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A B S T R A C T

Molecular imaging with photoacoustic ultrasound is an emerging field that combines the spatial and

temporal resolution of ultrasound with the contrast of optical imaging. However, there are few imaging

agents that offer both high signal intensity and biodegradation into small molecules. Here we describe a

cellulose-based nanoparticle with peak photoacoustic signal at 700 nm and an in vitro limit of detection

of 6 pM (0.02 mg/mL). Doses down to 0.35 nM (1.2 mg/mL) were used to image mouse models of ovarian

cancer. Most importantly, the nanoparticles were shown to biodegrade in the presence of cellulase both

through a glucose assay and electron microscopy.

� 2014 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-SA

license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

Photoacoustic imaging (PAI) has been used extensively in pre-
clinical models of human disease including prostate [1], breast [2],
and ovarian cancer [3]. This modality produces contrast by
converting nanosecond light pulses into an acoustic signal and
offers significant improvements in spatial resolution relative to
other optics-based approach [4–6]. Ovarian cancer in particular
could eventually benefit from PAI due to the existing widespread
use of trans-abdominal or trans-vaginal ultrasound in the
screening and management of ovarian cancer [7,8]. PAI can use
either endogenous signal from hemoglobin, deoxyhemoglobin,
melanin, etc. or an exogenous imaging agent can be applied, which
is typical for in molecular imaging experiments.

Many materials produce photoacoustic signal and can be
broadly grouped as small molecules and nanoparticles. Both types
offer a range of PA signal. Small molecule agents include methylene
blue [9] or indocyanine green [10] with very intensephotoacoustic
signal. Fluorophore, fluorescent proteins [11], quenchers [12], and
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activatable hybrid molecules [13,14] are also members of this
category. Nanoparticle-based PAI uses gold nanoparticles, gold/
silica hybrids [15,16], carbon-based particles [17,18], porphy-
somes [19], iron oxide nanoparticles, copper sulfide [20], and
others [14,21,22]. Other nanoparticles such as poly-lactic-glutamic
acid or poly-caprolactone have poor photoacoustic signal. Howev-
er—on a molar basis—nanoparticles usually out-perform small
molecule fluorophore.

While nanoparticles do offer robust and stable photoacoustic
signal, they are hampered by poor biodistribution and clearance
profiles. Indeed, one of the most common limitations of all
nanoparticle imaging agents is non-specific, long term liver and
spleen accumulation. While porphysomes [19] and plasmonic
nanoclusters containing 5 nm gold particles linked for red-shifted
resonances [23,24] may offer renal clearance, their full utility in
small animal models remains unclear. Any agent that combines the
signal intensity of nanoparticles with the renal clearance of small
molecules would have a significant advantage toward clinical
translation.

We thus considered a wide variety of naturally occurring,
optically active biodegradable materials. Of interest as an
alternative to solid metal nanoparticles or carbon nanotubes is
cellulose [25–27]. This material has a crystalline structure [28], is
readily available from renewable sources, well characterized, and
easily manipulated through a variety of chemical processes [29].
Cellulose is a routine component of the human diet and has very
cle under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/
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well defined clearance pathways in ruminants and rodents via
cellulase. Furthermore, cellulose has been transformed into a
variety of crystalline nanoparticle forms for materials science
applications [26,30]. These cellulose nanoparticles are formed by
treating the biomass with concentrated sulfuric acid for acid
hydrolysis to remove disordered or paracrystalline cellulose with
highly ordered crystalline areas remaining intact [31].

In this work, we hypothesized that cellulose in crystalline
nanoparticle form could be used as a biodegradable PAI agent. We
made cellulose nanoparticles (CNPs) from cotton cellulose and
performed physical and toxicological characterization. We then
did a series of ex vivo experiments to quantitate the PA signal
produced by the material as well as in vivo experiments to
understand its utility in a small animal model of human ovarian
cancer. Finally, we demonstrate that the imaging agent can
biodegrade into simple sugars. To the best of our knowledge, this is
the first report of a cellulose-based imaging agent and among the
few reported biodegradable photoacoustic imaging agents with
important advantages for clinical translation.

2. Materials and methods

2.1. Reagents

The cellulose source was cotton linters from Arnold Grummer
Corp. Concentrated sulfuric acid and phosphosphate buffered
saline (PBS) was purchased from Fisher. Cellulase from Aspergillus

niger and glacial acetic acid were purchased from Sigma and Fisher,
respectively, and used without further purification. Modified
Alamar Blue reagent (‘‘Presto Blue’’) was acquired from Invitrogen.
All water was purified to 18 MV and then filtered through 0.2 mm
filter.

2.2. CNP synthesis

The CNPs were made with a protocol adapted from the
literature [26]. Briefly, 500 mg of cellulose was added to 15 mL
of water in an Erlenmeyer flask with magnetic stirring. 28 mL of
18 M sulfuric acid was added and the exothermic reaction was
allowed to cool back to room temperature over 3 h. The material
was then centrifuged for 10 min at 6000 RPM and the supernatant
decanted and the pellet re-suspended with distilled water. The
product was then dialyzed with a 3500 molecular weight cutoff
membrane (Pierce) for at least 24 h and then adjusted to pH 7 with
0.1 N NaOH. We dried known volumes of CNPs in a 90 8C oven
overnight and weighed the resulting powder to calculate the mass
concentration.

2.3. Equipment

The CNP size and zeta potential were obtained via dynamic light
scattering (DLS) on a Zetasizer-90 instrument from Malvern
Instruments (Worcestershire, UK). The measurements were made
in 50% PBS/50% water. A Synergy 4 (Biotek) microplate reader was
used for cell assays and absorbance measurements. All transmis-
sion electron microscopy (TEM) and energy-dispersive x-ray
spectroscopy (EDS) was performed with a Tecnai G2 X-Twin
(FEI Co.) instrument operating at 200 kV.

A tomographic photoacoustic scanner (Nexus 128; Endra Life
Sciences) was used for animal imaging [32,33]. Briefly, the Nexus
uses an optical parametric oscillator (OPO) tunable laser and 128
detectors submerged in hemispherical bowl filled with water
stabilized at 38 8C. The animal or sample to be imaged is
placed in a tray that lies on top of the water in the center of
the bowl. This tray contains a central indentation or dimple to
immobilize a subcutaneous tumor or ex vivo sample for consistent
spatial location. Optimization scans used 60 views with 25
replicate pulses. Animal scans rotated the bowl through 120 views
(38 each) with 75 pulses per view with 8 min scan times. The
incident radiation was selected during scan setup. The fluence is
�4 mJ/cm2.

For spectral PA studies, a linear array scanner (LAZR;
Visualsonics Corp.) was used for planar imaging due to the high
throughput nature of this imaging instrument. It was equipped
with a 21 MHz-centered transducer as described previously
[34,35]. This instrument also uses an OPO laser operating at
20 Hz between 680 and 970 nm. Step sizes are 1 nm with 4–6 ns
pulse width. The spot size is 1 mm � 24 mm and the full field-of-
view is 14–23 mm wide. Images were acquired at 5 frames per
second, and peak energy at the source is 45 � 5 mJ at 20 Hz.

2.4. Cell culture and animal handling

In vivo imaging and in vitro studies used the OV2008 (also
known as 2008) cell line. These cells were grown in DMEM
supplemented with fetal bovine serum and antibiotics/antimyco-
tics. Toxicity assays used a derivative of the Alamar Blue assay
(Presto Blue) [37]. Here, 10,000 cells/well were plated and
analyzed in replicate (n = 8). Cells were exposed to increasing
concentrations of CNPs for 18 h, 24 h after plating. Assay readout
used 540 nm excitation and 600 nm emission.

Female nu/nu mice age 6–16 weeks were used for these studies
and each data point includes three mice unless otherwise noted.
Before handling, animals were anesthetized with 2% isofluorane in
oxygen at 1–3 L/min. To create subcutaneous xenograft tumors, we
implanted 107 cells in 50% growth factor reduced matrigel/50% PBS
into the hind limb of a nude mouse. Tumors were imaged when
they reached 500 mm3, typically 1–2 weeks after implantation.
The Administrative Panel on Laboratory Animal Care at Stanford
University approved all work with animals.

2.5. Biodegradation experiments

These experiments followed established protocols [38]. A
solution containing 1.5 mM nicotinamide adenine dinucleotide
(NAD), 1.0 mM ATP, 1.0 unit/mL of hexokinase, and 1.0 unit/mL of
glucose-6-phosphate dehydrogenase was obtained from Sigma (p/
n G3293). CNPs and cellulose standards were brought to 1 mg/mL
in 0.05 M acetic acid (pH = 5.0). D-Glucose standards (250–5 mg/
mL) were prepared in the same acetic acid solution. Cellulase (5 U/
mL) was prepared in cold distilled water. 4 mL of CNPs and controls
were added to borosilicate test tubes followed by 1 mL of cellulase
or water as a control. The solution was incubated at 37 8C with
shaking. Aliquots were periodically removed and the cellulase
activity quenched by placing the aliquots in an ice bath. The
samples were centrifuged for 12 min at 12,000 RPM to removed
unreacted materials. 40 mL aliquots of the supernatant and glucose
standards were then placed in triplicate in a 96 well plate; 100 mL
of the HK solution was added and allowed to react at room
temperature for 15–17 min. Absorbance at 340 nm was measured
and used to construct a standard curve and estimate available
glucose.

2.6. Data analysis

PA data was reconstructed with a filtered backprojection
algorithm proposed by Wang et al. [39]. Amide software (http://
sourceforge.net/projects/amide/) was used to create renderings of
the images and all images were thresholded to the same value [40].
To quantitate the images, we used MicroView (General Electric
Corp.) software. A region of interest (ROI) 15 mm � 15 mm �
15 mm was created around the sample and the mean intensity
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extracted. This intensity was assigned values of arbitrary units
(a.u.) and used for the analysis and discussion below. We defined
the limit of detection (LOD; sensitivity) as the concentration
detectable 3 standard deviations above the signal of the blank. The
time to half max (T½) is the time halfway between the pre-injection
time point and maximum signal.

2.7. Statistical treatment

To determine the average and standard deviations of data sets,
the Excel functions ‘‘AVERAGE’’ and ‘‘STDEV’’ were used. Other
metrics include the standard error of the mean that was computed
by dividing the standard deviation by the square root of n samples.
Relative standard deviation (RSD) was computed by dividing the
standard deviation by the average. Significance testing used a two
tailed, t-test through the ‘‘TTEST’’ function in Excel.

3. Results

Our goal was to construct, characterize, and utilize a
biodegradable PAI agent with a small animal model of human
ovarian cancer. The research findings can be broadly grouped as
physical characterization, toxicity and cytotoxicity, ex vivo

biodegradation, and PAI.

3.1. Physical characterization

During the synthesis the solution turned from an opaque white
with suspended cellulose that readily settled, to a dark brown
colloidal suspension. After purification, the CNPs from cotton
linters could be concentrated by centrifugation and were stable
with no sign of degradation over 18 months.
Fig. 1. Physical characterization of CNPs. CNPs were examined with TEM at increasing m

with dimensions of 132 � 46 nm. Red box in panels (A) and (B) indicates the subsequen

196.0 nm with a PDI of 0.138. (E) The absorbance spectra of CNPs at 0.077 mg/mL (0.023 nM

(black line). This is in contrast to gold nanorods at 0.34 nM (red dashed line) with a 

40.0 nm � 13.2 nm used for signal comparisons.
The CNPs were dissolved in water to an optical density of �0.2
and studied with TEM, absorbance spectroscopy, and DLS. Although
literature suggested using uranyl acetate for increased contrast [26],
we found that the presence of such additional treatment was
optional and collected the images presented in Fig. 1 in the absence
of positive staining. TEM images were analyzed with ImageJ to
determine the mean diameter, which was 132 � 46 nm. The DLS data
(Fig. 1D) in 50:50 water:PBS presents particles with a mean size
between 160 and 200 nm, a polydispersity index of 0.138, and a neutral
zeta potential. Their weight concentration was 2.4 mg/mL. Using the
1.5 g/cm3 density of cellulose [41], we calculated the molecular weight
of these 3.8 � 106 nm3 CNPs to be 3.4 � 109 g/mol or 0.70 nM in the
2.4 mg/mL batch. Absorbance spectroscopy data in Fig. 1E indicates
Rayleigh scatter and suggest that the CNPs have their most intense
interaction with light in the visible range of the spectrum. We contrast
this with gold nanorods at 0.34 nM and show the typical near infra-red
absorbance peak for this material.

We next characterized the capacity of the CNPs to generate
photoacoustic signal, and the first step was optimization of the
imaging wavelength. Because in vivo imaging was the ultimate
goal, we subcutaneously injected a 100 mL bolus of 0.6 mg/mL
CNPs in 50% matrigel into the rear limb of a nude mouse. The PA
intensity spectrum of the injected bolus was collected with the
linear array scanner described above and is plotted in Fig. 2A. Also
plotted is the spectrum of normal tissue not treated with CNPs.
The data suggests that optimal signal occurs at 700 nm—that
wavelength was used for all subsequent experiments. We
calculated the molar extinction coefficient at 700 nm to be
8.74 � 109 M�1 cm�1. From literature [42], the GNRs are known to
be 3.59 � 109 M�1 cm�1.

This peak at 700 nm is in contrast to the absorbance data in
Fig. 1E. This discrepancy is due to differences in the laser power at
agnification (A–C) and show amorphous and anisotropically shaped nanoparticles

t higher magnification image in panel (C). (D) The hydrodynamic radius by DLS was

) in PBS show Rayleigh scattering with maximum absorbance in the UV visible region

resonance tuned to 700 nm. Inset in (E) shows gold nanorods with dimensions of



Fig. 2. Photoacoustic signaling of CNPS. (A) Spectral imaging of CNPs highlights the maximum absorbance peak at 700 nm, which was used for all subsequent imaging

experiments (red solid curve). The background PA spectrum of normal tissue is also shown for reference (black dots). Inset is a photoacoustic image of a subcutaneously

implanted bolus of CNPs at 0.5 mg/mL (‘‘Pos.’’) and matrigel only implant (‘‘Neg.’’). Solid circle highlights a normal region used to create the tissue-only spectrum. Scale bar in

inset is 3 mm. (B) Normalized photoacoustic data for the CNPs as well as ‘‘flat’’ graphite absorber illustrate change in laser power as a function of wavelength that has been

reported previously [32]. This allows calculation of a normalized photoacoustic spectrum for the CNP (blue) that corresponds nicely to the absorption data (Fig. 1E). (C)

Representative photoacoustic imaging data of a phantom scanned with the tomographic imaging system. Ci–Civ are CNPs. Bi: 0.70 nM, Bii: 0.35 nM; Biii: 0.15 nM; Biv:

0.07 nM. Bv is 0.70 nM GNRs. Scale bar in B is 4 mm. Photoacoustic data collected with the tomographic scanner for both CNPs and GNRs with 700 nm incident radiation using

either molar (D) or mass units (E). Error bars in C are plotted in red and represent the standard deviation of 3 replicate samples and are <10% RSD.
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different wavelengths. We have previously characterized how the
power changes as a function of wavelength in both the
tomographic and linear array scanner [32]. The implications of
these power changes on this study are seen in Fig. 2C. Here we
performed spectral imaging of both graphite and the CNPs.
Graphite is well known flat absorber and could be used to
compensate for different laser power. We used these known laser
power differences to correct the PA spectrum of the CNPs and
present a figure that agrees with the absorbance data.

Next, decreasing concentrations of CNPs were placed in the
sensitive volume of the tomographic scanner and imaged with
700 nm excitation. The reconstructed maximum intensity projec-
tions are presented in Fig. 2B and highlight the concentration-
dependent nature of the PA signal. Absolute quantitation is
presented in Fig. 2C along with data from GNRs with dimensions of
40.0 � 4.4 and 13.2 � 1.8 nm, longitudinally and axially, respectively.
The peak absorbance of these GNRs is 700 nm and was also used as
their excitation wavelength for the comparison studies. For the CNPs,
there was clear discrimination between the 0.00 nM and 0.01 nM data
points (p < 0.01); the calculated LOD was 0.006 nM (0.02 mg/mL).
Experiments at isomolar concentrations of CNPs and GNRs indicate
that the CNPs have increased signal relative to GNRs: 3.0-fold at
0.15 nM, 2.0-fold at 0.35 nM, and 1.7-fold at 0.70 nM. Regression
analysis between the molar concentration and PA signal indicates a
R2 > 0.99 for both the GNRs and CNPs. The slope of the CNP curve was
1.6-fold higher than the GNR curve. It was important to also compare
the CNPs and GNRs on a mass basis (Fig. 2D) because of differences in
absorption cross-section. We found that with mass units, the GNRs
produced equivalent signal to CNPs using 30-fold lower mass units.
We also examined the in vivo LOD by subcutaneously injection CNPs
dissolved in matrigel beneath the skin of nude mice and imaging that
bolus. The LOD was 0.05 mg/mL.

Laser induced shape changes to GNRs are well known [43,44],
and these could potentially introduce error into this comparison.
To investigate, we scanned the GNRs with increasing laser dose.
Each scan used 30 views (128 apart). At each angle, we used an
increasing number of pulses: 1, 5, 20, 200, and 400 for a scan time
of �20 s to 10.5 min. The signal intensity was measured with a
volumetric ROI and then the sample was removed for absorbance
spectroscopy. The peak absorbance of GNRs not treated with
laser was 707 nm and those at 5.5 and 10.5 min of laser dose had
peaks at 707 and 706 nm, respectively. The relative standard
deviation in the photoacoustic signal for this experiment was
9.6%, which is within the error we reported previously for this
scanner [33]. This indicates that the GNRs are stable during the
imaging experiment.

The CNPs could be separated into two different fractions with
centrifugation (20,000 � g for 30 min). The supernatant had a
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mean size of 65 nm by DLS and the re-suspended sediment was
186 nm. When the two fractions were brought to the same optical
density, the photoacoustic signal in the 65 nm fraction was 1.5-fold
greater than the larger fraction. For the remainder of the
experiments the combined product was used without further
fractionation.

3.2. Toxicity

We used in vitro tissue culture experiments and small animal
models for pilot toxicity data. The CNPs were first tested with
10,000 OV2008 cells plated in each well of a 96 well plate.
Increasing concentrations of CNPs were added to the growth media
and allowed to incubate for 18 h. Analysis with the Presto Blue
assay indicated a small, but statistically significant (p < 0.05)
decrease in metabolic activity at concentrations above 0.31 mg/mL
of CNPs (Fig. 3A).

Next, we injected 200 mL of CNPs via tail vein in mice (n = 3) and
collected whole blood retro-orbitally 24 h later for serum
chemistry (Na, K, Cl, CO2, and anion gap) and liver function tests
(aspartate transaminase (AST), alanine transaminase (ALT), alka-
line phosphatase (AlkPhos), gamma-glutamyltransferase (GGT),
and total bilirubin). Three concentrations were studied: 2.4 mg/
mL, 1.2 mg/mL, 0.1 mg/mL, as well as control animals with no
injection of imaging agent. The 2.4 mg/mL animals suffered a
difficult recovery from anesthesia and had labored breathing
several hours after the procedure; they were sacrificed before
serum could be collected. The other two cohorts (1.2 mg/mL and
below) had no obvious signs of toxicity including modified
behavior, posture, or activity. Serum liver function tests and
electrolyte data indicates no statistically significant changes for
the 0.1 mg/mL cohort (p > 0.05). The 1.2 mg/mL animals had
statistically significant (p < 0.05) changes to alkaline phosphatase,
sodium, CO2, and the calculated anion gap. However, the levels in
these animals were still within reported reference ranges [45,46].
Although not presented in Fig. 3, total bilirubin was not detectable
in any of the samples and GGT was only detectable in 1 of the
control animals.

3.3. Biodegradation

We used a glucose assay to evaluate the ex vivo biodegradation of
the CNPs in the presence of cellulase. This assay uses hexokinase to
catalyze a glucose phosphorylation from an ATP donor to give
glucose-6-phosphate (G6P). G6P is then oxidized by nicotinamide
Fig. 3. Pilot toxicity data. OV2008 cells (n = 6 replicate wells) were exposed to increasing c

positive control (‘‘POS’’) used 0.1 mg/mL cetyltrimethylammonium bromide as a toxic

animals treated with CNPs at increasing concentrations was collected and compared

transaminase (ALT), and alkaline phosphatase (AlkPhos) – U/L; Na, K, CO2, anion gap, and 

in B represent the standard deviation of 3 animals. The * indicates a statistically signifi
adenine dinucleotide (NAD) to 6-phosphogluconate with glucose-6-
phosphate dehydrogenase (G6PDH). Here an equivalent molecule of
NAD is reduced to NADH with a subsequent change in absorbance at
340 nm (A340) which is directly proportional to glucose concentra-
tion [38].

This assay was validated with a calibration curve as well as
positive and negative controls. The calibration curve used
glucose standards from 5 to 250 mg/mL. It was linear at
R2 > 0.999 and the relative standard deviation for each datum
was less than 5%. The relationship between A340 and glucose
concentration was used in subsequent experiments (Fig. 4A).
Next, we validated the activity of the cellulase enzyme (Fig. 4B)
with raw cellulose (not in nanoparticle form). Important controls
here included cellulose without cellulase (Negative control;
Cell � Enz.) and cellulose with cellulase (Positive control;
Cell + Enz.). The results indicate that free glucose is liberated
from the cellulose by cellulase, but not from the cellulose in the
absence of this enzyme with A340 signal <2% of the positive
control. This ‘‘cellulase-free’’ experiment was repeated for all of
the subsequent CNP experiments shown in Fig. 4C and the A340
for these samples (due to solvent) was subtracted from the
‘‘cellulase-positive’’ experiments. The A340 for a ‘‘cellulase only’’
sample from each experiment corrected for absorbance from the
enzyme’s protein structure.

We next examined the biodegradation of the CNPs. Samples
were studied at 1 mg/mL along with naı̈ve cellulose. The results
show rapid biodegradation of cellulose and CNPs. The CNP reached
½ maximum values between 30 and 60 min (Fig. 4C). Importantly,
while the starting concentrations were the same, 3.1-fold more
glucose was released from the CNPs than from the cellulose
standards.

Finally, we performed DLS and TEM studies on the CNPs before
and after enzyme treatment. As a negative control, we also
performed TEM on CNPs subjected to 37 8C heating in the acetic
acid solution for 1 h, but without cellulase. The TEM images show a
marked impact of cellulase treatment on the CNPs. Naı̈ve CNPs
(Fig. 4D) show a morphology typical of Fig. 1A, while CNPs treated
with cellulase for 1 h show small fragments near the main body of
the nanoparticle (red arrows, Fig. 4E). ROI analysis on 25 of these
fragments from multiple fields of view determined the size to be
12.0 nm � 3.2 nm. Further quantification across at least 10 different
fields of view indicated that each field in the enzyme treated sample
contained 23 � 14 fragments versus 4 � 4 fragments in the control
sample, a five-fold increase that was significant at p < 0.01. Less
than 1 such 12 nm fragment was seen per field-of-view in the
oncentrations of CNPs overnight and then analyzed with the Alamar Blue reagent. A

 agent to validate the reagent. (B) Serum electrolyte and liver function tests from

 to untreated animals (Control). #Units: aspartate transaminase (AST), alanine

K: mmol/L. Error bars in A represent the standard deviation of 6 replicates; error bars

cant change (p < 0.05) versus control.



Fig. 4. Biodegradation data of CNPs. (A) A hexokinase glucose assay was validated with standards. (B) The activity of the cellulase enzyme was validated with a cellulose

standard and caused increased glucose concentration in samples with cellulase, but not the control samples. All points except 0.5 h were significant at p < 0.01. (C) Both

control (raw cellulose) and CNPs produced glucose in the presence of cellulase suggesting biodegradation. Error bars in (A–C) represent the standard deviation of at least 3

replicate measurements. The CNPs had statistically elevated glucose levels that were above raw cellulose at p < 0.05 for all points above 0.5 h. (D) TEM imaging of naı̈ve CNPs

compared to CNPs treated with heat and acidic cellulase (E) and heat/acid only (F). Smaller fragments in the cellulase-treated CNPs are highlighted by black arrows.
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pre-treatment CNP samples. There was no difference in the DLS data
for any of the samples, but an increase in PDI was seen from 0.083
to 0.434.

3.4. In vivo PA imaging

The final group of experiments studied the in vivo imaging
potential of CNPs. Nude mice bearing subcutaneous xenograft
tumors from the OV2008 cell line between 500 and 1000 mm3

were fitted with a tail vein catheter and the tumor placed in the
imaging dimple of the tomographic scanner. Scans were collected
prior to injection of contrast and 1, 15, 30, 45, and 60 min post-
injection. Because there is a wide variety in the baseline
photoacoustic signal between animals, each mouse was consid-
ered to be its own control, and the PA signal for each scan is plotted
relative to the pre-injection signal (Fig. 5A).

We imaged at 1.2 mg/mL and 2.4 mg/mL with a constant
injection volume of 200 mL. This dose may alternatively be
expressed as 0.024 mg and 0.048 mg or 0.07 nmol and 0.14 nmol.
A group without injected contrast was also studied (sham
injection). Three mice were imaged at each point. Although only
the 2.4 mg/mL cohort are shown in Fig. 5A, the remaining data sets
were very similar with maximum PA signal occurring between 15
and 30 min post injection and T½ between 7 and 15 min. In Fig. 5B,
the maximum fold increase above baseline is plotted for the
different concentration regimes. The relationship between injected
concentration and signal increase is linear at R2 > 0.98. A washout
period within 30 min after peak intensity was then seen, however
tumor PA signal did not return to the baseline level during the
imaging session and decreased by at most 20%. After data
collection, the imaging data was rendered as maximum intensity
projection images along the axial plane (Fig. 6). These images show
an obvious increase in the tumor signal when the pre-injection
(Fig. 6B–E) are compared to the post-injection images (Fig. 6Bi–Ei).
At 1.2 mg/mL, the percent increase above baseline was 18.2 � 4.4%
and 33.5 � 7.7% at 2.4 mg/mL CNPs. These experiments were
significant at p < 0.034 and p < 0.007, respectively when compared
with the sham injection (Fig. 6B and Bi) that had a signal increase of
4.6% versus baseline.

4. Discussion

We report a cellulose-based nanoparticle suitable for photo-
acoustic imaging with the capacity to biodegrade. Although
cellulose nanocrystals and microcrystals are primarily described
as optical reflection tools [25,27], they have also shown
interaction with the infrared spectrum that may be responsible
for the photoacoustic signal described here via thermal expan-
sion [47]. Absorbance near 700 nm has also been reported
[48,49]. Much of the work in the literature is describing
nanocrystalline cellulose, which is white in color. The brown
color we observed here is likely due to mild pyrolysis due to
heating during acidic cleavage [50]. For this reason, we have
referred to the material as cellulose nanoparticles and not
nanocrystalline cellulose.

The CNPs produce 2–3 times more photoacoustic signal as GNRs
on a per-particle basis at 700 nm, while using mass units, the CNPs
produced 30-fold less signal (Fig. 2). Importantly, there are many
additional caveats when comparing photoacoustic contrast agents.
The CNPs are markedly larger than GNRs and this makes a
straightforward comparison to GNRs difficult because their
absorption cross-section is not equivalent. Volumetrically, the
13.2 nm � 40.0 nm cylindrical GNRs are 5474 nm3 and the 180 nm
spherical CNPs are 305,000 nm3. This is a �560-fold difference. Jain



Fig. 5. In vivo imaging with CNPs. (A) Time-activity curves of CNP in a subcutaneous

murine model of human ovarian cancer (OV2008 line). Three different animals were

imaged before (0) and 1, 15, 30, 45, and 60 min after tail-vein injection of 200 mL of

2.4 mg/mL CNPs and photoacoustic signal was divided by the PA signal pre-

injection to give the relative units graphed here. The dashed line indicates no

increase above baseline. All three animals showed maximum intensity 15–30 min

after injection. This pattern was also seen at the other concentration values

presented in panel (B). In Panel B the fold-increase above baseline is again plotted

and all concentration values examined here are statistically significant above

baseline at p < 0.05. Error bars in (B) represent the standard error for the three

animals and the relationship between PA signal and concentration of injected

contrast was linear at R2 > 0.96.

Fig. 6. Imaging data. Dashed lines in panels. Panels (A) and (Ai) are two different views of 

the top images are before injection of CNPs and lower panels denoted by ‘‘i’’ are post injec

to all images as does the scale bar in (Di), which represents 3 mm. Arrows highlight re
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and El-Sayed characterized the optical cross section of plasmonic
materials and found that it increased as a function of the effective
radius of the nanorod, and that at 20 nm of effective radius, a
nanorod has 2 � 10�14 m2 of optical cross section [51]. While there
are no similar reports for cellulose nanoparticles, one important
control the use of identical volumes and laser powers in the
comparison of the CNPs and GNRs. The comparison presented in
Fig. 2 was done with the same volume of contrast and the same
laser intensity of 4.2 � 0.2 mJ/pulse. Thus, differences in photo-
acoustic signal must be due to differences in absorption cross-section;
the CNPs are larger than GNRs on a per particle basis.

The choice of dose was critically important. Although all agents
(including water) are toxic at some dose, this imaging agent has a
sharp response curve and doses at or above 2.4 mg/mL showed
toxicity. However, at 1.2 mg/mL there was only very slight
modification of liver function and electrolytes relative to control
animals with changes still within the normal reference range
[45,46]. The most dramatically changed enzyme, alkaline phos-
phatase, actually decreased while liver toxicity would show an
increase (Fig. 3B). Importantly, this same 1.2 mg/mL concentration
was still effective at producing a significant increase in tumor PA
signal (Figs. 5 and 6). This concentration was further validated by
the ex vivo experiments. The 200 mL of 1.2 mg/mL CNPs would
have a working concentration in vivo of 0.12 mg/mL for a typical
mouse with 2 mL of total blood volume. This value is well below
the 0.31 mg/mL value shown to induce dysregulated metabolisms
in cell culture experiments (Fig. 3A).

The sham injection in Fig. 6B and 6Bi should have no change in
photoacoustic signal. However, the fold increase in the sham
injection cohort was 4.6% of the baseline signal for the three
animals. This difference may be due to differences in animal
positioning, despite our best efforts to maintain the orientation. It
may also be due to differences in blood oxygenation due to
anesthesia. Finally, it may be due to the variation within the
scanner (laser intensity, water temperature, transducer current,
etc.), although we have monitored the laser intensity and find that
those differences are <5% across these scans.

We characterized the run-to-run variation previously [33] and
measured the signal differences using this tomographic photo-
acoustic scanner in a single tumor-bearing mouse under three
different challenges: imaging repeatedly without movement
(stationary), removing and replacing the animal in the scanner
by the same operator (on/off), or by removing and replacing the
the imaging plane used to create the renderings in panels (B–D) (dashed lines). Here,

tion. (B) no injection; (C) 1.2 mg/mL; and (D) 2.4 mg/mL. Intensity bar in (D) applies

gions with particularly increased PA contrast in post-injection images.
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animal in the scanner by different operators (users). The relative
standard deviation for the three approaches was 9.6%, 13.5%, and
6.5% for the stationary, on/off, and user-based experiments,
respectively. Thus, the variation seen here is reasonable based
on this previous data.

The potential of a biodegradable nanoparticle imaging agent is
the primary motivation for this work, but these particles will not
biodegrade in the circulation of rodents or humans. Fig. 4 shows
both chemical and imaging data to support the hypothesis that
CNPs can biodegrade in the presence of cellulase. While free
glucose could be used metabolically, the smaller fragments are
near the size known to clear renally [52]. Interestingly, at the same
1 mg/mL starting concentration, temperature, and enzyme activi-
ties, the CNPs produce more than 3-fold more glucose than normal
cellulose. This finding is consistent with the acidic cleavage of
cellulose during synthesis with a potential attendant increase in
enzymatic reaction sites on the newly formed CNPs. Fortunately,
the peak imaging times (<30 min) are well before cellulase-based
biodegradation would occur.

One key limitation of this work is that humans obviously do
not produce cellulase—a potential application would therefore be
using this imaging agent as a ‘‘smart probe’’ that biodegrades
only after injection of a secondary cellulase-based treatment.
Although traditional cellulose requires acid conditions, newly
reported versions including the Xyn01 strain operate at
physiological pH [53]. More likely however, is further modifica-
tion of the sugar backbone that retains the optical properties, but
with more obvious routes of clearance from the body. Another
limitation of this approach is imaging at 700 nm that can be
confounded by hemoglobin and other species in tissue. Indeed,
the relatively high PA background at 700 nm is likely one of the
key factors that determines the detection limits of 1.2 mg/mL
(0.35 nM). Nevertheless, careful registration and comparison of
the pre- and post-injection images can highlight CNP-specific
signal and this value is still lower than that determined for GNRs
with identical cell line and imaging equipment (0.4 nM) [33].
Future work will study whether this peak intensity is tunable as
with plasmonic gold.

While passive tumor targeting was suitable for this preliminary
study and may be exploited further with size-tuned CNPs, future
experiments may utilize the sulfate ester groups resulting from
hydrolysis of cellulose to add cloaking polymers such as
polyethylene glycol or polyoxyalzine [54] or targeting ligands to
increase tumor uptake. Although studied here with ovarian cancer,
the CNPs may have utility with a broad range of disease states
currently characterized with ultrasound imaging.

5. Conclusion

In summary, we report a cellulose-based nanoparticle capable
of both biodegrading ex vivo in the presence of a naturally
occurring enzyme and producing photoacoustic signal in living
mice. The limit of detection in molar units was comparable to
gold nanorods in a mouse model of ovarian cancer and a dose of
48 mg in PBS was found to provide consistent photoacoustic
signal above background at 700 nm with low toxicity. Our future
goals are a more mechanistic understanding of the generation
of photoacoustic signal and optimization of the CNP structure
to reduce toxicity concerns while retaining biodegradation
properties.
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