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Abstract

We have combined methods from volume visualization and data analysis to support better

diagnosis and treatment of human retinal diseases. Many diseases can be identified by

abnormalities in the thicknesses of various retinal layers captured using optical coherence

tomography (OCT). We used a support vector machine (SVM) to perform semi-automatic

segmentation of retinal layers for subsequent analysis including a comparison of layer thicknesses

to known healthy parameters. We have extended and generalized an older SVM approach to

support better performance in a clinical setting through performance enhancements and graceful

handling of inherent noise in OCT data by considering statistical characteristics at multiple levels

of resolution. The addition of the multi-resolution hierarchy extends the SVM to have “global

awareness.” A feature, such as a retinal layer, can therefore be modeled within the SVM as a

combination of statistical characteristics across all levels; thus capturing high- and low-frequency

information. We have compared our semi-automatically generated segmentations to manually

segmented layers for verification purposes. Our main goals were to provide a tool that could (i) be
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used in a clinical setting; (ii) operate on noisy OCT data; and (iii) isolate individual or multiple

retinal layers in both healthy and disease cases that contain structural deformities.

Index Terms

support vector machine; segmentation; image analysis; retinal; optical coherence tomography;
volume visualization; image processing

1 Introduction

Advancements in medical imaging are facilitating the extraction of accurate information

from volumetric data making three-dimensional (3D) imaging an increasingly useful tool for

clinical diagnosis and medical research. This development makes possible non-invasive

examination and analysis of diseases by providing clinicians insight into the morphology of

disease within the body and how it changes over time and through treatment. Common non-

invasive imaging modalities are magnetic resonance imaging (MRI) and computed

tomography (CT). Our efforts focus on the analysis and visualization of volumetric OCT

retinal data. OCT, described in [8], is an acquisition system based on back-scattering of

coherent light producing a stack of images similar to MRI and CT. A light beam is directed

into a patient’s eye where reflected light is merged with a reference beam eliciting an

interference pattern that is used to gauge reflectance at various depths along the beam path.

Quickly sweeping the beam across the retinal surface, in a structured pattern, produces the

image stack.

The ophthalmology field historically identified diseases by examining fundus images

(captured using an ophthalmoscope showing the retina, macula, and optic disc) and more

recently by 2D thickness maps of retinal layers. OCT has drastically improved the type of

information available to vision scientists allowing for a more intuitive view as well as

analysis of retinal layer information. Recently, 3D OCT imaging has gained popularity by

giving practitioners more information for their evaluations due to advancements in OCT

technology. As a result, we have built software that turns what is an otherwise qualitative

evaluation into a quantitative form.

An automatic approach that segments, classifies, and analyzes retinal layers from 3D OCT

would be ideal. However, the morphology of retinal layers depends on the patient and the

disease in question, which has caused problems for existing automatic retinal layer

extraction methods [19]. To address this problem we have developed a semi-automatic

segmentation system in which the morphology of retinal structures can be discovered and

refined by a clinician. The clinician interactively specifies the location of a retinal layer on a

few select slices of the volume. This selection is then extrapolated throughout the entire

volume using a SVM classifier in order to create a segmentation. Once segmented, we

provide visualizations and measurements of the resulting segmentation to aid in disease

diagnosis. The main visualization interface is an interactive 3D volume rendering of the

segmented portions of the volume. We also provide more familiar visualizations such as a

thickness map[1], currently a common diagnosis tool, and a 2D summed-intensity projection

of the data resembling a fundus image (feature included for completeness, but we show no
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images of it in this paper). Additionally, the user can compute volume and thickness from

layer segmentations, which have proven useful in retinal disease diagnosis.

Speckle noise is a normally distributed noise component introduced by the data acquisition

process. Our SVM approach, based on the original work [24], considers a voxel’s mean

value and variance across multiple resolutions in order to gracefully handle this noise and to

give the SVM a global perspective over feature shapes. Additionally, this SVM is more

tolerant of misclassification by the user, variation between patients and diseases, and adapts

well to the data variation constituting retinal layer morphology.

Our main goals were to provide a tool that could (i) be used in a clinical setting; (ii) operate

on noisy OCT data; and (iii) isolate individual or multiple retinal layers. Our main

contributions to achieve these goals are (i) integration of a hierarchical data representation

into SVM computations to counter noise and to better find retinal layers and (ii) several

speedups for improving SVM performance allowing its practical use within a clinical

setting.

1.1 Related Work

We evaluated a number of methods in order to find one that met our needs for OCT retinal

data. One commonly used volumetric data segmentation method is a visualization technique

that uses a one-dimensional transfer function to map scalar intensity to color and opacity

[12]. This approach effectively segments regions based on scalar intensity so that areas of

interest are shown opaquely while other regions are rendered transparently. Problems arise

when different biological features share similar scalar values, manifesting as opaque regions

that should not be, and is exacerbated when noise is present. Some improved methods

address these problems [9, 10, 11, 12]. However, the user interface for these types of

methods is typically too cumbersome for clinicians to use in everyday practice since they

need intimate knowledge of the intensity-to-color mapping in order to properly understand

the user interface. Our work is based on the work described in [22], which describes how

artificial intelligence algorithms can be used to construct N-dimensional transfer functions

through an intuitive user interface.

Machine learning algorithms such as artificial neural networks have been used in medical

imaging research somewhat successfully [5, 7]. However, SVMs [3, 15, 4] have yielded

more reliable results for feature detection [2, 21, 16]. The method discussed in [23]

compares the use of neural networks and SVMs when constructing an N-dimensional

transfer function (mapping). In our case, the ability of SVMs to handle error, both in the

form of speckle noise and user misclassification, makes them attractive.

Typical characteristics used to train machine learning algorithms are scalar value, gradient

magnitude, spatial location, orientation, and neighborhood information. However, these

characteristics can cause a SVM to be sensitive to noise or objects that are structurally

deformed, resulting in poor segmentations. We have found that careful selection of the

characteristics defining the SVM input vector is typically better than adding as many as

possible. Too many characteristics dilute the input vector by slowing down SVM

computations and this fact often leads to unwanted segmentation results. Additionally,
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SVMs are typically fed local data characteristics establishing a dependence on the base

resolution that ignores global feature trends that are apparent when looking at the data

macroscopically. The method described in [17] uses wavelets combined with a SVM

classifier to identify texture properties of image data. This concept is useful since the

method identifies patterns with distinct texture characteristic on a more global scale. The

method described in [20] employs a multi-resolution SVM kernel to account for

macroscopic features and differs from the method discussed in this paper in that we instead

compute a multi-resolution representation of the data.

Good examples of the current state of the art of 3D OCT visualization and analysis are

described in [25, 13]. To our knowledge, no existing system for 3D OCT retinal

visualization and analysis is as complete and accurate as that presented in this paper.

1.2 OCT Retinal Data

Volumetric OCT data are captured by directing a light beam at a patient’s retina in a gridded

fashion. Back-scattered interference patterns are captured through a complex feedback

system, described in [26], to produce β-scans similar to slices obtained via MRI, CT, or

ultrasound. However, neighboring slices are not registered to one another as they are in MR

imaging, due to naturally occurring unconscious eye movements. During the scanning

process, the clinician monitors a realtime display of the β-scans in order to eliminate low-

frequency movements. High-frequency vibrations are almost always present. Typically, the

clinician collects 80 to 200 β-scans having dimensions ranging from 500 × 250 to 1000 ×

500 pixels in size (corresponding to a region of about 8mm× 8mm× 300μm in size).

Figure 1 shows a single β-scan and also a cross section of several β-scans showing the

(mis-)alignment along the stack axis. In a preprocessing step, slices are registered using

standard registration techniques. Our clinicians use ImageJ [18], which computes rigid body

transformation (translation and rotation) to minimize the difference between neighboring β-

scans. Figure 2 shows volume data sets of three different retinal diseases compared to a

healthy human retina. Often, the disease type is obvious from a single β-scan. However, a

time-series volumetric data set can show disease progress that is not apparent from a single

scan. In addition, a clinician can extract volume information of fluid, in the case of retinal

detachment (fluid collects beneath the photoreceptor layer), in order to gauge severity of a

disease before surgery and improvement after surgery.

For a normal healthy retina, the retinal surface and layers are well-defined but obfuscated by

noise inherent in OCT data. This is exacerbated by the fact that patient’s move their eye

while being scanned resulting in “spikes” in β-scans (as indicated in the left-side of the top

image of Figure 1). The clinician cannot always capture blemish-free volumes since the

patient must not move their eye for about ten seconds, which is not always possible due to

natural involuntary eye movements. In addition, we needed to build a system that could

segment and analyze diseased retina. In diseased cases, the retinal layers are not well-

defined and can i) be missing entirely, ii) vary in thickness across the retina, iii) be very thin,

iv) be very thick, v) be very bumpy, and vi) be erratic in morphology; all of which are

handled effectively by a SVM due to its flexibility.
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2 SVM Segmentation Method

The two main choices when implementing a SVM are the kernel and input vector used to

classify the feature space. We use a radial basis function kernel since we assume it can

represent our feature space well and also that speckle noise is normally distributed across the

data. Additionally, it allows non-linear separation of the space.

2.1 Feature Space

The data characteristics we include in our input vector are scalar intensity, gradient, spatial

location, mean of the neighbors, and variance. The most obvious inclusion for a voxel i = {i,

j, k} is scalar intensity fi and allows for efficient segmentation of regions having relatively

low standard deviation (noiseless data) and in our case, even though we have substantial

noise, this characteristic still proves useful. The spatial location pi = {xi, yi, zi} of a voxel

(considered with the other characteristics) allows the differentiation between features having

similar data-distribution characteristics but residing in different locations.

The method described in [22] suggests that six neighbor intensity values fi±1, j±1,k±1 should

be considered at i to counter noise. They suggest that if a voxel value has been perturbed by

noise, inclusion of its neighbors will help determine the “actual value.” We found, in our

case, that this can lead to disconnected components due to those regions having the

appropriate neighbors, but not necessarily the correct local data distribution. Our method

instead uses as a parameter the mean of the six neighbors, leading to improved results. We

also include the variance (instead of the standard deviation) to include a data distribution

characteristic and additionally include gradient magnitude to identify tissue boundaries.

In summary, for a voxel i at world-space location pi with scalar value fi having neighbors N

= {i ± 1, j ± 1, k ± 1} the data characteristics we use for our input vector are:

(1)

(2)

(3)

(4)

(5)

(6)
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(7)

Thus, we include for each voxel i the scalar value fi, location pi, mean value f̄i of the

neighbors around i, variance  around i, and the gradient ∇f̂i at i using a local difference

operator.

2.2 Multi-resolution Hierarchical SVM

Even in the presence of noise, a person can seemingly automatically classify features by the

distribution of data intensities in both local neighborhoods and globally. When confronted

with subtle changes in these distributions, a person is able to perceive material (tissue)

boundaries that are not necessarily well-defined by scalar value, but are instead identified by

the transition of one noisy distribution to another. To expand the operation of our SVM

beyond the local scope of data characteristics, we construct a hierarchy of representations of

the volume and sample the mean value, gradient magnitude, and variance at each level of

this hierarchy in order to capture the distribution across all levels and accumulate a weighted

average of these samples prior to inserting them into the SVM.

Our algorithm constructs a mipmap-like hierarchy having the full resolution data as level l0
and successive levels li, i > 0, having half the resolution (in each dimension) of the previous

level li−1, see Figure 3. The user specifies “feature” and “background” voxels on l0 and then

specified voxels are mapped to coarser levels li, i > 0 in order to determine the intensity

value, mean value, gradient, and variance at that level. Since each lower-resolution level

voxel covers a larger region, we weigh each successive level’s result to reasonably diminish

its influence on the final value. Since each successive level in our hierarchy is an eighth the

size as the previous level, each level l receives a weight wl = 1/8l. We allow the user to

manipulate this value to increase or further diminish the influence of lower resolution levels.

Additionally, we normalize the weights so that Σ{l} wl = 1 to maintain the integrity of the

values. Figure 4 shows the effect of different hierarchy-level weights on SVM

segmentations. To include the multi-resolution hierarchy into our SVM computations, we

applied weighted averaging each to scalar intensity, gradient, mean of the neighbors, and

variance characteristics. Thus, when obtaining characteristics for each voxel (either to train

or classify), we access the hierarchy at all levels to produce a weighted average for each of

those characteristics. We did not include spatial location in this process since this

characteristic was not affected by multiple levels of detail. Additionally, we found that the

maximum number of levels was less than ten in most cases since one of the primary axes

would vanish by this point.

2.3 Feature Specification

A user provides SVM training data through an intuitive interface in order to create the

“segmentation function.” Our system allows a user to quickly classify features by using a

small number of specification (training) points. We perform this specification on axis-

aligned 2D slices of the volume similar to [22]. The user can slice a plane through the
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volume to see a 2D intersection image and can “paint” on that plane to mark points as

“feature” or “background” as indicated by the green and red marks, respectively, in Figure 4.

This approach can be learned quickly and has proven to be user-friendly within a clinical

setting. The user is required only to draw through regions of interest and to indicate regions

not of interest. Unfortunately, as the training data set grows through painting, so does the

complexity of the SVM. This additional complexity leads to drastically longer segmentation

times.

2.4 Speed Improvements

SVMs have a large computational cost that hinders their application to an entire volume

with real-time response behavior. We have implemented several techniques that reduce

computational cost for both SVM training and classification while having minimal effect on

the resulting segmentation quality. These methods are intended to minimize clinician time

needed to iterate between specifying training data and viewing results. The methods include

(i) training-data reduction; (ii) evaluation on a single slice; (iii) checkerboard SVM

sampling; (iv) SVM multi-threading; and (v) clipping planes; each is discussed in detail in

the following sections.

Training-data reduction—We found that users typically specified many training data

points resulting in duplication of the data characteristics fed into the SVM since our painting

interface lays down a “block” of specification points whenever the user marks a region.

Thus, using every voxel marked by this block introduces some redundancies resulting in

substantial SVM computation penalties while not necessarily producing better results. A

representative subset R = {r0, r1, r2, …, r|R|} from the entire training set T = {t0, t1, t2, …,

t|T|} is sufficient to achieve nearly the same results while requiring much less computation

time. To obtain the subset R ⊂ T, we implemented a discrete form of best-candidate

sampling where a random point r0 = trand(|T|) is first added to R. Then, we repeatedly add to

R the point from T that is farthest (in Cartesian distance) from all points currently in R. This

process continues until (i) the number of points |R| reaches a user specified maximum

threshold or (ii) the next point to be added is closer to another point in R than a user-

specified minimum distance. Both of these thresholds mitigate the growth of training data by

reducing the set of points used in a fashion that covers all training regions well. We found in

practice that having no maximum threshold while setting a minimum distance of two voxels

between training data points in R has little to no effect on the resulting segmentation while

speeding up the SVM computation by nearly 60%.

Evaluation on a single slice—Our software allows a user to test the SVM segmentation

on individual 2D slices to evaluate the resulting segmentation for that slice. If needed, the

user can modify the painted regions or browse additional slices and subsequently apply the

SVM or further mark those slices. The application of the SVM to a single slice requires only

a few seconds (even for larger volumes of 1000x × 500 × 200 voxels). Once satisfied with

the segmentation on individual slices, the user can apply the SVM to the whole volume.

Checkerboard SVM classification—After the SVM has been trained, we apply the

assumption that retinal features are much larger than an individual voxel by using a
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checkerboard scheme that first classifies every other voxel by the SVM as either a feature or

background. Each unclassified voxel is then determined by finding the majority

classification of its six neighbors. If the classification is tied, we then apply the SVM to that

voxel to decide. We found the checkerboard scheme consistently reduces SVM

classification time by roughly 45% and consequently leads to smoother object boundaries

and less “orphaned” voxels (sparse individual misclassified voxels).

SVM multi-threading—Once trained, an SVM inherently classifies each voxel

independently of others. We take advantage of this by incorporating multi-threaded SVM

classification in order to take advantage of popular multi-processor computers (the primary

computer used to run our software has four processor cores). We have found this to do the

expected by speeding up the SVM classification step according to the number of physical

processors.

Clipping planes—Clipping planes can be specified to restrict the SVM application to a

sub-volume of the data. Our software allows a user to specify axis-aligned clipping planes in

order to specify a subregion (bounded by the clipping planes). This approach reduces the (i)

number of voxels to be processed, (ii) specification time by the user, and (iii) training data

size while subsequently reducing the complexity of the SVM resulting in both faster training

and classification. For retinal data, clipping planes are useful for isolating broad regions

around relatively flat retinal layers of interest. Thus, while a simple concept, this method is

quite useful for our application.

3 Layer Thickness Analysis

Once a retinal layer has been isolated, measurements are computed in order to track patient

progress over time or to diagnose diseases such as glaucoma, which can be identified by

retinal-layer volumes outside normal parameters. Additionally, the fluid volume beneath the

photoreceptor layer caused by a retinal detachment can be measured before and after surgery

to insure that the surgery was a success and additionally to monitor disease advancement.

Typically, a clinician isolates the full retinal thickness as the region between the bottom of

the photoreceptor layer and the top surface of the retina in order to examine thickness maps,

see Figure 5. Thickness maps provide insight into gradually changing thickness and other

abnormalities. The clinician also isolates the photoreceptor layer itself in order to reveal

thickness abnormalities. More details on thickness map analysis of retinal layers can be

found in [14, 6, 1].

4 Results

Our software is currently being used by vision scientists at the University of California,

Davis Medical Center. We present work by two clinicians to examine our software’s

practicality in a clinical setting as well as the quality of segmentation results. We have

applied our methods to data from patients having age-related macular degeneration and

retinal detachment and compare these to a healthy retina, see Figure 2. We examined how

well our method segments healthy retinal layers, diseased retinal layers, and pockets of fluid
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by comparing our semi-automatically generated segmentations to manual generated

segmentations.

We included a manual segmentation tool within our software allowing a clinician to isolate

retinal layers by defining top- and bottom-bounding polylines on key frames throughout the

volume. The specified polylines are linearly interpolated between key frames in order to

segment every slice. We use this segmentation as a “gold standard” to gauge the quality of

our SVM-based segmentations. We asked one clinician to define three gold standards for

our test data and found that this process required 30 minutes on the healthy data and up to 50

minutes on the diseased data to specify. Figure 6 shows a manually-and SVM-generated

segmentation as well as the process from (i) slice segmentation to (ii) volume segmentation

to (iii) full retinal thickness map of the healthy data.

Data acquisition—In practice, the clinician spends approximately 30 to 45 minutes with a

patient in order to capture the 3D OCT data. The patient must fill out medical forms, is

educated about equipment being used, their pupils may be dilated, and is then positioned

into a chin rest for the scanning. The clinician then goes through a systematic process of

instructing where to fixate enabling the capture of several scans of various regions on their

retina. The clinician evaluates realtime 2D scan images in order to guarantee data quality.

Once scanning is finished, the clinician proceeds with data processing and visualization.

There is a series of steps involved in order to prepare the data for our software. The majority

of time is spent exporting 2D slices from the acquisition software and subsequently

registering them to one another. It takes approximately 15 minutes for a clinician to process

all of the collected patient data in this fashion.

Protocol—We asked the two participating clinicians (identified as C1 and C2) to isolate

the photoreceptor layer (PRL) and the full retinal thickness (encompassing the space from

the retinal surface up to and including the PRL) using the painting interface on all three data

sets. At first, we allowed them to spend as much time as they thought necessary to obtain

adequate results and found that they spent around 20 to 30 minutes per feature segmentation.

Then, we asked them to repeat each feature segmentation in under ten minutes. Their results

are explained in detail over the following sections.

4.1 SVM Performance

We measured the running time for the checkerboard, multi-resolution hierarchy, and best-

candidate training-data reduction improvements. We performed the tests on the healthy data

using the “unlimited time” SVM training data from clinician C1. We used two computers

having different amounts of main memory and processor capabilities, see Table 1. Overall,

we found that the checkerboard speedup slightly improved segmentation quality while

significantly speeding up the entire process. Thus, we left this option on for these tests.

Overall, we determined that the multi-resolution hierarchy had a negligible effect on SVM

training while having a SVM classification penalty of only 3% to 8% in all cases. We had

expected the multi-resolution hierarchy to impact the SVM classification running time

significantly more, but it seems that the SVM computations are far more complex than the
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additional data accesses needed to implement the hierarchy. The checkerboard improved

performance by about 50% in all cases, which is expected since it applies the SVM

classification to about half of the data. The best-candidate training data reduction (having a

minimum distance of two voxels between training points) improved SVM training

performance by about 90% and further reduced SVM classification running time by about

60% while not significantly effecting the resulting segmentations. Quality measurements are

detailed in the next section.

Table 2 shows the running time results for all SVM segmentations (as performed on the lab

computer). The full thickness segmentations required on average less than two minutes. The

SVM classification time did not seem to directly correlate with the training data size.

Additionally, we found that clinicians tended to paint aggressively up front when under a

time constraint in order to avoid more iterations later and, when under no time limit, the

clinicians tended to paint sparsely and iterate more often. This led to the ten-minute training

data being comparable or even larger than the unlimited-time training data.

4.2 SVM Segmentation Quality

We derived a thickness map from each segmentation by considering the distance (thickness)

between the top and bottom surfaces of the segmentation. To estimate the quality of our

SVM method, we compared thickness maps extracted from the gold-standard manually

generated segmentation to that obtained by our clinician’s SVM segmentation. We

computed the difference, at each point, between the thickness maps as our error metric. We

computed the mean and standard deviation of these differences and additionally found a

useful metric to be the value that 68% of the differences fell below, see Table 3.

Furthermore, we investigated the effect our checkerboard, multi-resolution hierarchy, and

best-candidate training data reduction schemes had on segmentation quality, see Table 4.

We found in each of these cases that the resulting SVM segmentation better matched the

gold standard.

Prior to our addition of the multi-resolution hierarchy, our clinicians had difficulty isolating

the PRL in many patient cases due to the PRL being thin (< 30 voxels) and the local data

characteristics used in standard SVM computations were not able to capture the “thin”

morphology of the PRL. With the addition of the multi-resolution hierarchy, we are now

able to isolate the PRL accurately. This is due to the ability of the hierarchy to examine

lower-resolution levels (low-frequency information) in order to find feature characteristics

that define the thin PRL. Figure 7 compares the manual segmentation with the multi-

resolution SVM segmentation of the PRL for the healthy data. The multi-resolution SVM

segmentation captures the foveal region well while additionally revealing retinal blood

vessels.

Our SVM method performed well on both healthy and disease data. The ability of the SVM

to isolate arbitrary features, such as the pocket of fluid beneath the retina in the case of

retinal detachment, furthers the application of our method. Figure 8 shows the results of our

fluid segmentations for the retinal detachment data. We noticed that all of the SVM

segmentations underestimated the volume slightly. This is apparent in the histogram of

thickness-map differences also shown in Figure 8. Additionally, we were especially pleased
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with the results in disease cases having retinal layer deformation. This was primarily evident

with the drusen on the PRL of the age-related macular degeneration data. We obtained

reasonable reproducibility among clinicians as well as tolerable error, see Figure 9.

5 Conclusion and future research

We used a combination of volume visualization and data analysis techniques to better

diagnose and subsequently treat retinal diseases. We have found that applying volume

visualization techniques to 3D retina image data collected in a clinical setting has achieved

success by revealing subtle features that standard diagnosis procedures miss as well as

providing accurate quantitative measurements of retinal structures.

This tool is currently being used in a clinical environment and is continually providing

insight into challenging retinal visualization and analysis problems. We found that handling

noise is a difficult task when training and using any type of machine learning algorithm for

segmentation. We plan to investigate image filtering techniques to reduce speckle noise

prior to SVM processing. We also plan to create training data that can be applied to multiple

volumes eliminating the need to retrain the SVM for new patients. Our method shows

reproducibility among different clinicians and yields good accuracy. The primary

differentiating factor between clinicians is their interpretation as to where a feature begins

and ends, which is better controlled through a clinical protocol. Our method currently

produces desirable results in about ten minutes. This is a significant improvement over past

machine learning applications to volumetric segmentations.

The most prominent drawback from our method is that the SVM misclassifies some voxels

resulting in scattered noise. This is noticeable in the thickness maps shown in Figure 9.

However, the clinicians are aware of this issue and are willing to cope with it (by weighting

the hierarchical levels differently) due to the enormous time savings involved with using the

SVM over other methods.

As a result of this work, vision scientists are using this software to provide quantitative

information useful in treatment planning that is not otherwise available. It is certain to

contribute to research and eventually may facilitate clinical diagnosis and monitoring.
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Fig. 1.
Top image shows one OCT β-scan. Middle image shows 80 unaligned β-scans along the

stack axis. Bottom image shows the scans after alignment.
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Fig. 2.
Comparison of different retinal diseases. The front portion of each volume has been clipped

in order to reveal internal structures. Drusen, extracellular deposits on the photoreceptor

layer, are indicative of age-related macular degeneration. The retinal detachment data were

captured after surgery. All images are of the foveal region (the dip in the middle) except for

the glaucoma case, which is of the optic nerve head.
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Fig. 3.
We construct a mipmap-like hierarchy in order to compute varying levels of data

distributions to sample as input to our SVM algorithm. Top-left image shows a slice through

a level having a resolution of 475 × 150 × 48. Remaining images show levels having a

resolution half the one before it. (The change in the “bump” is due to the influence of

neighboring slices in front and behind the shown slice.)
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Fig. 4.
Influence of multi-resolution hierarchy on SVM segmentation. Top-image uses standard

local data characteristics while subsequent segmentations accumulate data characteristics

across the hierarchy using the weight shown. Each segmentation used the same training data

points as indicated by the green (feature) and red (background) marks. As indicated in the

bottom image, the presence of an overlying grid becomes noticeable when lower-resolution

levels are weighted more. In this case, the entire segmentation region should be connected,

but in general, this is not the case, for example, when segmenting fluid pockets caused by

retinal detachment.
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Fig. 5.
Regions isolated by clinicians are the photoreceptor layer (PRL) and the full retinal

thickness indicated by the boundary at the bottom of the PRL and ending at the top of the

inner limiting membrane.
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Fig. 6.
Extracting the “healthy” thickness map from full retinal thickness segmentations. Left-

column indicates manual segmentation while right-column is the SVM. Top-images show

the segmentation specification on a slice. Middle-images show the segmentation applied to

the whole volume. Bottom-images show the extracted thickness maps. For thickness, one

voxel unit is approximately equal to 1um.
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Fig. 7.
Comparison between manual and multi-resolution SVM segmentation of the PRL of the

healthy data. Left-image shows gold standard manual segmentation. Right-image shows the

multi-resolution SVM segmentation. Note how the SVM segmentation reveals blood vessels

and better indicates the location of the fovea (red area in the middle). The difference in how

the manual and SVM segmentations handle blood vessels manifested as voxel difference

error in our thickness maps.
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Fig. 8.
Isolation of fluid beneath retina from retinal detachment data. Top-left image shows SVM

segmentation from clinician C2 having a ten minute time constraint. Top-right image shows

associated thickness map. Bottom-image shows the histogram of thickness map differences

between the manual and SVM segmentations for all fluid SVM segmentations. SVM

segmentation consistently slightly underestimated the fluid volume as compared to the

manually specified segmentation. We noticed that this was because the manually specified

polylines were placed on the layer boundary as opposed to just inside of it, which is how the

SVM identifies the region.
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Fig. 9.
Isolation of PRL and drusen (bumps on the PRL) for the age-related macular degeneration

data. Top-image shows the 10 min SVM segmentation from clinician C1. Middle-images

show the thickness maps obtained for these data. Bottom-image shows the histogram of

thickness map differences between the SVM and manual segmentations.

Fuller et al. Page 22

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2014 September 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fuller et al. Page 23

Table 1

Improvement influence on full retinal thickness segmentation performance as applied to the healthy data.

Improvements tested were checkerboard (CH), multi-resolution hierarchy (MR), and best candidate reduction

(RED). (Multi-threading was used in all tests.) All tests began with the same training data. Tests were

performed on a laptop having a 2GHz Intel Core 2 Duo processor (two cores total) and 2GB of main memory

and also on a desktop computer used by the clinicians having dual 3GHz Intel Xeon processors (four cores

total) with 3GB of main memory. The multi-resolution hierarchy used the weights wl = 1/8l. The best

candidate training data reduction included a minimum distance of two voxels between training data.

Improvement # Training Points SVM Training Time (sec) SVM Class. Time (min)

(laptop) 2GHz Intel Core 2 Duo + 2GB main memory

None 2902 8.92 29.74

CH only 2902 8.73 14.74

CH+MR 2902 8.75 15.94

CH+RED 736 1.02 6.36

CH+MR+RED 732 1.00 6.59

(lab machine) Dual 3GHz Intel Xeon + 3GB main memory

None 2902 5.25 7.54

CH only 2902 5.05 3.76

CH+MR 2902 5.13 4.00

CH+RED 736 0.53 1.60

CH+MR+RED 732 0.52 1.64
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Table 2

Measured running times for full retinal thickness segmentations using multi-threading, clipping planes,

checkerboard, multi-resolution hierarchy, and best-candidate training-data reduction. C1 and C2 indicate each

clinician. Tests were performed on our “lab computer,” a dual processor 3GHz Intel Xeon with 3GB of main

memory (four processor cores total). Multi-resolution hierarchy weights were set to wl = 1/8l and the best-

candidate training-data reduction had a minimum distance of two voxels between training points. Measured

running time without our improvements ranged between from 30 min to 2 hours in some cases.

Time Constraint # Training Points # Reduced Points Total SVM Time (min)

Healthy - Full Thickness

No Limit - C1 3348 838 1.90

No Limit - C2 5725 1264 1.53

10 mins - C1 4469 1046 1.49

10 mins - C2 16113 3631 3.48

Healthy - PRL

No Limit - C1 8636 2049 2.81

No Limit - C2 20569 4752 6.22

10 mins - C1 13232 3029 3.18

10 mins - C2 19135 4212 4.42

Macular Degeneration - Full Thickness

No Limit - C1 2831 676 0.78

No Limit - C2 3772 952 0.62

10 mins - C1 2236 556 0.36

10 mins - C2 3936 939 0.55

Macular Degeneration - PRL

No Limit - C1 7429 1753 1.43

No Limit - C2 6913 1635 1.30

10 mins - C1 7925 2013 1.53

10 mins - C2 14277 3213 1.40

Retinal Detachment - Full Thickness

No Limit - C1 4832 1138 1.80

No Limit - C2 4381 1027 1.66

10 mins - C1 4325 997 1.26

10 mins - C2 4574 1008 1.46

Retinal Detachment - Fluid

No Limit - C1 5058 1267 1.22

No Limit - C2 4623 1147 0.93

10 mins - C1 9598 2171 2.34

10 mins - C2 2985 742 0.89
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Table 3

Comparison of SVM segmentations to gold-standard manual segmentations. C1 and C2 indicate each

clinician. The values in the table indicate the thickness difference in voxel units between the SVM and manual

segmentations. The 68% metric states that 68% of the thickness differences are less than the value specified in

the table. Layer thicknesses typically range from 30 to 100 voxel units depending upon the disease.

Time Constraint 68% are less than Mean STD

Healthy - Full Thickness

No Limit - C1 3.233 3.875 10.288

No Limit - C2 7.074 6.115 5.329

10 mins - C1 4.318 4.293 7.285

10 mins - C2 5.188 4.563 4.496

Healthy - PRL

No Limit - C1 3.829 5.048 8.119

No Limit - C2 3.746 4.983 8.063

10 mins - C1 3.813 4.868 7.009

10 mins - C2 6.811 8.712 11.434

Macular Degeneration - Full Thickness

No Limit - C1 4.322 3.331 2.617

No Limit - C2 3.13 2.604 2.076

10 mins - C1 3.063 2.748 4.227

10 mins - C2 2.443 2.036 1.684

Macular Degeneration - PRL

No Limit - C1 6.049 5.061 4.428

No Limit - C2 5.502 4.614 3.739

10 mins - C1 4.93 4.431 4.575

10 mins - C2 5.695 4.751 4.114

Retinal Detachment - Full Thickness

No Limit - C1 3.986 3.451 3.427

No Limit - C2 4.512 3.693 3.018

10 mins - C1 5.111 4.263 4.038

10 mins - C2 5.594 4.842 5.051

Retinal Detachment - Fluid

No Limit - C1 7.34 4.895 6.438

No Limit - C2 7.21 4.865 6.16

10 mins - C1 7.78 4.901 5.694

10 mins - C2 9.63 5.9 6.675
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Table 4

Improvement influence on full retinal thickness segmentation quality as applied to the healthy data set. The

values in the table indicate the thickness difference in voxel units between the SVM segmentation computed

using the improvement and the manual segmentation. Improvements tested were checkerboard (CH), multi-

resolution hierarchy (MR), and best candidate reduction (RED). All tests began with the same training data.

The multi-resolution hierarchy used the weights wl = 1/8l. The best-candidate training data reduction included

a minimum distance of two voxels between training points. Improvements tended to increase segmentation

quality.

Improvement 68% are less than Average STD

None 5.598 5.335 6.043

CH only 5.451 5.143 5.689

CH+MR 5.433 5.021 5.339

CH+RED 4.386 3.898 3.793

CH+MR+RED 4.1 3.806 4.393
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