction seems to be achieved by mucosal priming and a 
systemic boost[61].

Studies in mice
In classical immunization protocols H. pylori lysates or sev-
eral H. pylori proteins in different combinations were used, 
showing a certain level of  protection. Promising antigens 
were urease, katalase, VacA, CagA, NapA, HpaA, AlpA 
and BabA. These protocols followed different routes such 
as oral, intranasal, rectal, intraperitoneal, intramuscular and 
subcutaneous, involving different adjuvants, like cholera 
toxin (CT), CpG-oligonucleotides, heat-labile enterotoxin 
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prophylactic setting[68]. Mice were immunized with single 
antigens, their combination and the fusion protein by 
oral administration. Mutant LT served as adjuvant. A 
significant protection was achieved in all groups, which 
was more pronounced with the protein combination or 
fusion. Immunological parameters like specific antibodies 
or T-cells were not addressed and thus, it is not possible 
to make any correlations between the immune response 
and efficacy. Nevertheless, these data indicate that the 
combination of  antigens can be beneficial.

Another interesting approach uses attenuated Sal-
monella and poliovirus, which express H. pylori antigens, 
as vector delivery systems. The tested Salmonella strains 
expressing urease A and B mediated a significant degree 
of  protection through prophylactic intranasal[69] and oral 
administration[70]. Also, a poliovirus-based vaccination 
using urease B as antigen displayed prophylactic, as well 
as therapeutic efficacy[71]. More recent data combined 
the Salmonella vector approach with a new antigen[72] 
and a fusion construct of  three antigens[73]. Salmonella-
delivered outer inflammatory protein A (OipA) was used 
for oral therapeutic immunization[72] and compared to a 
codon-optimized construct that expresses around 6-fold 
higher protein amounts. Vaccination induced signifi-
cantly higher levels of  OipA-specific antibodies as well as 
specific T-cells which had a mixed Th1/Th2 phenotype 
(IFNγ/IL-4). Furthermore, the adaptive response was 
significantly higher when mice were vaccinated with the 
optimized construct. This indicates that the increased 
amount of  OipA produced by Salmonella is able to boost 
the immune response. Vaccination also reduced the colo-
nization with H. pylori significantly and was more effective 
with the optimized vector. The other therapeutic Salmonel-
la-based approach included CagA, VacA and UreB in the 
vector[73]. Liu et al[73] compared different constructs where 
the antigens were combined in all possible orders. Inter-
estingly, Salmonella expressing CagA-VacA-UreB (CVU) 
showed the most drastic effect on colonization with a 
clearance rate of  more than 60%. The other constructs 
had no or only moderate effects. CVU also developed the 
highest antibody (IgG and mucosal IgA) and Th1 T-cell 
response. Unfortunately the immunological assays were 
only performed with H. pylori lysate. Thus, it is not pos-
sible to draw any conclusion on differential induction of  
vaccine-specific immune responses and efficacy. Overall, 
optimizing the Salmonella approach by antigen selection 
and or codon-optimization seems to be a successful strat-
egy, at least in animal models.

Relatively new experimental vaccine candidates are 
multi-epitope approaches. Li et al[74] used three T-cell epi-
topes of  urease B, and two B-cell epitopes from urease 
B and HpaA that were generated by software prediction, 
allowing the induction of  a cellular as well as a humoral 
immune response. The antigens were generated as a 
peptide fusion protein that was linked to the adjuvant LT 
beta. In therapeutically immunized mice, the specificity 
of  the three T-cell epitopes clearly could be shown in 
peptide restimulation experiments, whereas the induction 

of  specific antibodies was tested with H. pylori lysates. 
Nevertheless, oral immunization of  already infected mice 
led to the induction of  vaccine-specific CD4+ T-cells and 
H. pylori-specific serum antibodies that induced a clear 
reduction in bacterial load. Another approach, named 
Epivac, used a fusion protein comprised of  predicted 
CD4+ T-cell epitopes from HpaA, UreB and CagA[75]. 
In a prophylactic vaccination setting, mice were immu-
nized subcutaneously in combination with different Th1 
promoting adjuvants (CpG, MDP, MPLA and Addavax). 
Four weeks post-infection a significant reduction in colo-
nization could be observed in all vaccination groups. Al-
though adjuvanted Epivac immunization exhibits a more 
pronounced Th1 response (IFNγ), the addition of  the 
different adjuvants had only a minor effect compared to 
the multi-peptide antigen alone. All formulations induced 
Epivac-specific serum responses, but no IgA in stomach 
mucosa. The failure of  the different adjuvants regarding 
protection remains an open question. Perhaps they are 
not capable of  inducing a mucosal immune response, 
reflected by the lack of  stomach IgA. Moss et al[2] intro-
duced a new peptide-based concept of  an in silico-based 
vaccination approach. Conserved and potential immuno-
genic CD4+ T-cell epitopes were screened by bioinfor-
matic algorithms and further selected in vitro and in vivo[76]. 
This gene-to-vaccine approach included multiple epit-
opes from different antigens in a DNA-prime/peptide 
boost vaccine. Therapeutic intranasal application induced 
a broad immune response measured by IFNγ and a sig-
nificant reduction in colonization compared to intramus-
cular application or immunization with H. pylori lysate. 
This unbiased genome-based approach may indicate that 
there are a substantial number of  potentially protective 
antigens, and that the combination of  different antigens 
could be a promising strategy.

Besides the choice of  antigen and their combina-
tions, the employment of  mucosally active vaccination 
strategies seems to play a major role in H. pylori vaccine 
efficacy. Regarding clinical use, it is impossible to trans-
fer strong mucosal adjuvants like CT or LT to humans 
because of  their toxicity. The flagellin of  H. pylori (FlaA) 
evades recognition of  TLR5[77,78]. To facilitate this mol-
ecule as a mucosal adjuvant, Mori et al[79] constructed a 
chimeric flagellin (CF) comprised of  the hypervariable 
domain of  FlaA and the C- and N-terminal segments of  
E. coli flagellin (FliC) to maintain H. pylori specificity and 
to gain TLR5 activity. CF was shown to activate TLR5 in 
transfected HEK293 cells. After immunization with or 
without Alum, a strong, long-lasting (8 mo) IgG serum 
response could be detected superior to FlaA immuniza-
tion. Specific IgA could be detected until 3 mo post-
immunization for CF + Alum. Furthermore, the immune 
response after CF + Alum administration shifted to Th1. 
In a prophylactic immunization study against H. pylori 
CF + Alum administration, given in a combination of  
intranasal prime/subcutaneous boost, displayed the most 
significant reduction in colonization compared to CF or 
FlaA alone or to FlaA + Alum. Although H. pylori-specif-
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ic T-cell responses were not measured in this paper it can 
be concluded that the strong induction of  specific and 
also mucosal antibodies by Alum-adjuvanted CF can lead 
to protection. The application of  an adjuvant with anti-
genic property in combination with potential protective 
antigens enables new perspectives for future investiga-
tions. Nevertheless, the potential toxicity of  CF has to be 
evaluated in appropriate models. Interesting observations 
have been made regarding H. pylori lipopolysaccharide 
(LPS). Immunization studies with H. pylori sonicate indi-
cated an immune stimulatory role of  LPS[80]. Lysate that 
was depleted for LPS induced a reduced Th1 cytokine 
response (IFNγ, TNFα, IL-2) and an increase in Th2 cy-
tokines (IL-4, IL-5). Therefore, H. pylori LPS could serve 
as an interesting vaccine component. This effect has to 
be further investigated, but together with an appropriate 
adjuvant it could aid in protection.

Another focus of  the Helicobacter field lies in the fa-
cilitation of  toxin-based adjuvants, as CT and LT provide 
promising results in experimental vaccination studies. 
One possibility is to detoxify the adjuvant and simultane-
ously maintain the stimulatory effect. In a recent study, 
a double mutant form of  LT (dmLT) was used in a pro-
phylactic H. pylori vaccination in comparison to CT[81]. By 
sublingual and intragastric immunization, both adjuvants 
induced similar protection with H. pylori lysate. Sublin-
gual administration of  UreB and HpaA formulated with 
dmLT or CT also led to comparable protection. Both 
adjuvants induced a similar response regarding T-cell 
proliferation, specific cytokine induction (IL-17, TNFα 
and IFNγ), specific serum IgG and gastric inflammation. 
Only the production of  specific gastric IgA was more 
pronounced in the CT group. Taken together, dmLT 
seems to be an attractive, mucosal adjuvant with reduced 
toxicity and preserved stimulatory capacity. Besides LT-
based adjuvants, the utilization of  CT-based adjuvants is 
investigated. The group of  Nils Lycke approached the 
construction of  chimeric CT by exchanging the GM1-
binding subunit B through two copies of  the DD frag-
ment from Staphylococcus aureus protein A[82]. This so-called 
CTA1-DD combines the activity of  the holotoxin (CTA1) 
and an immunoglobulin binding domain (DD fragment) 
that targets and activates mainly B-cells. This adjuvant 
shows no toxicity in rodents[83] as well as in non-human 
primates[84]. Significant reduction of  H. pylori colonization 
was observed when administered intranasally with lysate 
in a therapeutic setting[85]. CTA1-DD induced specific 
IgG, CD4+ T-cell infiltration and a Th1 dominated T-cell 
response. Compared to CT, the overall effect was less 
pronounced. Additionally, CTA1-DD induced less gastric 
inflammation than CT and no specific IgA in gastric mu-
cosa. This can be explained by the targeting and thereby 
reduced binding capacity of  CTA1-DD compared to CT. 
Overall, the features of  this adjuvant make it an interest-
ing candidate for future development. 

Studies in humans
In humans several clinical studies were carried out to test 

the safety and immunogenicity of  different vaccine for-
mulations[1]. Mainly, all of  these approaches used recom-
binant urease as the antigen. The oral immunization of  
asymptomatic H. pylori-infected patients was well toler-
ated, but no specific immune response was induced[86]. By 
the addition of  LT as adjuvant, specific antibody produc-
tion could be detected[87], concomitant with a reduction 
of  H. pylori colonization in infected patients[4]. However, 
the toxicity of  LT led to severe diarrhea. By limiting the 
amount of  adjuvant in the vaccine these side effects 
could be overcome, but then also a specific immune 
response was undetectable. To circumvent the problem 
of  toxicity, urease and LT were administered rectally but 
only a weak immune response was induced[88]. Another 
vaccine formulation employed killed whole H. pylori and a 
mutant form of  LT with diminished toxicity[89,90]. Oral ad-
ministration exhibited secretion of  specific IgA in salivary 
and feces, but already infected patients did not eradicate 
H. pylori to any degree. Furthermore, urease-expressing 
Salmonella-based delivery vectors were tested in human 
studies[91-93]. Urease-specific immune reactions were un-
detectable or only at very low levels after oral vaccination 
of  uninfected volunteers. This is an impressive difference 
to the findings observed in mouse model experiments. 
A recent study combined different promising antigens, 
CagA, VacA and NapA, which seem to play important 
roles in the severity of H. pylori infection[94]. The vaccine 
was formulated with the very well established adjuvant 
Alum and administered intramuscularly. Both route and 
formulation seemed promising because their application 
is already established in approved vaccines. H. pylori-neg-
ative volunteers were immunized and no side effects were 
observed. This vaccine induced specific antibody produc-
tion against all three antigens and an increased cellular 
immune response by IFNγ secretion. The same group 
applied this vaccination strategy in a phase Ⅱ trial in ex-
perimentally H. pylori-infected healthy volunteers (unpub-
lished data)[95]. Although immunogenicity was achieved, 
no statistical difference between the placebo and the vac-
cine group could be detected regarding protection from 
H. pylori colonization. This may be due to the fact that 
the experimental infection only worked in around 50% 
of  participants whereas the other half  cleared the infec-
tion. Whether this vaccination will give rise to protection 
against H. pylori infection has to be reconsidered. Thera-
peutic immunization of  naturally infected patients could 
be an alternative setting to test this trivalent vaccine in 
future.

CONSEQUENCES FOR VACCINATION IN 
THE FUTURE
Since H. pylori coevolved with humans within the last 
88-200000 years[96], it is well adapted to the gastric physi-
ology. Furthermore, the epidemiological and experimen-
tal data on its beneficial role in asthma disease[97,98] might 
lead to the conclusion that H. pylori has a commensal-like 
nature. Although the pathogen induces an overall regula-
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tory immune phenotype by regulatory T-cells and tolero-
genic DCs, it still can induce strong inflammation and 
eventually even regulate the degree of  inflammation[99]. 
Perhaps H. pylori benefits from this milieu which provides 
nutrition that enables its survival. On the other hand, 
experimental animal models indicate that an increase in 
inflammation leads to subsequent reduction in coloniza-
tion[56]. As mentioned before, H. pylori also induces a pro-
nounced but non-protective T- and B-cell response but 
at the same time is able to evade the immune response 
facilitated by several virulence factors[100]. For vaccination 
these observations are of  potential interest. Breaking tol-
erance and increasing inflammation in combination with 
essential bacterial antigens could be the important issues 
a successful vaccine should address. Indeed, experimental 
immunizations in animal models using strong adjuvants, 
induction of  mucosal immunity and conserved antigens 
exhibited a certain degree of  protection. Still, until now 
all human vaccination trials that showed immunogenicity 
have never led to vaccine-induced clearance in H. pylori 
colonization of  the stomach. Only one study, working 
with LT as adjuvant[4], showed a protective effect, but 
toxic side effects exclude broad application of  this vac-
cine formulation for H. pylori immunization. The promis-
ing triple antigen vaccine (CagA, VacA and NapA)[94,95] 
has to be further evaluated by meaningful therapeutic ap-
proaches. 

Taken together, this is in strong contrast to the ex-
periences achieved from the experimental mouse model. 
To really generate and improve the efficacy of  human H. 
pylori vaccines, mainly two questions have to be solved: 
what is the right antigen and what is the best adjuvant 
applicable? On the adjuvant side, the range of  choice is 
limited. All promising mucosal adjuvants used in experi-
mental animal models are not approved for humans and 
no approved adjuvant is assigned for mucosal adminis-
tration. There are some efforts to utilize the less toxic 
cholera toxin subunit B (CTB) for vaccinations[101], but 
until now it is unclear if  this will lead to a human ap-
proach. Additionally, it has to be solved whether CT or 
CTB can efficiently induce protection, as some papers 
reported an inhibiting effect of  CT on the induction of  
a Th1 response[102,103], the supposed protection mediat-
ing arm of  immunity in H. pylori infection. Some of  the 
recently used adjuvants tested in the mouse model of  H. 
pylori infection, like chimeric flagellin[79] or double mu-
tant LT[81], show promising results. Nevertheless, their 
development towards clinical application is missing. The 
flagellin approach is still under experimental evaluation. 
Preliminary toxicity data are still missing. The dmLT was 
investigated more extensively. The adjuvant did not result 
in increased intestinal weight in an enterotoxicity assay in 
mice[104]. Recently, the dmLT was tested in a preclinical 
mouse model[105] to evaluate the improved immunogenic-
ity of  a previously tested vaccine against enterotoxigenic 
E. coli that failed to induce efficacy in a phase Ⅲ clinical 
trial[106]. The other toxin-based adjuvant, CTA1-DD, has 
also been tested in different toxicity assays and proven to 

be save in mice[82]. It was reported to be well tolerated in 
cynomolgus macaques[83] and rhesus macaques (own un-
published data). The development of  adjuvants towards 
clinical use is not easy to implement. Production under 
GMP and toxicity testing under good laboratory practice 
(GLP) is cost extensive and thereby often has to be trans-
ferred from a scientific environment to a commercial 
utilization. The high risk of  failure implemented in these 
developmental steps reduces the dedication of  potent 
companies. Despite all difficulties that have to be faced, 
new mucosal adjuvants that can be applied in humans are 
of  great interest. 

On the other hand, the role of  the right antigen re-
mains an open question. Although a lot of  different com-
positions with dead H. pylori, whole lysate, single antigens 
or antigen mixtures have been evaluated, proof  of  effi-
cacy in humans is missing. New promising candidates like 
AhpC[66] or OipA[72] have been tested in mice and vector-
based approaches and/or multicomponent vaccines have 
been investigated. In our opinion the right antigen has 
to be an indispensable virulence factor to circumvent 
the evasion mechanisms of  H. pylori. In this context, a 
potentially protective antibody response through B-cells 
could be of  special importance. An antibody-mediated 
neutralization of  such a factor will disarm H. pylori and 
liberate the immune system to eliminate the pathogen. 
The gamma-glutamyl-transpeptidase of  H. pylori could 
have this potential as it seems to be expressed in most 
of  the clinical isolates (unpublished data) and it inhibits 
T-cell proliferation, thus blocking the most important 
defense mechanism in H. pylori immunity. Indicated by 
the work of  Moss et al[2], a diverse mixture of  highly 
conserved antigens could further improve a successful 
vaccine. However, we obviously have not been able to 
translate successful experiments from rodents to the hu-
man system until now. It seems that regardless of  adju-
vant or antigen used, vaccination in mice often exhibits 
efficacy to a certain extent. Therefore, it is questionable 
if  the mouse is the optimal preclinical model. Lessons we 
perhaps can learn when working in rodents include the 
understanding of  the mode of  action of  our vaccine ap-
proach. Do we induce a functional B-cell response that 
can neutralize certain bacterial functions? Do we induce a 
local B- and T-cell response? What is the exact phenotype 
of  the induced cells and what are the differences to the 
human system? Perhaps by a more careful investigation 
of  our vaccination models in terms of  immunity we will 
improve clinical outcome in future.

CONCLUSION
Although H. pylori may have a beneficial role in asthma 
and allergic diseases and the prevalence of  infection in 
developing countries is decreasing, an effective vaccine 
against H. pylori is still necessary in the light of  the enor-
mous socioeconomic costs associated with this infection. 
The rising resistance rates of  current antibiotic-based 
therapies require novel therapeutic approaches. Addition-
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ally, the high prevalence of  H. pylori infection in East 
Asian countries or India requires effective treatment. 
Furthermore, the prevalence of  gastric cancer develop-
ment is increased in these countries compared to the 
western world. Antibiotics will probably not achieve mass 
eradication. Only efficient vaccination would be able to 
solve these problems and prevent gastric cancer on a 
population-based level. Until now, a clear path towards 
protection has been missing. Every year, promising ap-
proaches come on the scene. We have to communicate 
that especially in H. pylori vaccination in rodent models, 
efficacy alone is not sufficient for the clinical outcome. 
Perhaps we have to investigate the vaccine activity in 
more detail to convince potential sponsors to invest in 
future development. 
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