Skip to main content
. 2014 Aug 30;7:581. doi: 10.1186/1756-0500-7-581

Table 4.

Performance of miRNAs selected by PCA-based FE with PCA-based LDA and SVM

Number of
Diseases Accuracy Sens. Spec. miRNAs * PCs + Δ #
PCA-based LDA
AD 0.886 0.917 0.818 22 16 2.5
Carcinoma 0.857 0.846 0.867 36 2 7
CAD 0.885 0.923 0.846 16 14 9
NPC 0.720 0.806 0.579 28 18 5
HCC 0.650 0.600 0.700 8 1 7
BC 1.000 1.000 1.000 18 13 6
AML 0.862 0.846 0.923 11 8 7
Mean 0.837 0.848 0.819
Mean of previous study [23] 0.784 0.750 0.800
SVM
AD 0.843 0.833 0.864 22
Carcinoma 0.786 0.807 0.767 36
CAD 0.807 0.615 1.000 16
NPC 0.720 0.774 0.632 28
HCC 0.770 0.550 0.850 8
BC 0.963 1.000 0.938 18
AML 0.969 1.000 0.846 11
Mean 0.837 0.797 0.842

*number of miRNAs selected by PCA-based FE, +optimal number of PCs estimated by LOOCV, #threshold value of PCA-based FE. Data from previous study [23] are also shown for comparison. AD, Alzheimer’s disease; CAD, coronary artery disease; NPC, nasopharyngeal carcinoma; HCC, hepatocellular carcinoma; BC, breast cancer; AML, acute myeloid leukemia; UDB, universal disease biomarker; SVM, support vector machine; LDA, linear discriminant analysis; PCA, principal component analysis.