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Abstract A systems biology approach to multi-faceted

diseases has provided an opportunity to establish a holistic

understanding of the processes at play. Thus, the current

study merges transcriptomics and metabonomics data in

order to improve diagnostics, biomarker identification and

to explore the possibilities of a molecular phenotyping of

ulcerative colitis (UC) patients. Biopsies were obtained

from the descending colon of 43 UC patients (22 active UC

and 21 quiescent UC) and 15 controls. Genome-wide gene

expression analyses were performed using Affymetrix

GeneChip Human Genome U133 Plus 2.0. Metabolic

profiles were generated using 1H Nuclear magnetic reso-

nance spectroscopy (Bruker 600 MHz, Bruker BioSpin,

Rheinstetten, Germany). Data were analyzed with the use

of orthogonal-projection to latent structure-discriminant

analysis and a multivariate logistic regression model fitted

by lasso. Prediction performance was evaluated using

nested Monte Carlo cross-validation. The prediction per-

formance of the merged data sets and that of relative small

(\20 variables) multivariate biomarker panels suggest that

it is possible to discriminate between active UC, quiescent

UC, and controls; between patients with or without steroid

dependency, as well as between early or late disease onset.

Consequently, this study demonstrates that the novel

approach of integrating metabonomics and transcriptomics

combines the better of the two worlds, and provides us with

clinical applicable candidate biomarker panels. These

combined panels improve diagnostics and more impor-

tantly also the molecular phenotyping in UC and provide

insight into the pathophysiological processes at play,

making optimized and personalized medication a

possibility.
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OPLS-DA Orthogonal partial least squares-discriminant

analysis

PCA Principal component analysis

RD Recycle delay

ROC Receiver operating characteristic

Sd Steroid dependence

Si Steroid independence

UC Ulcerative colitis

1 Introduction

Ulcerative colitis (UC) (Ordás et al. 2012) and Crohn’s disease

(CD) (Baumgart and Sandborn 2012) are chronic, relapsing

disorders representing the two main entities of inflammatory

bowel disease (IBD) with an increasing incidence and prev-

alence globally (Molodecky et al. 2012). It is believed that

these diseases arise in genetically susceptible individuals as a

result of an environmental and microbial induced aberrant

immunological response. However, the actual pathogeneses

of UC and CD remain enigmatic, and it is clear that a range of

subphenotypes exist. Consequently, the diagnostic procedure

relies on a multidisciplinary approach (endoscopy, radiology,

and histopathology), which is hampered by its time-consum-

ing procedures and lack of differential power. Unfortunately,

this approach gives rise to a considerable number of patients

(*10 %) with the diagnosis of ‘‘IBD unclassified’’ (Geboes

et al. 2008), which has serious clinical consequences, as suc-

cessful clinical management and the patients’ quality of life

depends on early and correct diagnosis.

With the intention to improve our understanding of the

pathophysiology and refine the diagnostics, innovative

approaches such as DNA microarray-based genome-wide

gene expression analysis (transcriptomics) (Bjerrum et al.

2010a; von Stein et al. 2008; Costello et al. 2005; Planell

et al. 2012; Wu et al. 2007; Olsen et al. 2009) and 1H

nuclear magnetic resonance (1H NMR) spectroscopy-based

metabolic profiling (metabonomics) (Bezabeh et al. 2001;

Balasubramanian et al. 2009; Bjerrum et al. 2008, 2010b)

have been used to characterise colonic mucosal pinch

biopsies from IBD patients and combined with multivariate

statistical analysis. These studies demonstrate that both

transcriptomics and metabonomics hold promising differ-

ential power in terms of discrimination of active IBD and

controls, and between active UC and CD as well. Inter-

estingly, some of these studies (Bjerrum et al. 2010a; Olsen

et al. 2009; Planell et al. 2012) are also at the transcri-

ptomics level able to differentiate between active UC,

inactive UC, and controls, indicating the presence of a

possible continuous inflammatory state in quiescent UC—a

continuous inflammatory state that so far has not been

established in any other types of IBD, irritable bowel

syndrome (IBS) or infectious colitis.

Besides active and quiescent stages of the disease a

range of phenotypes such as steroid dependence (Sd) or

independence (Si), early or late disease onset, and duration

of disease also clinically characterize UC. A molecular

portray of these clinical phenotypes would greatly advance

the understanding of UC and potentially lead to optimized

and personalized treatment regimes.

Traditionally, the different ‘omics’ methods (e.g. trans-

criptomics and metabonomics) have been applied inde-

pendently with diagnostic purposes and in order to derive

fundamental insight into the molecular mechanisms of

human diseases. However, a range of recent studies (Bor-

gan et al. 2010; Astrakas et al. 2011; Chen et al. 2012;

Tzika et al. 2007) have approached a systems biology

description by merging these parallel ‘omics’ platforms as

integration is expected to be highly synergistic (Fiocchi

2012). Thus, Borgan et al. (2010) successfully combined

transcriptomics and metabonomics data from breast carci-

noma samples, and demonstrated a refinement of the sub-

classification of breast cancers due to the identification of

different but diagnostically synergistic biomarkers found at

the transcriptomics and metabonomics level, respectively.

Similarly, Astrakas et al. (2011) combined metabolite and

gene expression profiles and revealed a more accurate

discernment of brain tumor categories and a better pre-

diction of patient survival than either method alone. This

novel approach that combines biomarker detection at dif-

ferent ‘omics’ levels consequently seems to be a promising

tool for improvement of diagnostics, phenotyping, and our

understanding of the pathophysiology of complex diseases.

Metabolites are the final product of cellular biological

processes, which are continuously influenced by genetic

and environmental changes. The metabolic profile of any

given biological sample is consequently expected to clo-

sely reflect the phenotype making the integration of

transcriptomics and metabonomics an appealing approach.

With this in mind, the current study aimed at merging

microarray-based transcriptomics data and NMR spec-

troscopy-based metabonomics data generated from colonic

mucosal pinch biopsies from patients with active UC,

inactive UC, and controls in order to improve diagnostics,

biomarker identification and to explore the possibilities of a

molecular phenotyping of UC patients.

2 Materials and methods

2.1 Patient population

Sixty-three patients, subjected to flexible colonoscopy at
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Integration of transcriptomics and metabonomics 281

123



Herlev Hospital, Denmark were consecutively enrolled

into the study: 27 UC patients with active disease, 21

quiescent UC patients, and 15 controls (i.e. patients

undergoing colonoscopy due to gastrointestinal symptoms

but where all clinical and paraclinical investigations

subsequently turned out normal). All eligible UC patients

(n = 48) had their diagnosis verified by well-established

criteria (Nikolaus and Schreiber 2007) and were at the

time of enrolment graded in accordance with the Mayo-

score (Schroeder et al. 1987) (a score of 0–1: inactive

UC, 2–4: mild UC, 5–8: moderate UC, and 9–12: severe

UC). The endoscopic assessment of activity was con-

firmed by histological examination and any discrepancy

between the observations led to an exclusion of the

patient. Hence, none of the included controls or patients

with quiescent UC had any signs of inflammation.

Exclusion criteria were age above 80 or below 18 years,

clinical evidence of infection, recent (within 14 days) use

of antibiotics or probiotics, pregnancy, and severe mental

illness.

In order to replicate normal circumstances and make the

study as clinically relevant as possible no exclusion criteria

were imposed in relation to diet, alcohol intake, medica-

tion, abdominal surgery, or exercise as the objective was to

develop a robust, generic classifier that do not depend on

such factors.

All patients participated in this study in confirmation

with the principals outlined in the Declaration of Helsinki

and with the approval of the Scientific Ethics Committee of

the Copenhagen Capital Region (H-KA-20060164).

Informed written consent was obtained from each partici-

pating person.

2.2 Patient information

Five patients originally included as active UC had to be

excluded due to the finding of microgranulomas on histo-

pathological examination and Crohn’s-like endoscopic

lesions, cf. Table 1 for clinical details.

2.3 Sample collection

Three adjacent (no more than 5 mm apart) colonic mucosal

pinch biopsies (approximately 10–20 mg each) were

obtained endoscopically from the left side of the colon in

each patient using routine endoscopic forceps. The left side

was explicitly preferred to avoid any intersegmental vari-

ation in gene expression, and because this is the most

frequent area of inflammation in UC patients. The first

biopsy was used for histopathological evaluation conducted

in an unblinded fashion by staff pathologists in accordance

with well-established criteria (Bentley et al. 2002). The

second biopsy was immediately stabilized in RNA-Later

(Ambion, Austin, TX, USA) in order to minimize RNA

degradation, and after 48 h of storage in RNA-Later at

4 �C the biopsy was kept at -80 �C until total RNA

extraction was initiated. The third biopsy was snap-frozen

in liquid nitrogen and stored at -80 �C for subsequent

NMR spectroscopy (Beckonert et al. 2010).

2.4 RNA extraction, hybridization, detection,

and quantification of signals

RNA was extracted with the NucleoSpin� RNA/Protein

mini kit (Macherey–Nagel, Düren, Germany) in

Table 1 Clinical details

Steroid dependency is defined

as the need for re-introduction

of systemic glucocorticoids

during tapering or within

30 days of drug discontinuation

to maintain symptoms control.

None of the patients were

steroid refractory

UC ulcerative colitis, Si steroid

independence, Sd steroid

dependence
a Tapering dose of 5 mg/day

Inactive

n = 21

UC Active

n = 22

UC Controls

n = 15

Gender (male/female) 8/13 8/14 4/11

Age, years (mean, range) 53 (27–78) 40 (18–76) 43 (19–65)

Age at diagnosis (\25 years/[25 years) 6/15 6/16 –

Years with disease (\10 years/[10 years) 12/9 16/6 –

Mayo score (mean, range) 0.2 (0–1) 6 (2–9) –

Smoker/non-smoker 1/20 3/19 2/13

Steroids: Si/Sd/unknown 10/0/11 9/8/5 –

Daily medication

Systemic mesalazine (1.6–3.2 g) 18 19 –

Topical mesalazine (1,000 mg) 6 9 –

Systemic glucocorticoids (75 mg) 2a 4 –

Topical glucocorticoids (100 mg) 1 2 –

Azathioprine (100–150 mg) 0 6 –

Infliximab (5 mg/kg/infusion) 0 1 –

None 2 2 15
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accordance with the manufactures protocol. Integrity (RNA

integrity number above seven was accepted) and purity

were verified with an Agilent Bioanalyzer (Palo Alto, CA,

USA). In accordance with the Affymetrix protocol and the

one-cycle eukaryotic target labelling assay biotin-labelled

cRNA was produced. The cRNA was fragmented and a

hybridization mix was prepared, which included the frag-

mented target, probe array controls, bovine serum albumin,

and herring sperm DNA. In this experiment, the Affymetrix

GeneChip Human Genome U133 Plus 2.0 was applied. The

hybridized probe array was subsequently stained with

fluorescent protein streptavidin-phycoerythirn (Wang et al.

2007a) and scanned with a GeneArray scanner at the

excitation wavelength of 488 nm. The amount of light

emitted at 570 nm was proportional to the bound target at

each location on the probe array. Data were stored as image

files for further analysis. These procedures were all carried

out at the Microarray Core Facility, Rigshospitalet,

Copenhagen, Denmark, and all data from this study has

been submitted to Gene Expression Omnibus.

2.5 1H NMR spectroscopy

The frozen biopsies were thawed and packed into 4 mm in

diameter zirconia rotors with deuterium water for field

lock. 1H NMR spectra were acquired on a Bruker DRX-

600 spectrometer (Bruker, Rheinstetten, Germany) and a

triple-resonance-high-resolution-MAS probe with a magic-

angle gradient. Samples were spun at 5 kHz at the magic

angle (54.7�) and regulated at 283 K to minimize temper-

ature induced biochemical degradation. A total of 15 min

was allowed for the temperature to reach equilibration for

each sample before a spectrum was acquired. All samples

were carefully treated in the same way to avoid any pro-

cedure-based variations, and previous investigations on

liver tissue have indicated that only minor changes are

observed in the NMR spectra of snap-frozen samples and if

samples are kept at low temperatures for short periods of

time prior to the acquisition of spectra (Waters et al. 2000).

The 90� pulse length (*10.0 ls) was set for all the

samples. A total of 128 transients were collected into 16 k

data points for each tissue spectrum with a spectral width

of 20 ppm, and a recycle delay (RD) of 2.0 s. Two 1H

NMR spectra were acquired: (1) A standard one-dimen-

sional NMR spectrum was acquired using the first incre-

ment of the nuclear Overhauser effect (NOE) spectroscopy

pulse sequence [RD-90-t1-90-tm-90-acq] with irradiation of

water peak during RD and tm to achieve water presatura-

tion (Nicholson et al. 1995), (2) A spin–spin relaxation

edited NMR spectrum was acquired using Carr–Purcell–

Meiboom–Gill (CPMG) pulse sequence [RD-90-(T-180-

T)n-acq] (Meiboom and Gill 1958). For the CPMG

experiment, spin–spin relaxation delays, 2ns, of 200 ms

was used. For assignment and verification purposes, two-

dimensional 1H–1H correlation spectroscopy (Hurd 1990)

and total correlation spectroscopy (Bax and Davis 1985)

NMR spectra were also acquired for selected intestinal

samples as previously described in detail (Wang et al.

2007b).

2.6 Data analysis

All data analyses were carried out in R statistical envi-

ronment (www.r-project.org) (RDC Team 2012) unless

otherwise indicated.

2.6.1 Transcriptomics data

The transcriptomics data was pre-processed by the robust

multiarray analysis procedure (Irizarry et al. 2003) with

quantile normalization and background correction imple-

mented in the affy package for the R statistical environment

(Gentleman et al. 2004). A single log2 scale expression

measure for each probe set was attained from the low-level

data files (CEL files). To reduce influence of atypical

observations and extreme values, each variable was inverse

normal transformed, i.e. mapped to the quantiles of the

standard Gaussian distribution (mean = 0 and SD = 1).

2.6.2 Metabonomics data

Free induction decays were multiplied by an exponential

function equivalent to a 0.3 Hz line-broadening factor prior

to Fourier transformation. Spectra were manually corrected

for phase and baseline distortions using XWINNMR 3.5

(Bruker) and referenced to the chemical shift of the ano-

meric proton of a-glucose at d 5.22. The spectra over the

range d 0.5–9.5 were digitized using a Matlab script. The

region d 4.79–5.06 was removed to avoid the effects of

imperfect water suppression. Regions d 1.07–1.21, d
3.37–3.57, d 3.62–3.67, and d 3.84–3.91 were also

removed due to the presence of peaks from ethanol and

propylene glycol, which were introduced during sampling.

Regions across the spectra, where peaks were located, were

manually selected (see Supplementary Material). The

selection of spectral regions was comprehensive, also

including low intensity spectral features, in order to avoid

exclusion of relevant features prior to statistical analysis.

Within each such region representing a peak/spectral fea-

ture, the local maximum intensity for each spectrum was

calculated and extracted to represent the peak intensity in

downstream analyses, thus allowing for local misalignment

within each peak region. In cases no local maximum was

present, the mean of the spectrum (i.e. baseline) of the

region was used instead of the local maximum. The

resulting data matrix of size N 9 p for N observations and
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p peaks was subsequently normalized using the probabi-

listic quotient normalization method (Dieterle et al. 2006).

To reduce influence of atypical observations and extreme

values, each variable was inverse normal transformed, i.e.

mapped to the quantiles of the standard Gaussian distri-

bution (mean = 0 and SD = 1) prior to further analyses.

2.6.3 Quality control and outlier removal

To determine if there were any strong outliers present in the

data, principal component analysis (PCA) models were

calculated from each individual data set. Observations were

removed from further analysis if they were outside the 95 %

Hotelling T2 confidence bound, leading to one active UC and

two inactive UC observations being excluded. Thus, 19

patients with quiescent disease, 21 patients with active dis-

ease, and 15 controls were included in the final analyses.

2.6.4 Predictive modelling of full data sets using

OPLS-DA

In the predictive modelling (classification) of the full data

sets orthogonal partial least squares-discriminant analysis

(OPLS-DA) models (Trygg and Wold 2002; Bylesjö et al.

2006) were fitted using the kernel-based OPLS algorithm

(Rantalainen et al. 2007; Bylesjö et al. 2008) with a linear

kernel, leading to identical prediction results as to the

conventional linear OPLS model, but with computational

benefits. The OPLS-DA models were fitted with one single

predictive component and zero Y-orthogonal components,

which in the case of no Y-orthogonal components is

equivalent to a conventional PLS-DA model with one

component. To estimate the classification performance, the

class-balanced Monte Carlo cross-validation was applied,

where 75 % of the data was used as training set in each

cross-validation round. To minimize stochastic effects due

to the cross-validation splits and ensure reliable prediction

performance estimates, 100 cross-validation rounds were

used. Prediction performance was estimated from the

cross-validation results in the form of receiver operating

characteristic (ROC) curves, which reveal information

about the trade-off between the true-positive rate and the

false-positive rate in the classifier. The area under the ROC

curve (AUC) provides a summarizing metric of the pre-

diction performance of the model, which is used for

comparison of prediction performances between different

models and data sets.

2.6.5 Predictive modelling and variable selection using

logistic regression fitted by lasso

To identify candidate biomarker panels, a variable selec-

tion problem, and at the same time evaluate prediction

performance, a logistic regression model fitted by lasso was

used (Friedman et al. 2010) as implemented in the glmnet

package for R. The lasso solves the l1 penalized regression

problem, effectively shrinking some of the coefficients so

that they become exactly zero, i.e. performing variable

selection. To minimize the risk of over-fitting in respect to

estimation of prediction performance, model optimization

was performed in a nested cross-validation procedure. In

the nested cross-validation, the ‘outer’ cross-validation is

used to estimate prediction performance and the ‘inner’

cross-validation is used to optimize model parameters

based on only the training set from the ‘outer’ cross-vali-

dation. In the case of the logistic regression fitted by lasso

we needed to optimize the value for the k parameter

(controlling the amount of shrinkage), which was done

empirically based on AUC from the ‘inner’ cross-valida-

tion procedure. To ensure that minimal sets of variables are

selected, we added a penalty on the AUC estimates for

each evaluated k value, and selected k as the value maxi-

mizing AUCi—0.001 9 pselected(i), where pselected(i) repre-

sents the number of non-zero coefficients in the model for

the ith evaluated k, and AUCi is the corresponding AUC

for ith evaluated k. Once the k value is selected, the

training model was refitted using the full training data set,

and the ‘outer’ cross-validation test set was predicted.

80 % of the data was used as training set in both the ‘outer’

and ‘inner’ cross-validation procedures, with 100 ‘outer’

cross-validation rounds and 50 ‘inner’ cross-validation

rounds. Final ROC curves and corresponding AUC esti-

mates were calculated from the ‘outer’ cross-validation test

set, which were never part of the optimizing or fitting of the

model. To determine a global set of selected variables over

all cross-validation rounds, since one set of variables would

be selected in each cross-validation round, we reported

those variables that were selected in more than 10 % of the

cross-validation rounds.

3 Results

3.1 Prediction performance in individual and combined

full data sets

We fitted multivariate predictive models to the transcri-

ptomics and metabonomics data and assessed how well we

could discriminate between active UC, quiescent UC, and

controls and six different subphenotypes in the study

(Table 2). Each data set (two metabonomics and one

transcriptomics data sets) was modelled separately,

including all measured variables, and subsequently data

was modelled in concatenated form, combining all vari-

ables measured on all three data sets. Using OPLS-DA

together with class-balanced Monte Carlo cross-validation,
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we estimated prediction performance as AUC for each

comparison and each individual and combined data set

(Table 3). The best prediction performances were observed

with active UC versus quiescent UC (AUC[0.95 across all

data sets, Table 3), and active UC versus controls (AUC

[92 across all data sets, Fig. 1). With quiescent UC versus

controls the classification performance (Fig. 1) was lower

and more variable between the data sets, ranging from

AUC = 0.57–0.79, with the metabonomic (NOE) per-

forming the best.

ROC curves corresponding to all evaluated models

across all the data sets are found in Supplementary

Material.

3.2 Prediction performance in small candidate

biomarker panels selected from individual

and combined data sets

We utilised a multivariate logistic regression model fitted

by lasso, and applied a nested cross-validation procedure to

minimize the risk of over-fitting in order to evaluate the

prediction performance of relatively limited (\*20

variables) multivariate biomarker panels. Prediction per-

formance under variable selection for each subpopulation

and each data set were estimated (Table 4). The results

suggest that it is possible to discriminate between active

UC, quiescent UC, and controls; between Si and Sd, and

between the ages of onset, i.e. before and after 25 years of

age, based on relatively small subsets of transcriptomic and

metabonomic predictors. Discrimination between active

UC and controls (Fig. 1) is in the range of

AUC = 0.93–0.97, and for quiescent UC and controls

AUC estimates are found to be ranging between 0.68 and

0.76 across the data sets. ROC curves corresponding to all

evaluated models across all the data sets are found in

Supplementary Material.

The lasso based logistic regression model applied in this

study provides us with relatively small candidate subsets of

biomarkers for evaluation. Figure 2 shows the distribution

of the number of selected variables over cross-validation

rounds for each subpopulation in classification and variable

selection for each data set. Table 5 gives an example of

candidate biomarkers for the inactive UC versus controls in

the combined data set. Tables of candidate biomarker

panels (selected[10 % of the cross-validation rounds) are

provided for each data set in the Supplementary Material

for all data sets and models.

4 Discussion

The objective of the current study was to apply a novel

approach in which transcriptomics and metabonomics data

were merged with the intention to improve diagnostics,

biomarker identification, and to explore the possibilities of

a molecular phenotyping in UC patients. Thus, herein we

clearly demonstrate for the first time that transcriptomics

and metabonomics data, both as separate data sets and as

merged omics data, hold substantial differential power with

respect to active UC, quiescent UC, and controls, and with

different UC subphenotypes as well.

Table 2 Samples sizes in different subgroups of data

Analysis name Case name N total N cases Proportion

cases

ActiveControl Active 36 21 0.58

InactiveControl Inactive 34 19 0.56

InactiveActive Active 40 21 0.53

SiSd Si 24 16 0.67

DurationLess10 Duration 40 12 0.30

DebutLess25 DebutLess25 40 29 0.73

Analysis name subgroups of data, Case name group defined as cases,

N total number of observations in total, N cases number of cases,

Proportion cases fraction of total number of samples that belong to

the case group, Si steroid independence, Sd steroid dependence, Du-

rationLess10 disease duration less than 10 years, DebutLess25 age at

diagnosis less than 25 years

Table 3 Prediction performance

Analysis name Metabonomics (NOE) Metabonomics (CPMG) Transcriptomics Omics

ActiveControl 0.95 0.92 0.97 0.97

InactiveControl 0.79 0.65 0.57 0.58

InactiveActive 0.98 0.95 0.96 0.96

SiSd 0.73 0.76 0.80 0.78

DurationLess10 0.43 0.35 0.63 0.63

DebutLess25 0.43 0.34 0.38 0.36

Prediction performance estimates presented as area under the curve (AUC) for each sub-population and for each full data set, including combined

data sets: Omics. AUC estimates are based on classification using OPLS-DA and Monte Carlo cross-validation

NOE nuclear Overhauser effect, CPMG Carr–Purcell–Meiboom–Gill, Si steroid independence, Sd steroid dependence, DurationLess10 disease

duration less than 10 years, DebutLess25 age at diagnosis less than 25 years
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Previous attempts to classify quiescent UC based on the

CPMG metabonomics data (Bjerrum et al. 2010b) has been

unsuccessful, but with the use of the NOE metabonomics

data and a predictive level approach the classification

model with an AUC = 0.79 identifies quiescent UC as a

distinct metabolic phenotype compared to controls, which

is an original finding.

Intriguingly, the classification model was also able to

differentiate between patients with Sd and Si; AUC ranging

from 0.73 to 0.80 (Table 3) using the full data set. This

finding is of utmost importance, as early identification of

patients with Sd will lead to optimized and personalized

medication in terms of timely introduction of immuno-

modulators (e.g., thiopurines and methotrexate) or biolo-

gics (Ardizzone et al. 2012). Both adult (Faubion et al.

2001) and paediatric (Tung et al. 2006) studies emphasize

that most UC patients initially respond to steroids, but

already after 1 year a significant proportion (up to 43 % in

Fig. 1 Prediction performance estimates presented as area under the curve. Prediction performance estimates using OPLS-DA (a, c) or logistic

regression fitted by lasso (b, d) on metabonomics (NOE and CPMG), transcriptomics (mrna), and omics (all) data sets
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paediatric patients) loses the response leading to Sd or

surgery. Avoiding the latter would have a considerable

impact on the patients’ quality of life.

Classification models that contain thousands of variables

are clinically non-applicable. Thus, besides the merging of

‘omics’ data, the overarching objective of the current study

was to evaluate the prediction performance of relative

small (\20 variables) multivariate biomarker panels. The

results (Table 4) suggest that it is actually possible to

discriminate between active UC, quiescent UC, and con-

trols, and between Sd and Si with similar AUC estimates as

for the full data set (Table 3). The fact that these biomarker

panels maintain and in some cases improve, i.e. Inactive-

Control and DebutLess25 increase from AUC of 0.58–0.76

and 0.36–0.69, respectively (Tables 3, 4), the discrimina-

tive power holds great promise for the development of

clinical relevant diagnostic tests. However, for these panels

to be clinically applicable similar discriminative power has

to be demonstrated in extracts from colonic biopsies so that

targeted biochemical assays can be developed, as NMR

spectroscopy is not expected to be readily available in an

everyday diagnostic lab.

The biomarker panels are also informative in terms of

the dominant pathophysiological processes at play. In this

respect it is interesting to note that biomarker panels

related to Sd and Si contain transcripts (protein inhibitor of

activated STAT 4, amino-terminal enhancer of split, and

hairy/enhancer-of-split related with YRPW motif-like, see

Supplementary Material, Table 14) that are known co-

repressors or co-regulators of steroid hormone receptors

(Lavery and McEwan 2005; Lavery et al. 2011). The same

panel also contains the transcript SLC38A5, which encodes

a Na-glutamine co-transporter found on the brush border

membrane of enterocytes. During chronic intestinal

inflammation Na-glutamine co-transporters are deregulated

(Saha et al. 2012), and recent evidence indicates that this

deregulation is due to an interaction with the glucocorticoid

receptor (Arthur et al. 2012). Glutamine is a major respi-

ratory fuel for gut-associated immune cells and enterocytes

and plays an important part in the synthesis of the endog-

enous thiol antioxidant glutathione. This coincides with

metabolites, i.e. glutamine and glutathione, found in the

biomarker panels of the Sd/Si model (Supplementary

Material, Table 15). Thus, besides providing a molecular

snapshot at the different ‘omics’ levels, the integration of

‘omics’ also represents a systems biology approach in

which entire pathways of importance to the pathophysiol-

ogy can be revealed; alterations in co-repressors or co-

regulators of steroid hormone receptors might lead to

changes in Na-glutamine co-transporter and subsequently

Table 4 Prediction performance of small candidate biomarker panels

Analysis name Metabonomics (NOE) Metabonomics (CPMG) Transcriptomics Omics

ActiveControl 0.93 0.90 0.97 0.96

InactiveControl 0.76 0.68 0.68 0.76

InactiveActive 0.94 0.89 0.93 0.93

SiSd 0.62 0.71 0.63 0.70

DurationLess10 0.54 0.50 0.38 0.38

DebutLess25 0.49 0.67 0.71 0.69

Prediction performance estimates presented as area under the curve (AUC) for each sub-population under selection of small candidate biomarker

panels for each full data set and the combined data sets: Omics. AUC estimates are based on classification using logistic regression fitted by lasso

and a nested Monte Carlo cross-validation procedure

NOE nuclear Overhauser effect, CPMG Carr–Purcell–Meiboom–Gill, Si steroid independence, Sd steroid dependence, DurationLess10 disease

duration less than 10 years, DebutLess25 age at diagnosis less than 25 years

Fig. 2 Distribution of the size of the selected biomarker panels over

100 (outer) cross-validation rounds. a Metabonomics NOE, b Metab-

onomics CPMG, c transcriptomics, and d Omics data set. The box

border represents the interquartile range and the horizontal line in the

box is the median. The whiskers show the largest/smallest observation

falling within a distance of 1.5 times the box size
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inadequate amounts of glutamine, which is known to

become a conditionally essential amino acid during path-

ophysiological conditions.

Similarly, the biomarker panels related to early and late

disease debut (see Supplementary Material, Table 22)

contain transcripts [(CD5 molecule-like (CD5L) and

autophagy related 10 (ATG10))] highly involved in

phagocytosis and autophagy. Thus, CD5L also known as

Api6 (apoptosis inhibitor 6) promotes macrophage survival

in an inflammatory milieu, recognizes Gram-positive and

negative bacteria, and enhances the phagocytic activity of

macrophages (Haruta et al. 2001; Sarrias et al. 2005). In

support of the later, ATG10 is a vital element of the

autophagic process (Shao et al. 2007), which concurs with

the dominant metabolites, i.e. lipids, choline, and inositols,

in the associated biomarker panels of metabolites (see

Supplementary Material, Table 23); lipids and choline are

essential components of the phagocytic double membrane

vesicles and inositols are a basic requirement for the ini-

tiation of autophagy (Codogno et al. 2012). Genome wide

association studies have previously identified IBD-associ-

ated genetic variants that have either genetic or functional

links to autophagy, but the majority of these genes are

thought to be specific CD susceptibility factors (Kabi et al.

2012). However, the current systems biology approach

reveals that phagocytosis and autophagy might also be

central pathophysiological elements in UC at a subpheno-

typical level, which molecularly characterizes early and

late onset of the disease. In this context it is of significant

interest that autophagy and especially Api6 is associated

with the development of inflammation and adenocarcinoma

(Qu et al. 2009), which is in line with the increased risk of

CRC in patients with early onset of UC (Jess et al. 2012).

Finally, it should be noted that no single transcriptomics or

metabonomics data set performs better across all populations

investigated. Joint modelling of both data sets performs about

as good as or marginally worse than the best of the metabo-

nomics and transcriptomics data set. This is largely due to the

fact that in the combined data, the number of transcript vari-

ables is vastly larger than the number of metabolic variables

Table 5 Most frequently selected variables in the inactive UC versus control

Name HGNC ppm Data set Selection freq.

ENSG00000243024_at RPS11P6 Transcriptomics 0.81

3.176 Metabonomics 0.77

ENSG00000165669_at FAM204A Transcriptomics 0.69

ENSG00000121351_at IAPP Transcriptomics 0.55

ENSG00000120675_at DNAJC15 Transcriptomics 0.5

ENSG00000100664_at EIF5 Transcriptomics 0.48

ENSG00000128881_at TTBK2 Transcriptomics 0.47

ENSG00000116885_at OSCP1 Transcriptomics 0.46

ENSG00000166323_at C11orf65 Transcriptomics 0.31

3.093 Metabonomics 0.29

ENSG00000159208_at C1orf51 Transcriptomics 0.29

ENSG00000119487_at MAPKAP1 Transcriptomics 0.27

ENSG00000164291_at ARSK Transcriptomics 0.26

ENSG00000171786_at NHLH1 Transcriptomics 0.23

ENSG00000198590_at C3orf35 Transcriptomics 0.17

ENSG00000051620_at HEBP2 Transcriptomics 0.15

ENSG00000175550_at DRAP1 Transcriptomics 0.14

ENSG00000122585_at NPY Transcriptomics 0.13

ENSG00000131697_at NPHP4 Transcriptomics 0.12

2.8 (Aspartate) Metabonomics 0.11

ENSG00000111224_at PARP11 Transcriptomics 0.11

ENSG00000189068_at VSTM1 Transcriptomics 0.11

ENSG00000257726_at Transcriptomics 0.11

Although there are fewer metabolites selected among the top predictors compared to transcripts, the metabolites carry a substantial amount of

information in terms of classification, e.g. the NMR peak (unknown annotation) at 3.176 ppm is selected in 77 % of all cross-validation rounds.

Even though the table is dominated by transcriptomics variables, the metabonomic data is indeed adding substantially impact to the classification

performance

Name ENSEMBL id/metabolite name (if available), HGNC HGNC gene ID, ppm Peak position in NMR spectrum for metabonomic variables,

Data set data set the variable belong to, Selection freq. frequency of which the variable is selected over (outer) cross-validation rounds
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(Table 3). In the logistic regression model fitted by lasso the

larger number of transcripts is, however, less influential since

this model performs variable selection (Table 4). Thus,

transcriptomics and metabonomics are informative for clas-

sification, while the anticipated diagnostic advantages of

combining ‘omics’ remain elusive. The later might be

explained by a potentially low correlation between ‘omics’

and the moderately sized study (Schwanhäusser et al. 2011).

Furthermore, despite the intention to build a robust, generic

classifier that does not depend on factors such as diet, alcohol

consumption, and medication, it is impossible to completely

rule out a confounding effect from these elements. While the

spectra from snap-frozen samples are highly reproducible, the

minor changes induced by the snap-freezing process and the

low temperature (10 �C) prior to the acquisition of spectra

need to be acknowledged as potential confounders as well.

Finally, the results also need to be interpreted in light of the

cross-validation procedure. Although we apply rigorous

cross-validation approaches to mitigate problems of bias and

over-fitting as much as possible, gold standard evaluation of

prediction performance should ideally be done through

external data sets, which was not possible in the current

setting.

In conclusion, this study demonstrates that the novel

approach of integrating metabonomics and transcriptomics

combines the better of the two worlds, and provides us with

potentially clinical applicable biomarker panels. These panels

improve diagnostics and more importantly also the molecular

phenotyping in UC, making optimized and personalized

medication a possibility. However, in order to achieve a more

complete systems biology approach we want to stress the

importance of integrating not just two but multiple biomo-

lecular levels. Consequently, follow-up studies containing

larger sample size, CD, IBS, infectious colitis patients, and a

more complete ‘omics’ approach are motivated in order to

validate the current results and to improve accuracy and

robustness in the selection of the biomarker panels.
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