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Abstract

OBJECTIVE—Folic acid fortification has reduced neural tube defect prevalence by 50% to 70%.
It is unlikely that fortification levels will be increased to reduce neural tube defect prevalence
further. Therefore, it is important to identify other modifiable risk factors. Vitamin Bq, is
metabolically related to folate; moreover, previous studies have found low B, status in mothers
of children affected by neural tube defect. Our objective was to quantify the effect of low B1»
status on neural tube defect risk in a high-prevalence, unfortified population.

METHODS—We assessed pregnancy vitamin B1, status concentrations in blood samples taken at
an average of 15 weeks’ gestation from 3 independent nested case-control groups of Irish women
within population-based cohorts, at a time when vitamin supplementation or food fortification was
rare. Group 1 blood samples were from 95 women during a neural tube defect-affected pregnancy
and 265 control subjects. Group 2 included blood samples from 107 women who had a previous
neural tube defect birth but whose current pregnancy was not affected and 414 control subjects.
Group 3 samples were from 76 women during an affected pregnhancy and 222 control subjects.

RESULTS—Mothers of children affected by neural tube defect had significantly lower By,
status. In all 3 groups those in the lowest B1, quartiles, compared with the highest, had between
two and threefold higher adjusted odds ratios for being the mother of a child affected by neural
tube defect. Pregnancy blood By, concentrations of <250 ng/L were associated with the highest
risks.
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CONCLUSIONS—Deficient or inadequate maternal vitamin By, status is associated with a
significantly increased risk for neural tube defects. We suggest that women have vitamin B1»
levels of >300 ng/L (221 pmol/L) before becoming pregnant. Improving B, status beyond this
level may afford a further reduction in risk, but this is uncertain.
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Folic acid can prevent up to three fourths of neural tube defects (NTDs).2=3 Folic acid
fortification of grain products in the United States was initially reported to reduce the
incidence of NTDs by 19%,4 but this was probably an underestimate.> Recent studies have
shown reductions between 35% and 78% since mandatory fortification programs were
introduced.®-10 There is debate on whether all folic acid-preventable NTDs are being
prevented!1-13 and whether the observed range of effectiveness can be explained by
underlying ethnic differences in susceptibilityl? or differences in completeness of case
ascertainment.> One argument is that insufficient folic acid has been added, and there have
been calls to increase the level of fortification in the United States.11-13 Nevertheless, it is
generally agreed that not all NTDs are preventable by folic acid. Therefore, to further reduce
NTDs, other modifiable risk factors must be found.

Maternal obesity has been identified as 1 modifiable risk factor.14-16 Vitamin B1, (B12)
status might be another, given the close metabolic association between B1, and folate and
the importance of By, status as a determinant of plasma homocysteine.1”18 A link between
low maternal serum By, level and anencephaly was suggested as far back as 1980.1° Several
studies found differences in maternal B, status (measured by serum total B, or by
holotranscobalamin) both during?%-23 and after2123-27 an NTD-affected pregnancy (AP).
Lower amniotic fluid B or lower B1, binding capacity was also reported in NTD-
APs.28-32 The 2 largest positive studies, conducted during the introduction of folic acid
fortification in the United States26 and postfortification in Canada,?2 found a tripling of risk
between the lowest and highest quintiles of serum B152% or quartile of holotranscobalamin.?2

In a previous study, undertaken primarily to examine the association of folate status with
risk of NTD, we found that low maternal B4, status during an AP was associated with risk,
independent of folate status.2% To gain further insight into the role of By, in the prevention
of NTDs, we present results on 2 additional groups, using pregnancy blood samples from
over the same years, which predate the era of widespread food fortification and when
medical advice was to avoid unnecessary prophylactic supplements during early pregnancy,
including vitamin supplements.33 For comparison, we also included hitherto unreported risk
analysis from our previous study,2° using B1, data only from women in the study where we
had definite information that they did not take vitamin supplements.
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MATERIALS AND METHODS

Sample Selection

Group 1

All 3 of the studies involved a nested case-control design where samples were selected from
within 2 large population-based cohorts. Groups 1 and 3 included case blood samples taken
from mothers during an NTD-AP. Group 2 case blood samples were taken during pregnancy
from mothers who previously delivered an NTD-affected infant but whose current
pregnancy was not affected (NAP). All of the samples were collected with institutional
ethical approval and in compliance with applicable national ethical standards.

Between July 1983 and February 1986, serum samples were made available from first
antenatal clinic blood samples collected from all pregnant women as part of the Irish
National Rubella Screening Program. Details of the collection source were presented in an
earlier study.3* Samples were identified from 129 women who were currently undergoing an
AP. This represented 92% of all of the ascertained NTD affected births in the major Dublin
maternity hospitals between 1984 and 1986. Sufficient serum was available for analysis of
B1 in 95 of these case subjects. Control samples (n = 265) were randomly selected from the
same source over the same sampling period, using the sequential sample numbering system
of the screening laboratory. All of the control women had normal pregnancies, based on
hospital charts. Case and control blood samples were processed in a similar manner and
were stored at — 20°C before analysis.

Groups 2 and 3

Between 1986 and 1990, research blood samples were collected from 56 049 women at their
first antenatal visit in the 3 major Dublin maternity hospitals. This represents ~70% of
women who delivered in these hospitals during the period. Additional details have been
published elsewhere.17:20.35-37 An aliquot in 1% ascorbic acid for red cell folate (RCF) and
a plasma sample were stored at — 20°C for each participant.

Group 2 includes blood samples within the above biobank that were collected from women
with a history of NTD-APs but who had an NAP between 1986 and 1990. From the
EUROCAT birth defects registry38 and hospital records we ascertained that there were 303
such women during the time period in the 3 hospitals. Of these, 187 women had given
research blood samples. We excluded 65 women because they were taking vitamins, mainly
as participants in the Irish Trial for the prevention of NTD.39 A further 9 women had
insufficient sample for analysis. We had blood samples for 1 woman during both an AP and
an NAP pregnancy. We included her AP blood in group 3 below and excluded her NAP
sample. Control subjects were obtained for each case by selecting 4 to 5 women who
attended the antenatal clinic in the same hospital on the same day. Hospital charts for these
women were scrutinized for vitamin supplementation and other demographic details. From
this, samples from 439 nonsupplemented women were eligible for analysis. Laboratory B1,
results were missing for 5 case subjects and 25 control subjects, leaving a final data set of
107 case subjects and 414 control subjects.
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Group 3 represents a previously unpublished analysis from our earlier study on maternal
folate and By, in NTD-APs.20 These blood samples were also obtained from the 1986-1990
biobank described above. For the current analysis, all of the known vitamin supplement
users were removed, leaving data from 76 case mothers and 222 control mothers.

Laboratory Methods

B19, serum folate, and RCF were measured by microbiologic methods, as described
previously.29 All of the vitamin analyses were completed between 3 and 9 years from the
sample collection, with each group analyzed as a batch in a continuous run of assays. Case
and control samples were randomly mixed in every assay, and operators were not aware of
the sample status. Interassay and intra-assay coefficients of variation were within 10.4% and
12.0% for folate and B, respectively. An ongoing laboratory quality-control system
ensured long-term performance of the assays within established limits over the time scale of
analysis.

Statistical Methods

RESULTS

Data were not normally distributed and are presented as medians and interquartile ranges.
Case-control comparisons were conducted using Wilcoxon 2-sample tests. Logistic
regression models were used to test whether decreasing levels of B, were a significant risk
for NTD in each of the groups. B1, was entered as a continuous variable or as quartiles of
the control population. Adjustments were made for year of sampling and for folate status.
Analysis of risk by maternal B4, status was conducted using cutoffs for By, that represented
deficient (0-149 ng/L), borderline-deficient (150-199 ng/L), low-adequate (200-299 ng/L),
adequate-good (300-399 ng/L) and good (=400 ng/L) status. Based on NTD prevalence data
in the Dublin maternity hospitals, an average NTD rate of 2.9 per 1000 births was used for
group 1, collected between 1984 and 1986, and 1.9 per 1000 births for groups 2 and 3,
collected between 1986 and 1990. Confidence limits for risk estimates were calculated by
assigning each control a representative weight (based on assumed overall risk) and assuming
no sampling variability in the population and a Poisson distribution for the number of cases.
Comparison of risk for the By status categories within each study group was based on an
analysis of maximum likelihood odds ratio (OR) estimates, using the highest B1, category as
the reference. All of the analyses were done using SAS 9 (SAS Institute, Cary, NC).
Significant effects were those with 2-tailed P values <.05.

Table 1 gives available characteristics of the 3 groups. Median gestation was 15 weeks.
Group 2 case mothers tended to be older than control subjects and had more pregnancies (P
<.001), which is consistent with these case subjects having a previous pregnancy history. In
all of the groups, the median B4, concentration was between 13% and 19% lower in case
subjects (P < .002; Table 2). RCF was significantly lower in group 3 case subjects (238 vs
315 ng/mL; P <.0001) and marginally lower in group 2 case subjects (median: 255 vs 291
ng/mL; P = .079). RCF concentrations were not available for group 1, but the serum folate
was not different between case and control subjects (2.85 vs 3.3 pg/L; P = .42). There was a
weak correlation between B, and RCF in group 3 samples (r = 0.16; P =.006; N = 298) but
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little correlation between the By, and RCF in group 2 (r = 0.07; P =.11; N = 514). There
was little correlation between serum/plasma folate and B1, in any of the 3 groups (r = 0.09,
0.07, and 0.10 for groups 1, 2, and 3, respectively). The median B4, of control subjects in
group 1, sampled between 1984 and 1986, was some 20% lower than groups 2 and 3,
sampled between 1986 and 1990 (P < .0001). When the median B1, was plotted by year,
there was weak general trend toward increased status over the period of the study (data not
shown). We noted a 4% difference (P = .023) in median B1, among control subjects in
groups 2 and 3, both of which were sampled from the same population of 56 049 blood
samples. This was probably because of differences in the year of analysis and minor
fluctuations in assay performance but was well within the interassay coefficients of variation
of our laboratory.

To determine the independent contributions of By, and RCF to risk of NTD, we used
logistic regression analysis with By and RCF (groups 2 and 3) as continuous variables.
There were highly significant associations (Table 3), such that each unit increase in By,
concentration provided an ~0.3% reduction in risk, independent of RCF. RCF was a
significant factor only in group 3.

To explore whether the associations with risk were confined to particular sectors of the By,
distribution, we categorized the data by quartile of B;», concentration among control
subjects. Logistic regression analysis, using the highest By, quartile as the reference group
and adjusting for RCF and year of sampling (Table 4), showed that risk of NTD was
significantly increased only in the lowest quartile for groups 2 and 3 but extended to the
second quartile for group 1 (adjusted for serum folate). The upper cutoffs for the second
quartile in group 1 (242 ng/L) and the lowest quartile in group 2 (252 ng/L) and group 3
(237 ng/L) were remarkably similar. In all 3 of the groups, those with B2 concentrations of
<250 ng/L had a 2.5- to 3-fold higher risk of being the mother of an NTD-affected child,
after adjusting for folate. Adjusting for gestation did not substantially change the magnitude
of the effects (data not shown).

We then divided the B, levels into 5 nutritionally relevant groups (deficient, borderline
deficient, etc) and calculated relative risks for each group, based on the known NTD
prevalence rates at the time of sampling. Point estimates with SEs are shown on Table 5.
These data show clear trends of risk reduction across the 5 categories in all of the groups,
with those in the lowest category (pregnancy By, concentrations of <150 ng/L) having ~ 5-
times higher risk compared with those with pregnancy B, levels of >400 ng/L. The effects
are significant below a concentration of 200 ng/L in groups 1 and 2. Effects were not
significant for group 3, but smaller numbers are likely to have been a factor. Figure 1 shows
trends across the B1, distributions. These suggest that some further reduction in risk may be
afforded by having a B1, status >320 to 350 ng/L, but there is no statistically significant
effect.

DISCUSSION

We have shown, in 3 separate groups, that low B, status is an independent maternal risk
factor for having an NTD-AP. Moreover, our study is the first to examine the risk by
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concentration of B1,. Our data indicate that women with pregnancy B, concentrations of
<200 ng/L are at 3 times greater risk than those with levels of >400 ng/L. These results
agree remarkably with effects observed by others.22:26 Our analysis indicates that the
majority of risk is confined to B1, levels below ~250 ng/L (Tables 4 and 5), although the
trend line in Fig 1 suggests that further risk reduction might be achieved by having a B1»
status >320 to 350 ng/L. Considering that these women were sampled at an average of 15
weeks’ gestation and, by that time, there is a natural physiologic drop of ~20% to 25% in
serum By, from the prepregnancy level 4041 our data indicate that women should aim to
enter pregnancy with serum Bq, concentrations of >300 ng/L (221 pmol/L) and that levels
above 400 ng/L (295 pmol/L) might be desirable, although we found no statistically
significant benefit.

It is uncertain whether further reduction in NTDs can be achieved in the United States by
increasing the level of grain fortification with folic acid. Moreover, recent reports on
possible adverse effects of high folic acid consumption make such a strategy unlikely.2-44
The addition of B15 in conjunction with folic acid has been proposed but mainly to protect
individuals with low Bq, status.12:1345:46 There is little information on the proportion of
women who enter pregnancy with By, levels of <300 ng/L, although a recent National
Health and Nutrition Examination Survey report found a mean serum B of just over 400
ng/L (300 pmol/L) in women between 20 and 39 years old.*” Our study suggests that the
addition of B to fortified grains may be a useful and acceptable way to further reduce the
prevalence of NTD, but more studies are needed to establish the safety of fortifying with By,
and the dose of B1, that might be required to reach an effective level of protection.

Previous case-control reports revealed lower By status in women with a history of NTD-
APs who were not pregnant at the time of study.21:23-27 Qur study is unusual in that we
observed lower By, concentrations during an NAP in such mothers (our group 2 case
subjects). There are 2 possible explanations for this finding. One is that B1, is merely
marking low folate status. However, we found little interaction between By, and folate in
any of our groups. This is not surprising, because in a nonfortified, nonsupplemented
population, vitamin status is determined by dietary sources of folate and B4, and the 2 are
quite different. The second, more likely explanation, is that long-term low B, status may
act in synergy with low folate status to precipitate an NTD-AP. By, status, along with
genetic differences, may help to explain the low NTD rates seen in some ethnic groups and
may also help in understanding why low maternal folate status alone usually does not result
in NTD-APs. For example, blacks, who have both lower NTD rates and lower folate levels
than other ethnic groups in the United States, have significantly higher B status,*8:49 and
this high status is also seen during pregnancy.®® Our case mothers were all of Irish descent
(ie, white) and lived in a region of traditionally high NTD prevalence, suggesting a
moderately high genetic predisposition. The importance of By, as a synergistic factor is also
supported by our previous observation20 that women in the bottom quartile of both plasma
folate and B, had >5 times higher ORs of a birth affected by NTD than those in the highest
quartile of both vitamins. Women in the bottom quartile of plasma folate but the highest B1»
quartile had less than half that risk.
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It is not known how folate and By, might interact to affect neural tube formation, but several
mechanisms are possible. As cofactor to the enzyme methionine synthase, By, influences
both the incorporation of folates into the cellular pool and the flux of folate derived 1-carbon
units destined for DNA synthesis or for methylation reactions. DNA synthesis is an essential
feature of embryonic development, but other factors that trigger developmental changes,
such as cell-signaling events that lead to differential gene expression, are partially controlled
by methylation reactions. Impairment of either of these systems could be involved in folate
or Bio-responsive NTDs.

Our study has several strengths. First, our groups were large enough to detect an average

B, difference of 15%, enabling us to get a good estimate of the critical level of By,

required to prevent NTDs. Several other studies that found no difference were limited to <60
case subjects®! or were conducted in an area of very low NTD prevalence with high reported
B, levels.>2 Our study samples were taken from a population of high NTD risk, at a time
when women were not exposed to prenatal vitamins before the blood draw. Such
populations are difficult to find nowadays, but they have the advantage that the observed
concentrations are more likely to reflect the blood vitamin level at the time of neural tube
closure, because they have not been confounded by early pregnancy intake of vitamin
supplements. Samples from all of our groups were assayed using the same methodology, and
our collection strategy ensured that case and control subjects were matched for gestational,
temporal, and storage variables likely to affect the B1, content. One limitation is the fact that
we could not also control for maternal age and number of pregnancies. However, we had no
evidence that these variables would affect maternal By, status. The study is also limited by
sparse demographic data on participants and by the lack of RCF data for group 1, which,
because of its greater stability, may have been more informative than serum folate.

CONCLUSIONS

We have confirmed that low B, status is an important maternal risk factor for having an
NTD-AP. More importantly, our study is first to address the public health question of what
B4, concentrations might be protective, although our calculations are limited by
extrapolation from pregnancy values to a nonpregnant condition. Our logistic regression
analysis suggests that women who start pregnancy with serum B4, concentrations of <300
ng/L (221 pmol/L) are at significantly higher risk for NTDs. Improving B, status beyond
300 ng/L might offer further risk reduction, but this is unclear.
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Abbreviations

NTD neural tube defect
B1o vitamin By,
AP affected pregnancy
NAP nonaffected pregnancy
RCF red cell folate
OR odds ratio
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FIGURE 1.
Risk of being the mother of an NTD-affected child according to pregnancy vitamin B1»

status during an AP or NAP. Risks were calculated from the proportion of case and control
subjects in defined B1, categories, multiplied by the prevalence of NTD at the time of
sampling. x-axis values are the median B4, values within each category.
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TABLE 2

Serum B1, Concentrations During Pregnancy in Mothers With a History of Pregnancies Affected by NTD
(Cases) and Nonaffected Mothers (Controls) Matched for Group

Variable Group 1 (AP)  Group 2 (NAP)  Group 3 (AP)

Case By,, median (IQR), ng/L 210 (162-252) 270 (208-360) 244 (208-330)
No. 95 107 76

Control By, median (IQR), ng/L 242 (190-297) 314 (253-404) 300 (237-366)
No. 265 414 222

Wilcoxon test, P .0003 .0004 .0018

IQR indicates interquartile range, denoting the 25th to 75th percentile values; AP, case samples were taken during an AP; NAP, case samples were
taken during an NAP from women who previously had an NTD-AP.
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TABLE 3

ORs for By, and RCF as Independent Risk Factors for Being a Mother of an NTD-Affected Child Using a
Continuous Logistic Regression Model

Group  Effect OR& 95% ClI P

1(AP)  Bpng/l 0995 0.992-0.998 .0005

2(NAP) By, ng/L 0997 0.995-0.999 0030
RCF,pg/L  1.000 0.999-1.001 .71

3(AP)  Bpng/L 0997 0.994-1.000 .0320
RCF,ug/L 0995 0.993-0.998 .0002

OR indicates odds ratio; Cl, confidence interval.

a . - . .
Odds ratios are calculated per unit increase in concentration of B12 or RCF.
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