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Abstract

In this work, we present a novel learning based fiducial driven registration (LeFiR) scheme which

utilizes a point matching technique to identify the optimal configuration of landmarks to better

recover deformation between a target and a moving image. Moreover, we employ the LeFiR

scheme to model the localized nature of deformation introduced by a new treatment modality -

laser induced interstitial thermal therapy (LITT) for treating neurological disorders. Magnetic

resonance (MR) guided LITT has recently emerged as a minimally invasive alternative to

craniotomy for local treatment of brain diseases (such as glioblastoma multiforme (GBM),

epilepsy). However, LITT is currently only practised as an investigational procedure world-wide

due to lack of data on longer term patient outcome following LITT. There is thus a need to

quantitatively evaluate treatment related changes between post- and pre-LITT in terms of MR

imaging markers. In order to validate LeFiR, we tested the scheme on a synthetic brain dataset

(SBD) and in two real clinical scenarios for treating GBM and epilepsy with LITT. Four

experiments under different deformation profiles simulating localized ablation effects of LITT on

MRI were conducted on 286 pairs of SBD images. The training landmark configurations were

obtained through 2000 iterations of registration where the points with consistently best registration

performance were selected. The estimated landmarks greatly improved the quality metrics

compared to a uniform grid (UniG) placement scheme, a speeded-up robust features (SURF)

based method, and a scale-invariant feature transform (SIFT) based method as well as a generic

free-form deformation (FFD) approach. The LeFiR method achieved average 90% improvement

in recovering the local deformation compared to 82% for the uniform grid placement, 62% for the

SURF based approach, and 16% for the generic FFD approach. On the real GBM and epilepsy

data, the quantitative results showed that LeFiR outperformed UniG by 28% improvement in

average.
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1. Introduction

Laser-induced interstitial thermal therapy (LITT) has emerged as a new minimally invasive

and safe approach to treat brain tumors, such as glioblastoma multiforme (GBM) [1], and

more recently, to treat epileptogenic foci for epilepsy [2]. LITT, which is highly compatible

with magnetic resonance imaging (MRI) and coupled with MR thermal imaging guidance,

allows for precisely localizing heat to a target with minimal damage to normal surrounding

tissues. While LITT holds significant potential to be the modality of choice for multiple

diseases (e.g., brain [3], liver [4], prostate [5], breast [6]), it is currently only practised as an

investigational procedure at a few clinical centers worldwide due to lack of data on longer

term patient outcome following LITT. Consequently, there is a need to employ imaging in

conjunction with LITT to better understand the precise change in the focus of treatment

post-LITT since the changes in imaging markers could serve as a surrogate of treatment

response. Therefore, a good image registration algorithm that can spatially and accurately

align pre- and post-LITT MMs is necessary and critical to quantitatively capture and

evaluate subtle imaging marker changes post-LITT.

Landmark based nonrigid registration schemes represent the most popular class of methods

in medical image registration due to their simplicity and high accuracy [7, 8]. Generally, a

landmark based registration approach consists of three main steps: (i) placing landmarks in

the different images; (ii) establishing the correspondence between these landmarks; and (iii)

computing the transformation between the images using the image correspondence obtained

from (i) and (ii). Sun et al. [9] revealed that such landmark driven schemes are sensitive to

the number and locations of landmarks. Empirical evidence has suggested that optimizing

positions of landmarks will result in better registration via a landmark-driven scheme [10].

However, identifying important landmarks to perform an accurate registration remains a

challenging task.

There are a number of ways to choose landmarks in the registration process. Manual

landmark selection allows for identification and selection of the most important fiducials

based on expert knowledge. However, with human interaction, choice of landmark location

is subject to intra- and inter-observer variability. An alternative method is to apply a uniform

grid to a region of interest in which landmarks are placed on the grid knots. Further, these

configurations can be employed with different levels of discretization. A less granular grid

may be insufficient to capture subtle deformation changes, while a highly granular grid can

result in over-fitting of the data as well as longer computation times in order to drive the

registration. In the last few years, automatic feature based landmark selection has become an

active area of research. However, these methods mainly focus on optimization of global

transformation and may perform poorly on recovering local deformation (e.g., thermally

damaged tissues caused by focal ablation). Such methods hence become inappropriate for

registering pre- and post-LITT images, where the focus of interest is in evaluating changes
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within the ablation zone comprising the region of tumor or epileptogenic foci. Recently,

learning-based methods have been explored and applied to the medical image processing

field, such as segmentation [11], registration [12], and landmark correspondence [13]. The

optimal landmark configurations can be identified via learning landmark fiducials to

accurately recover the local deformation induced by LITT.

The objective of this work is to develop a new landmark based nonrigid image registration

scheme that should not only be able to enhance registration performance, but also be able to

precisely capture local deformation, e.g., subtle tissue changes caused by tumor resection. In

this work, we introduce a novel learning based fiducial driven registration (LeFiR) method

(see Figure 1) to accurately align pre- and post-LITT MR images to facilitate the

identification of changes in MRI markers post-therapy. In the method, an important

landmark configuration that would be used as a training landmark set was learned for an

image pair with a known deformation. This landmark configuration can be considered as a

collection of discrete points. A generic transformation matrix between a pair of training

landmark sets with different deformation locations was computed via an iterative close point

(ICP) alignment technique. A new landmark configuration was determined by simply

transforming the training landmarks to the current displacement location while preserving

the topological structure of the configuration of landmarks.

The remainder of this paper is organized as follows. Section 2 describes previous work and

outlines the contributions of the developed work. The problem statement is presented in

Section 3. Section 4 provides the detailed description regarding the presented methodology.

In section 5, we demonstrate the experimental results with discussion. Section 6 concludes

the paper.

2. Prior Related Work and Contributions of New Work

Landmark based nonrigid image registration is among the most well-known methods for

medical image registration [10]. Landmarks can be anatomical, i.e., salient and accurately

locatable points of the morphology of the visible anatomy, or geometrical, i.e., points at the

locus of the optimum of some geometric property, such as local curvatures, corners, etc [14].

The anatomical points are usually identified interactively by the user, while the geometrical

points are generally localized in an automatic fashion. However, fully automatic landmark

identification has been proven to be a non-trivial task due to various characteristics of

medical image data.

Traditional ways to manually extracting landmarks involve manual selection of landmarks

corresponding to anatomical structures, a task that usually involves engagement of medical

experts. For instance, Lorenz and Krahnstöver [15] presented a semiautomated landmarking

method which required manual identification of a few anatomical landmarks to estimate a

registration of triangulations based on thin-plate splines (TPS). Lombaert et al. [16]

introduced landmarks in a graph cut minimization framework where the point landmarks

were placed on blood vessels to perform a non-rigid registration on two arbitrary frames

from a coronary cineangiogram. Thus, manual selection mainly select the points easily to

locate on anatomical structures so they could introduce large errors [7], especially when
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there is large inter-observer variability between experts. Levis et al. [17] have reported that

inappropriate selection of landmarks on a pair of images could lead to a deteriorated

registration performance by causing non-smooth interpolation artifacts between pixel

intensities. This procedure is also time-consuming and impractical for routine clinical use

which often involves a large cohort of image data.

Alternatively, a uniformly spaced landmark placement can be applied to the target and

moving images. The extracted landmarks are considered to contribute equally in the

registration process. Each of these configurations can be employed with different levels of

discretization. For example, Xie and Farin [18] devised a hierarchical B-spline

approximation model for multilevel nonlinear registration, in which a uniform knot spacing

is used in a cubic B-splines. Tustison et al. [19] also adopted a equally spaced grid in their

free-form deformation (FFD) image registration framework. The drawback of uniformly

spaced placement is that these evenly distributed landmarks may not represent informative

landmarks (e.g., landmark position on curvature) due to the uniformity and insufficient

density of grid. Further, a desirable grid spacing has to be learned before performing the

registration since different grid sizes result in different numbers of landmark points.

Moreover, there are a number of automatic landmark selection methods published in

literature [20]. Remarkable features or their combinations, such as intensities [21],

anatomical structures (e.g., bones, organs or tissues) [22], curvature [10], and shapes [7, 21],

have typically been used to guide landmark determination. For example, Betke et al. [23]

utilized an attenuation based template matching approach to automatically detect anatomical

landmarks for registering lung computed tomography images. Rechberg et al. [24] presented

an automatic approach for identifying landmark candidates by computing and choosing high

distinctiveness values for the voxels within a region of interest. Gu and Qin [25] designed a

global-to-local nonrigid brain image registration scheme in which the keypoints (i.e.

landmarks) are selected based on a computed joint salient map. Neu and Toga [26]

introduced an empirical training procedure to locate and refine anatomical landmarks within

pre-defined precisions using brain images with different resolutions and MRI weightings.

The performance of such a scheme is subject to a particular criterion used, and therefore is

limited to a certain type of application. In addition, these methods mainly focus on

optimization of global transformation and may perform poorly on local deformation.

The LeFiR registration algorithm was specifically designed to solve the above problems and

to enhance the global-to-local registration performance. We introduced a local constrained

deformation, similar to the deformation caused by LITT in the targeted ablation zone, on

synthetic brain MRIs. The important landmark fiducials were automatically identified via an

iterative training process. The learned configurations of landmarks were evaluated through

both global registration performance and their capability in recovering these predefined

localized deformation. The adopted ICP point matching approach allows a simply

transformation of the training landmark configurations to a pair of new pre- and post-LITT

images meanwhile preserves spatial information contained in these landmark sets.

In summary, the paper presents two major contributions: (1) A novel learning based method

is presented to drive global and local image registration. Unlike existing landmark detection
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schemes that either use (1) user interaction, (2) computing certain features on image

intensities [27] or (3) relying on anatomical fiducials [22] to optimize global registration, in

our approach critical landmarks are determined based on prior knowledge. Landmark

configurations learnt from a prior training set of known deformations allow for accurate

capture of both global and local deformation; (2) The LeFiR method provides an effective

way to precisely register pre- and post-LITT MRI, particularly in the focal ablation zone.

This therefore enables an accurate evaluation of imaging changes prior to and after LITT in

terms of size of laser ablation zone, thermal damage to tissue, etc. This newly presented

approach will help inform the thermal dose to be delivered to the target and help modulate

delivery of the laser treatment to prevent damage to critical structures during MRI-guided

LITT.

3. Problem Statement

This section gives a brief description regarding the mathematical formulations for

identifying important landmarks and predicting optimal configurations of landmarks based

on learning process. Notation and symbols commonly used in this paper are shown in Table

1.

3.1. Important Landmark Identification

We denote  = (C, f) as an image, where  is a scene, C is a grid of spatial locations c ∈ C,

and f is an intensity function associated with every spatial location c ∈ C. Landmark based

image registration involves determining a spatial transformation τ : CT ↦ CM that aligns a

moving image (image to be deformed) CM = (CM, f) with a target image (reference image)

T = (CT, f) by matching corresponding landmarks identified in both images. Given N pairs

of points  for the target and moving images as inputs, where i ∈ {1, …, N}, we

define a landmark-based image registration problem as finding a displacement u that

minimizes the following cost function  [28, 29]:

(1)

subject to the constrains that . The operator ζ denotes a

symmetric linear differential operator and is used to interpolate the displacement field u

between the corresponding landmarks.

The goal is to identify a pair of landmark sets  for the target and moving images,

respectively, which achieves the best registration performance measured by ,

where η is an objective function defined as a quality metric to measure the accuracy of

registration in terms of both local and global performance. These two optimal landmark

configuration  would be used to predicate the critical localizations of landmarks

for a new pair of images.
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3.2. Optimal Landmark Configuration Predication

Assume two pairs of optimal point sets  and  are obtained from the

identification process (see Section 3.1), which have the corresponding deformation centers

CA and CB, respectively. The deformation center denotes the centroid of the deformation site

induced by the LITT treatment. A point matching algorithm ς is utilized to minimize the

difference between two clouds of points , which computes a transformation

matrix :

(2)

where R is a rotation matrix, and t is a translation vector. The point set  is also aligned to

 via the transformation matrix .

Let  denote the two unknown point sets for a pair of images  with a

deformation center CC. If we assume the new point set  is similar to the landmark sets

 with respect to topological structure,  thus can be estimated by:

(3)

Therefore, the new optimal landmark configuration can be estimated by transforming the

learned landmark set via a point matching method to the current deformation location. Here

we make two assumptions: i) in a new pair of images the deformation is approximately the

same size and has only been spatially relocated in the image, and that by a simple affine

transformation one can identify the optimal configuration on this new pair of images; and ii)

the deformation is of similar size and shape on the original pair of images. These are

reasonable assumptions in many cases where one seeks to register tumor images at multiple

time points following application of therapy and to evaluate imaging related changes.

4. Methodology

In the previous section, we formulate the problems for identifying and estimating landmarks

in the context of a point-based image registration scheme. This section gives detailed

solutions for these two problems to implement a new supervised learning based fiducial

driven registration method.

4.1. Learning Optimal Landmark Configurations

4.1.1. Generating synthetic deformations—We denote  = (C, f) as an original image.

A circle-shaped deformation field  is applied to a small region R of C to simulate the effect

of ablation treatment on a local region, which can be expressed as:

(4)
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where ϕ is a transformation function that can be computed by considering three factors ℱ: (i)

two forces (fi, fo), pushing the points towards the target center or outwards to the target

boundary, to simulate tissue changes after treatment; (ii) three locations (la, lm, lb)

representing three zones (apex, mid-brain, and base) within the organ of interest which were

employed to simulate different locations of the disease; and (iii) three deformation

magnitudes (ms, mm, ml) reflecting small, medium, and large deformation, in turn aimed to

simulate different size and extent of treatment-related changes. Figure 1 (top-left panel)

shows an example of a synthetic deformation using (fi, la, ms). A set of H deformed

images i, i ∈ {1, 2, …, H}, is generated by moving the pre-defined deformation field  to

various locations on the original image. By deforming the original data, we could easily

validate the registration results by knowing the ground-truth deformation. Moreover, it

allows us to potentially identify the trend of landmark localizations associated with different

deformation profiles.

4.1.2. Identifying critical landmarks—The optimal landmark distributions ℒ are

learned through four experiments: (1) Experiment 1: ℒ in (fi, fo); (2) Experiment 2: ℒ in 

(la, lm, lb); (3) Experiment 3: ℒ in (ms, mm, mi); (4) Experiment 4: ℒ in various levels of

image noise (n1, n5, n9).

For each experiment, we first compute a landmark point base , pj ∈ G where G is

a Ng × Ng uniform grid of spatial locations on C, and a corresponding point base 

on i. Two images { , i} are registered via a TPS [30, 31] transform , k

∈ {1, 2, …, K}, where  and  are randomly

chosen point sets containing N points for  and i, respectively, and k denotes the index of

simulation. Let υj, j ∈ {1, 2, …, M}, store the frequency of each point pair {pj, qj} that

participates in the registration. The TPS is a non-rigid transformation model that is widely

used to interpolate the displacement field u between the corresponding landmarks. Hence, in

Equation 1, the interpolation operator ζ is solved by the TPS transformation, in which the

displacement field  is computed by [31]:

(5)

where the kernel function ψ(x) is a 1 × N vector for each point x that is defined as

.  represents a 2 × 2 affine transformation matrix, and ωj

is a 2 × 1 warping coefficient matrix representing the non-affine deformation.

For each iterative simulation, sum of squared intensity difference (SSD) [32] is utilized as a

selection criterion to compute measure scores for these selected points. After K simulations,

an average measure score is calculated for each point pair {pj, qj}, j ∈ {1, 2, …, M}. Two

subsets  for , and  for i containing No (No < M) landmarks
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with the best values of , where φ is a selection function defined as the

SSD measure, will be selected to form an optimal configuration. Two examples of identified

landmark sets corresponding to the locations of apex and base, respectively, are shown in

Figure 1 (top-right panel). The two sets  serve as training point sets to estimate the

optimal landmark configuration for a new pair of images.

4.2. Predicting Optimal Landmark Fiducial for New Images

For simplicity, we denote S representing a pair of optimal landmark sets  for

original and deformed images, which is obtained in Section 4.1. Assume that two

representative pairs of training point sets SA and SB are given. Since  and  are identical,

alignment of point sets SA and SB is the problem of aligning the point set  with

the point set , where the corresponding deformation centers are CA and CB,

respectively. In order to align these two pairs of landmark sets with each other, a new point

set  is generated by transforming  to the location CB via:

(6)

where  is an affine transform. The ICP alignment method [33] is employed to align point

set  and  to obtain a transformation matrix (R; t), where R is a rotation matrix, and t
is a translation vector. There are two steps to accomplish this. The closet points can be

obtained by minimizing:

(7)

where ‖ · ‖ is the Euclidean distance, and  represents the point in  that is closest to

point . The rotation matrix R and translation vector t can be computed using the

following mathematical expression:

(8)

The obtained transformation matrix  is used to estimate optimal landmark locations of new

pair of images by given the displacement site. Based on the point set similar measure ξ, we

assume that a new point set  with deformation center CC is subject to

, where ξ is the Hausdorff distance measure, and θ is a pre-defined

threshold.  can be predicted based on , CA, and CC given by:
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(9)

The LeFiR algorithm is summarized and presented below to spatially align a moving image

M to a target image T, where the center of deformation site CM is known.

The LeFiR Algorithm

Inputs: T (target image), M (moving image),
 (training image), M (deformation center)

Output: R (registered image)
begin

0. define i, Ck, , .
1. For i = 1 to H
2. i(R) = (C; ℱ), R ⊂ C;
3. For k = 1 to K

4. randomly select  and ; ;
5. endfor;
6. endfor;

7. For i = 1 to H ; endfor;

8. 

9. 

10. 

11. 

12. if ;
end

5. Experimental Results and Discussion

5.1. Dataset Description

5.1.1. Simulated brain database—A simulated brain database (SBD) [34], which is

publicly available, was utilized for learning optimal landmark configurations. The SBD is a

set of realistic simulated brain MR image volumes that allows quantitative brain image

analysis to be conducted in a controlled and systematic way. The T1-weighted MR brain

images with noise levels of 0%, 1%, 5%, 9% were used in the experiments. For the noisy

data, the standard deviation of the Gaussian noise that was added to the real and imaginary

channels was given by the noise percent multiplied by the reference tissue intensity. The

brightest tissue was used as a reference for the percent noise calculation.

5.1.2. GBM and epilepsy data—A newly Food and Drug Administration cleared

surgical laser ablation system (Visualase, Inc., Houston, TX) was employed for treating two

GBM patients and two epilepsy patients. Destruction of targeted tissue was guided by real-

time MR temperature imaging to precisely control thermal ablation. The patients were

monitored post-LITT via MRI guidance after initial 3-Tesla MRI, and were re  after 24

hours following LITT. All the patients were identified as successfully treated (a reduction of

99% for GBM and seizure free for epilepsy).
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5.2. Experimental Design

A cohort of H = 286 pairs of synthetic MRI brain images were generated by varying the

deformation factors ℱ defined in Section 4.1.1 across different regions of chosen brain

images from SBD. The original image data were pre-processed via a simple thresholding

method. The background of the brain image was removed by assigning the pixels belonging

to background to zero values. Half of the image pairs (H/2 = 143) were used in the task of

learning the optimal landmark configurations and the remaining pairs were used for testing

the predicted landmark configurations. To reduce uncertainty associated with random

landmark selection, we ran a total of 2000 (K = 2000) simulations for each experiment. This

provides us the statistical power for the distribution of landmarks considered. A 5 × 5

(pixels) grid spacing was used to compute the landmark point base P. We tested a number of

sizes of grid spacing and experimentally found that a 5 × 5 uniform grid was sufficient for

capturing the focal deformation induced by LITT, while also avoiding over-fitting the image

data. The threshold θ was determined by computing the Hausdorff distance (ξ) between

training sets of landmark points. All the training sets were classified into 8 groups based on

the deformation locations. The average Hausdorff distances were calculated between two

point sets within a group (ξ1) and between two groups (ξ2), respectively. θ was assigned a

value between maximum value of ξ1 and minimum value of ξ2. The TPS transform is

estimated using Bookstein's method with default parameter settings reported in [30].

Three popular quality metrics, including mutual information (MI), normalized cross-

correlation (NCC), and sum of squared difference [32], were utilized to quantitatively

evaluate the registration performance. Two versions of SSD were computed based on

different regions of interest. The SSDi was computed between the original and registered

images on entire brain region, and SSDd was computed between the deformed regions

within the brain on these two images. The SSDd allows to measure the local registration

performance inside the deformation region of brain MRI.

5.3. Description of Comparison Methods

There are four methods were used for comparison. A uniform grid (UniG) placement

method was applied to brain images where the landmarks are equally displaced within the

brain region. A speeded up robust features (SURF)-based landmark detection method [35]

employed the SURF features, which are robust local descriptors, to identify informative

landmarks. These landmarks were used as control points to drive a TPS registration. A

scale-invariant feature transform (SIFT) [36] is a popular descriptor to extract local features

in images. A SIFT-based method was employed to automatically identify critical landmarks

to perform an image registration. A classic free-form deformation (FFD) approach [19] was

also developed to minimize a SSD similarity metric by using B-spline control points to

approximate the shape of the intended deformation. The registration results were analyzed in

both visual and quantitative evaluations. In addition to evaluating LeFiR in real clinical

practice, a traditional Mi-based registration method [37] was implemented for comparison.

A linear interpolator was adopted as the scheme for performing intensity based interpolation,

and MI was utilized as a similarity measure to drive transformation optimization.
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5.4. Evaluation of LeFiR Using SBD

5.4.1. Qualitative results using SBD—The important landmark distributions were

studied under various deformation settings and noise levels. Figures 2(a)-(d) show the

landmark configurations generated by the LeFiR method using different deformation

profiles. For a fair comparison, 200 points were selected for all the methods. Compared to

the UniG, FFD, SURF, and SIFT methods, the identified landmarks exhibited high density

inside and near the deformed region. This trend was consistently seen across different

deformation scenarios. This unique pattern suggested that landmark points within or close to

the local constrained de- formed regions can better drive landmark-based registration in

comparison to points far away from the deformed region.

The optimal configuration of landmarks was utilized within a TPS registration scheme to

register original and deformed brain MRIs. Figure 3 illustrates the difference maps between

the original and registered images overlaid on the original brain image. The colorbar on the

right side of each figure shows the range of intensity difference values between the original

and registered images. Large difference values were encoded in red and small values were

encoded in blue. Figures 3(b)-(f) are generated via the five configurations of landmarks

shown in Figures 2(a) and (e)-(h), respectively. These five sets of landmarks were obtained

using the same deformed MM brain image. By examining the figures, we found that the

FFD performed poorly because of insufficient control points selected within the region of

deformation to fit the B-spline function. The SIFT-based method also showed poor

performance within the deformed region. The SURF-based method was seen to work well

within the deformed region but introduced large errors on the brain boundary due to the

selection of ambiguous points in this area, then resulting in an incorrect TPS transformation.

The UniG method provided a comparable result but showed larger errors (difference range

between 0 ∼ 0.23) in the deformed region compared to the LeFiR method (difference range

between 0 ∼ 0.12).

5.4.2. Quantitative results using SBD—Optimal landmark configurations were learned

from different forms of deformation by considering force directions (fi, fo), deformation

locations (la, lm, lb), magnitudes of displacement (ms, mm, mi), and different noise levels

(1%, 5%, 9%). By varying the deformation factor ℱ and noise level, four types of

deformation profiles listed in Table 2 were used to quantitatively evaluate the LeFiR

method. Registration performance was measured in terms of 4 distinct quality metrics

(SSDi, SSDd, MI, NCC). The average measure scores and associated standard deviations

were computed for four methods and compared to the average scores between original and

deformed brain images. The higher MI and NCC scores indicate better registration

performance, while the lower SSDi and SSDd scores show better results.

Figure 4 shows the quantitative results for the LeFiR method compared to the other three

methods under the deformation profiles defined in Table 2. By inspecting the figures, we

found that the LeFiR method significantly improved the SSD measure on both global

nonrigid registration and local deformation with average 82% and 90% improvement over

the original deformation across four deformation profiles, respectively. The UniG method

also demonstrated good registration performance with improvement of 73% and 82% on
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average SSDi and SSDd, respectively. However, the SURF-based method was able to

recover the local deformation, while introduced large distortion beyond the deformation site,

which can be visually inspected on Figure 3(e). The SIFT-based method outperformed

SURF in global registration while had poor performance in local deformation. The FFD

method had the worst performance measured by SSDd in all the experiments. The MI and

NCC metrics indicate that the LeFiR method yielded better results compared to the other

methods although the difference was less distinguishable than the SSD metric shown in

Figure 4. Again, the SURF-based method yielded the worst MI and NCC scores due to the

registration distortion caused by TPS interpolation.

Figures 4(m)-(p) demonstrate the registration results using these five methods in the context

of noisy brain images. It is worth noting that the LeFiR method consistently works well in

both global and local registration on noisy images. The stable performance is due to the fact

that LeFiR only takes into account spatial information during the registration performance,

therefore, the effect of noise reflected on the variance of image intensities cannot affect the

registration results of LeFiR. We also notice that the SURF-based method yielded worse

results compared to its performance in the experiments P1-P3, especially in the measure of

SSDd. The registration methods, such as SURF-based method, which utilize image-

dependent features to detect landmark locations, could lead to poor performance in the

presence of heavy noise.

5.5. Performance and Computation Analysis of LeFiR Using SBD

To verify the effect of different numbers of landmarks on the registration performance and

computational complexity using LeFiR, Figure 5 shows the comparison results using the

LeFiR, UniG, SURF, SIFT, and FFD methods by increasing the number of selected

landmarks each time to be used in the registration process. The trend of curves in Figures

5(a), (b) illustrates improved registration performance (decreased SSD measure values) for

the LeFiR, UniG, SURF, SIFT, and FFD methods as the number of selected landmarks was

increased.

Further, the computational complexity of these five methods was measured using the Matlab

code on an Intel Core2 2.67GHz machines with a 4GB RAM. The corresponding running

times are shown in Figure 5(c). All methods exhibit longer computational time when more

landmarks were used in registration. However, the figure shows that running times for UniG

increase more sharply compared to LeFiR, because a more complicated interpolation is

needed for UniG in the TPS registration. The figures suggested that the UniG, SURF, SIFT,

and FFD methods required higher dense grid sampling and longer computational time to

yield the same level of registration performance as the LeFiR. The quantitative results

confirm that the LeFiR method is capable of accurately recovering the local deformation as

well as providing a superior global registration. This makes LeFiR uniquely desirable to

register pre- and post-treatment brain images where the deformation site is known and the

deformation region is localized.
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5.6. Co-registering Pre- and Post-LITT Brain MRI in GBM

The LeFiR method was validated on two patient studies (named “GBM-1” and “GBM-2”)

who were diagnosed with GBM and who have undergone LITT and had a pre- and post-

LITT multi-parametric MRI exam done. In this study we looked at only registering the T1-

weighted MRI for the multi-parametric MRI exam pre- and post-LITT for the two GBM

patients. Tumor was localized to one side (as shown in Figure 6(a)) and the bottom (as

shown in Figure 6(e)) of the brain. For a pair of pre- and post-LITT brain images { pre,

post}, a simple thresholding method was employed to produce a binary mask  for each of

{ , , pre, post}. The pre- and post-LITT brain MRI were then aligned to the synthetic

brain image pair { , }, respectively, by matching the binary masks of two images. Hence,

the identified training landmark fiducials can be applied to a unseen dataset via an affine

transform. The location of the tumor site and tumor size ware then used to predict the

optimal landmark configuration. Finally, the predicted landmark sets were utilized to

register the pre- and post-LITT MRIs.

Figures 6(i)-(n) show the difference maps between the registered and pre-LITT MRIs which

were encoded via a color bar and overlaid on the original pre-LITT MRI. The large

differences of image intensity were represented in red and small differences were

represented in blue. Table 3 shows the measure scores for these two patient studies using

four different quality matric. The LeFiR method yielded superior registration results with

{SSDi, SSDd} of {8.94, 5.33} for “GBM-1”, and {12.75, 7.89} for “GBM-2”, respectively,

compared to {16.78, 9.46} and {17.55, 12.32} obtained from the UniG method, and {25.27,

16.38} and {32.46, 23.26} from the MI-based method. The performance scores were

consistent with the visual examination of the difference maps displayed in Figures 6(i)-(n).

The experimental results illustrated that the real localized deformation induced by LITT was

better recovered by the LeFiR method than simply uniformly picking landmarks or using

image intensities.

5.7. Co-registering Pre- and Post-LITT MRI in Epilepsy

Unlike the GBM examples shown in Figures 6, the post-LITT brain MRI acquired from the

epilepsy patients clearly exhibited an ablation (deformation) zone contour within the

corresponding location of epileptogenic foci shown in the post-LITT MRIs (Figures 7(b),

(f)). Similar to the GBM images, an affine transformation was applied to the pre- and post-

LITT epilepsy MRIs in order to register the original and deformed synthetic brain images

via a mask matching method. The landmark configurations obtained from the learning

process on SBD were applied to the epilepsy images by transforming the landmark set to the

location of epileptogenic foci.

The Figure 7 shows the results of registering two pairs of pre- and post-LITT MR images by

using the LeFiR (Figures 7(i), (l)), UniG (Figures 7(j), (m)), and Mi-based (Figures 7(k),

(n)) for two patients with epilepsy. Here these two patient studies are given the names of

“Epilepsy-1” and “Epilepsy-2”. The LeFiR (Figures 7(c), (g)), UniG (Figures 7(d), (h)), and

MI-based method yielded SSDi values of 9.75, 12.08, and 20.57, and SSDd values of 6.38,

8.55, and 9.16 for “Epilepsy-1”, and SSDi values of 8.21, 10.17, and 23.69, and SSDd values

of 4.96, 5.54, and 7.89 for “Epilepsy-2”, respectively. The MI and NCC measure scores are

Wan et al. Page 13

Neurocomputing. Author manuscript; available in PMC 2015 November 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



also displayed in Table 3. Again, the LeFiR method achieves the best registration

performance in terms of SSDi, SSDd, MI, and NCC. These quantitative values were

consistent with the visual examination of the difference images between the registered and

pre-LITT images shown in Figures 7(i), (l) compared to the UniG (Figures 7(j), (m)), and

the MI-based method (Figures 7(k), (n)).

6. Concluding Remarks and Future Work

In this paper, we introduced a novel landmark based image registration scheme using the

prior knowledge of the learned landmark configurations to automatically determine

informative landmarks for driving a non-rigid image registration. We also investigated a key

problem concerning the nature of landmark choices in relation to different aspects of the

deformation, such as force direction, magnitude of displacement, deformation location, and

native imaging artifacts of noise. An optimal landmark set was identified through iterative

simulations and used as a training configuration to predict critical landmark locations for

images with different deformation sites. The new landmarks are determined by simply

transforming the training landmark set to the current deformation location while preserving

the topological structure of the configuration of landmarks. The qualitative results confirmed

that those configurations where the landmarks were either within or in close proximity of the

deformed region in the image were more important to ensure an optimal registration result,

compared to the points far away from the site of deformation. The quantitative results

demonstrated that the LeFiR method achieved superior performance in global-to-local

nonrigid brain MR image registration with average 82% improvement on the global

registration and 90% improvement on the local deformation, respectively.

The primary application of this work will be in the registration of pre- and post-radiation

treatment brain MR images acquired from patients suffering from aggressive brain diseases,

such as GBM, epilepsy. For such patients, the site of deformation (i.e., location of GBM,

epileptogenic foci) is known. MRI-guided LITT provides a minimally invasive therapy for

precise removal of focal abnormality. It has become a promising option of treatment for

neurological disorders (e.g., brain tumors, epilepsy). Registration of pre- and post-LITT MM

is essential to capture and evaluate the subtle changes on the MM following LITT. The

LeFiR algorithm was tested under these two clinically realistic deformations induced by the

LITT treatment. The experimental results showed LeFiR was able to enhance registration

performance, but also able to precisely capture the localized nature of deformation.

The work presented here was only evaluated on two limited sets of clinical data in the

neurological diseases of GBM and epilepsy under LITT treatment. For a specific disease,

due to lack of ground truth of tissue deformation caused by LITT, the characteristics of post-

LITT changes (reflected on MRI) within the ablation zone, such as intensity variation,

textural changes, were not considered and studied in the LeFiR algorithm. In addition,

establishment of corresponding landmarks between pre- and post-LITT MRIs was only

determined by aligning to the landmark fiducials obtained from the training synthetic

original and deformed brain images. Although this simple landmark matching method has

showed good registration performance in registering pre- and post-LITT images for GBM

and epilepsy, the larger magnitude of deformation possibly induced by laser ablation might
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lead to incorrect correspondence between landmarks, which could affect the accuracy of

TPS interpolation between the corresponding landmarks.

One immediate future study that we are envisioning is to more realistically model the

treatment deformations induced based on what is typically observable following radiation or

laser therapy for treatment of brain tumors. This will allow for a precise model of the

imaging changes prior to and after kinds of treatment (e.g. radiation, focal therapy,

chemotherapy). With a large enough cohort we could also control for disease status (stage,

grade) and molecular status (e.g. IDH1, MGMT). Moreover, localized intensity-related

features can be integrated into the registration process to improve the accuracy of landmark

correspondence. We believe that the nature of local deformation can be more precisely

learned and modeled via an intelligent landmark location detection method based on both

spatial and intensity features.
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Figure 1.
The flowchart of the LeFiR algorithm. The top panel shows the identification of important

landmarks using the deformed synthetic images. Two examples of identified landmark sets

are shown by using deformation fields (fi, la, mm) and (fo, lb, mm), respectively. The

bottom panel illustrates the prediction of optimal configuration of landmarks for new

images. The estimated landmark set can be applied to real clinical deformation to recover

the focal deformation.
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Figure 2.
The landmarks are selected by: The LeFiR method under the deformation profiles (a) (fi,

lm, mm), (b) (fo, la, mm), (c) (fi, lb, mm), and (d) (fi, la, mi); (e) UniG; (f) FFD; (g)

SURF; (h) SIFT. The yellow points represent landmarks, and the red circle indicates the

deformed region. The landmark configurations generated by the LeFiR method exhibited a

unique pattern where the points located within and near the deformed region were selected.

Identifying the landmarks in the presence of the deformation could help more accurately

drive the registration compared to the UniG, FFD, SURF, and SIFT methods.
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Figure 3.
(a) The difference map between the original and deformed images. The difference map

between the original and registered images for: (b) LeFiR; (c) UniG; (d) FFD; (e) SURF; (f)

SIFT. The difference map is overlaid on the original brain image. The colorbar shows the

difference range. The LeFiR method gained the best registration result with the smallest

difference range compared to the other three methods.
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Figure 4.
The comparison results under four designed experiments (P1-P4) using four methods

measured by: (a),(e),(i),(m) SSDi; (b),(f),(j),(n) SSDd; (c),(g),(k),(o) MI; (d),(h),(l),(p) NCC.

In each figure, the first bar is the measure score computed between the original and

deformed images. The LeFiR method outperformed the other four methods using these four

metrics, especially in SSDd that measures the accuracy of recovering the local deformation.

LeFiR yielded average 90% improvement on the original deformation, and 84% for the

FFD, 63% for the SURF, 59% for the SIFT, and 10% for the UniG.
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Figure 5.
Registration results for LeFiR, UniG, SURF, SIFT, and FFD using different numbers of

landmarks measured by: (a) SSDi; (b) SSDd; (c) shows the corresponding computational

times for these five methods. The comparison results suggested that the UniG, SURF, SIFT,

and FFD methods required higher dense sampling of the grid and longer computational

times to obtain the same level of registration performance as LeFiR.
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Figure 6.
The first and second rows show two different registration experiments performed on

“GBM-1” and “GBM-2”, respectively. Figures 6 (a),(b) and (e),(f) show pre- and post-LITT

brain MR images. The blue square shows the difference between the pre- and post image

encoded by color values. Figures 6 (c),(d) and (g),(h) demonstrate the landmarks (yellow

points) generated by the LeFiR and UniG methods, respectively. The red circle indicates the

deformation site. Figure 6 (i),(j),(k) and (l),(m),(n) show the difference maps between the

registered and pre-LITT images using LeFiR, UniG, and Mi-based method, respectively.
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Note that LeFiR yielded a better registration quality compared to UniG and MI-based

method.
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Figure 7.
The first and second rows show two different registration experiments performed on

“Epilepsy-1” and “Epilepsy-2”, respectively. Figures 7 (a),(b) and (e),(f) show pre- and

post-LITT brain MR images. The blue square shows the difference between the pre- and

post image encoded by color values. Figures 7 (c), (d) and (g), (h) demonstrate the

landmarks (yellow points) generated by the LeFiR and UniG methods, respectively. The red

circle indicates the ablation zone. Figures 7 (i),(j),(k) and (l),(m),(n) show the difference

images between the registered and pre-LITT images using LeFiR, UniG, and Mi-based
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method, respectively. Note that LeFiR yielded a better registration quality compared to

UniG and Mi-based method.
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Table 1

Description of commonly employed notation and symbols in this paper.

Symbol Description Symbol Description

2D image scene TPS cost function

C 2D grid of pixels, c ∈ C τ Spatial transformation

c Spatial location of a pixel in C, where c = (x, y) Randomly chosen point sets for { , i} at iteration k

f Intensity value associated with a pixel c Learned optimal landmark sets for { , i}

R A small circle-shaped region R ∈ C θ Matching operator in ICP

Deformation field Affine transformation

ϕ Deformation generation function φ Landmark selection criterion

ψ Kernel function for u u Displacement field

i ith Synthetic deformed image (R; t) ICP transformation rotation matrix R and translation vector t

ℱ Factors to generate ξ Hausdorff distance

ℒ Landmark distribution {SA, SB, SC} Optimal landmark configurations

{P, Q} Point bases for { , i} {CA, CB, CC} Deformation center

ζ Interpolation operator η Objective function
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Table 2

Four types of deformation profiles defined to evaluate LeFiR.

Profile Force direction Location Magnitude Noise level

P1 fi, fo lm mm 0%

P2 fi la, lm, lb mm 0%

P3 fi lm ms, mm, ml 0%

P4 fi lm mm 1%, 5%, 9%
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Table 3

Measure scores using the LeFiR and UniG methods for evaluating registration between pre- and post-LITT

brain MRI on GBM and Epilepsy patient data.

Methods
SSDi SSDd MI NCC

GBM-1

LeFiR 8.94 5.33 5.34 0.89

UniG 16.78 9.46 5.01 0.88

MI-based 25.27 16.38 3.67 0.82

GBM-2

LeFiR 12.75 7.89 4.89 0.85

UniG 17.55 12.32 4.43 0.83

MI-based 32.46 23.26 4.03 0.79

Epilepsy-1

LeFiR 9.75 6.38 5.23 0.87

UniG 12.08 8.55 4.80 0.85

MI-based 20.57 9.16 4.32 0.81

Epilepsy-2

LeFiR 8.21 4.96 5.78 0.90

UniG 10.17 5.54 5.48 0.89

MI-based 23.69 7.89 4.56 0.83
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