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Abstract: One key factor that limits resolution of single-molecule 
superresolution microscopy relates to the localization accuracy of the 
activated emitters, which is usually deteriorated by two factors. One 
originates from the background noise due to out-of-focus signals, sample 
auto-fluorescence, and camera acquisition noise; and the other is due to the 
low photon count of emitters at a single frame. With fast acquisition rate, 
the activated emitters can last multiple frames before they transiently switch 
off or permanently bleach. Effectively incorporating the temporal 
information of these emitters is critical to improve the spatial resolution. 
However, majority of the existing reconstruction algorithms locate the 
emitters frame by frame, discarding or underusing the temporal information. 
Here we present a new image reconstruction algorithm based on tracklets, 
short trajectories of the same objects. We improve the localization accuracy 
by associating the same emitters from multiple frames to form tracklets and 
by aggregating signals to enhance the signal to noise ratio. We also 
introduce a weighted mean-shift algorithm (WMS) to automatically detect 
the number of modes (emitters) in overlapping regions of tracklets so that 
not only well-separated single emitters but also individual emitters within 
multi-emitter groups can be identified and tracked. In combination with a 
maximum likelihood estimator method (MLE), we are able to resolve low to 
medium density of overlapping emitters with improved localization 
accuracy. We evaluate the performance of our method with both synthetic 
and experimental data, and show that the tracklet-based reconstruction is 
superior in localization accuracy, particularly for weak signals embedded in 
a strong background. Using this method, for the first time, we resolve the 
transverse tubule structure of the mammalian skeletal muscle. 
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1. Introduction 

The spatial resolution of conventional fluorescence microscopy is limited by the Abbe 
diffraction limit to / 2NAλ , where λ  is the wavelength of the emission light and NA is the 
numerical aperture of the objective [1–5]. In the past few years, a number of breakthroughs 
have been made in far-field microscopy to improve the spatial resolution by over an order of 
magnitude both in the lateral and axial direction [6–14]. Among them is the widely used 
single-molecule localization microscopy, which relies on the precise localization of the 
activated single emitters. Stochastic optical reconstruction microscopy (STORM) [10], direct 
STORM [11, 12], photo-activated localization microscopy (PALM) [13], and fluorescence 
photoactivation localization microscopy (fPALM) [14] all belong to this category, and hold 
superior capability achieving a typical lateral resolution of ~20 nm [15–17]. 

In single molecule localization microscopy, a random subset of fluorophores (emitters) are 
activated, imaged, and localized to nanometer resolution. This procedure is repeated to allow 
different subsets of emitters to be switched on and localized. A final superresolution image is 
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reconstructed from a large number of emitter localizations so that adjacent localization points 
can be closer than one-half of the desired spatial resolution (Nyquist criterion) [18]. Due to 
the iterative nature of the procedure, single molecule localization microscopy has poor 
temporal resolution. For example, to achieve a superresolution image with resolution of 20 to 
50-nm, the image acquisition can take tens of thousands of frames, requiring lengthy 
acquisition time. This greatly limits the application of superresolution techniques from the fast 
dynamics process. 

To improve the temporal resolution of single molecule localization microscopy, two 
different strategies have been proposed. One is by controlling the photophysical properties of 
the fluorescence probes. In a seminal work by Zhuang et al [19], a temporal resolution as high 
as 0.5 second was achieved in live cell imaging by using engineered bright emitters with a 
strong activation laser and a sensitive low light detector. Another approach involves 
increasing the density of activated emitters in each frame so the total number of frames could 
be significantly reduced to locate the same number of emitters. However, a strong excitation 
laser can induce phototoxicity to cells; and a high density of activated molecules causes the 
signals to overlap, which invalidates the widely used single molecule localization methods. 
One way to reduce the probability of spatially overlapping emitters is to use faster acquisition 
rates to increase the temporal separability of neighboring fluorophores. However, with faster 
acquisition rates, an activated emitter usually lasts multiple frames with reduced number of 
photons at each frame. This results in a low signal noise ratio and reduced localization 
accuracy. To improve the resolution, it is important to associate the signals of the same 
emitters from multiple frames without losing their temporal separability. 

In this paper we apply a spatio-temporal object association algorithm along with a multi-
emitter mode detection scheme to identify and link the same emitters in time, forming 
tracklets (short trajectories of the same objects) of the emitters. A superresolution image is 
reconstructed on the basis of these tracklets instead of identifying individual disjoint objects at 
each frame. By aggregating the signals from the same tracklet, we are able to significantly 
increase the signal noise ratio and improve the localization accuracy by integrating temporal 
information. We also use a generalized weighted mean shift algorithm (WMS) to detect the 
number of modes in an overlapping region of tracklets together with the Maximum-
Likelihood Estimation (MLE) to determine the centers of the emitters. We test our method 
using both synthetic data and experimental STORM images of microtubules in HeLa cells. 
We show that our method improves localization accuracy particularly for low signals in strong 
background and is able to identify low to medium density of emitters with improved accuracy. 
We also apply the tracklet-based reconstruction method to resolve the T-tubule structure in 
skeletal muscle. To our knowledge, this is the first time that the fine T-tubule structure in 
skeletal muscle has been resolved with an optical microscopy technique. 

2. The imaging model and simulation 

The point spread function (PSF) of a microscope can be well approximated by a Gaussian 
function [20, 21]: 
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0 0
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− + −
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whereσ is the standard deviation of the Gaussian. This continuous distribution of the PSF is 
integrated over a square pixel to account for the finite pixel size of CCD based detectors. On 
an individual pixel k located at a position ( , )k kx y , the expected number of photons 

from N independent emitters located at ( , )i ix y is given by [22]: 
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where iI is the total emitted photon counts from a single emitter. Due to photon shot noise, the 

actual number of photons detected by the pixel k is selected from a Poisson distribution 

( )( , )k kPois x yμ with a mean given by ( , )k kx yμ . Camera readout noise and a general 

background noise are combined and modeled as a Gaussian noise ( , )GG η σ , whereη is the 

mean and Gσ is the standard deviation. Thus, the realization of the photon count at pixel k at 

position ( , )x y  is [23] 

 ( , ) ( ) ( , ).k k Gx y Pois Gμ η σΦ = +  (3) 

In the simulation, the pixel size is set to 75 nm and the standard deviationσ of the PSF is 
1.7 pixels (127.5 nm), matching the one in our microscope system. To emulate the 
photophysical properties of the uniformly distributed emitters on a 256x256 pixel grid of 
camera pixels (19.2 mμ x19.2 mμ ), we define ρ  (number of emitters/ 2mμ ) andα the density 

and inactivation probability (from bright to dark) of the emitters respectively. In this case the 
activation probability of the emitters is given by /( )N M Nβ α= < > − < > , where N< >  is 

the average number of emitters in a single frame and M is the predefined total number of 
emitters. By tuning ρ  and α we are able to simulate either low-density well-separated 

emitters or high-density emitters with significant overlap between neighboring images of 

emitters. The average distance between activated emitters is given by 1 / ρ . 

3. Overview of the analysis procedure 

Figure 1 shows the overview of our analysis procedure. We divide our image sequence to 
groups of N frames (N equals 1000 in our analysis), which can be analyzed in parallel. For 
each frame, potential 2D emitter blobs corresponding to single emitters or overlapping multi-
emitters are detected using a Laplacian of Gaussian (LoG) filter [Fig. 1(b)]. These detected 
emitter blobs are tracked in time using area overlap criteria and the linked 2D blobs are 
assigned with unique labels [Fig. 1(c)]. Modes of the 2D emitter blobs are decomposed using 
WMS, and the estimated centers of the individual emitters are tracked in time using spatial 
proximity and nearest neighbor match strategy to form tracklets [Fig. 1(d)]. We assign 
different scores to the tracklets according to the spatial separability [Fig. 1(e)]. Image 
information within the support regions of the tracklets are temporally integrated to construct 
image chips, small images obtained by summing the local regions of interest around the 
centroids of a tracklet, with increased signal noise ratio and photon counts. Individual emitter 
centers are re-estimated from these integrated image chips using MLE [Fig. 1(f)]. In the 
following sections, we provide details for each step. 
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Fig. 1. Illustration of the tracklet-based superresolution microscope image reconstruction 
algorithm. (a). Flowchart of the analysis procedure. (b). 2D blob detection with LoG filter. 
Masks of the candidate emitters, both disjoint single emitters and the overlapping multi-
emitters, are identified through the LoG filter. (c). 3D spatiotemporal labeling through coarse 
tracking. (d). WMS decomposition of the emitter candidates. (e). Tracklet generation through 
the fine tracking processing. Tracklets are scored according to the percentage of the overlap 
regions with neighboring tracklets. (f). Re-estimation of the positions through MLE. The final 
positions of the emitters are refined by MLE fitting of the integrated image through combining 
of the frames belonging to the same tracklets. 

3.1 Image segmentation 

The acquired intensity images are first converted to photon count images by a factor 
determined by the electron multiplier (EM) gain and the calibration factor provided by the 
camera manufacturer. Then, 2D Laplacian of Gaussian (LoG) filter 
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with standard deviation σ is applied to the images to detect bright regions of interests (ROI) 
that are candidates corresponding to well separated single emitters as well as groups of 
overlapping multi-emitters. The filter kernel is chosen to match the imaging system PSF. 
Signals that have strong spatial correlation are enhanced and the random background noise is 
suppressed. To expedite the calculation, we use a separable version of the LoG filter [24]. The 
binary mask images are obtained using kσ hard threshold technique [25]. Unlike previous 
studies, we do not define a fixed size region of interest (ROI) around a local maximum. 
Instead, we threshold the filtered images to obtain binary masks. These masks are used to 
define the ROIs. Application of the LoG filter significantly reduces noise and enhances the 
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real signal, making the mask generation more reliable and less sensitive to background noise. 
This is particularly important for associating objects from multiple frames, in which case there 
may be disappearance of old emitters or appearance of new emitters across different frames, 
resulting in change of the mask size. 

Mode detection and emitter center estimation using weighted mean shift procedure (WMS) 

Blobs detected during image segmentation can correspond to single emitters or multiple 
emitters overlapping in space. This step aims to estimate the number of emitters and their 
centers within the detected masks from the previous step. Mean shift procedure is a non-
parametric density estimation method that does not need a-priori knowledge of the number of 
clusters in the data set and is not constrained by the shape of the clusters. This method was 
first proposed by Fukunaga and Hostetler [26], and then developed and generalized by Cheng 

[27]. Let :H X R→  be a kernel with 
2

( ) ( )jH x h x x= − . The weighted kernel density 

estimate is then given by: 
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where j  represents the index of a pixel, n is the total number of pixels, and ( )jw x  is a 

weight function. In our case it is the photon count of each pixel. The gradient of the density 
estimate is given by: 
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where ( ) ( )k x ch x′= , c  is a constant. Taking the gradient ˆ ( )Hf x∇ to be zero, we get the mode 

estimator as 
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In our analysis, we use a generalized Gaussian kernel ( )pG x that is defined as 
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where p is defined as a stabilization parameter [28], and β is the bandwidth that is fixed to the 

standard deviation of the physical PSF (1.7 pixels, 127.5 nm). In WMS, a random point from 
the masked region is chosen as the starting point; then it is updated through Eq. (7) until it 
converges. The converged x  corresponds to the coordinate of a detected mode. The procedure 
of choosing a different initial starting point and updating x  until it converges is repeated until 
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all the points in the masked region have been traversed. This will result in multiple 
coordinates ( x ), which may coincide. The total number of different x  (coordinates) is the 
number of modes. To speed up the process, for each iteration a data point is labeled if it is 
traversed; and the initial starting point for the next iteration is chosen only from the non-
labeled data points. 

Selecting the right bandwidth is critical for the performance of our WMS procedure. Here 
we applied the method described by Wu et al. [28] who introduced the concept of stabilization 
factor p . The reason for selecting this method is because we used the generalized Gaussian 

kernel ( )pG x , which has a well-defined β , the standard deviation of the PSF. Instead of 

changing β , we use the stabilization parameter p  to adjust the bandwidth. The density 

estimate with a stabilization parameter p  can be calculated by: 

 ( )
1

ˆ ( ) ( )
pn

p
H i i j j

j

f x h x x w x
=

= −  (9) 

where i  and j  are the indices of the pixels and n  is the total number of pixels. The values of 

the estimated density at each pixel are 1 2
ˆ ˆ ˆ( ), ( ), .... , ( )p p p
H H H nf x f x f x 

     . If a suitable 1p  is 

chosen, a satisfactory density estimate will be achieved and WMS gives the correct number of 
modes. When 1p  changes to 2p where 2 1 1p p= + , if the two estimated densities 

1 1 1
1 2

ˆ ˆ ˆ( ), ( ), .... , ( )p p p
H H H nf x f x f x 

      and 2 2 2
1 2

ˆ ˆ ˆ( ), ( ), .... , ( )p p p
H H H nf x f x f x 

     are similar, the 

correlation of the two estimated densities should be close to 1. Figure 2(e) illustrates the 
relationship between the p  value and the correlation coefficient, which allows justification of 

stabilization parameter p  with a set correlation coefficient [28]. In practice, a p  value that 

corresponds to correlation coefficient of 0.95 to 0.97 gives a robust result for the mean shift 
algorithm. 

3.2 Tracklet generation 

The goal of this analysis step is to infer tracklets that link individual emitters over an interval 
of frames through spot tracking. While spot tracking has intrinsic challenges, originating from 
low SNR, variable number of emitters, and segmentation issues [29–33], there are several 
features that can facilitate the tracking process: (1) emitters turns on or off but do not have 
large displacements, making proximity-based correspondence reliable; (2) emitters do not stay 
on for too long, long-term tracking is not needed, and more importantly (3) because the same 
emitter lasts for multiple frames emitter localization is robust to few possible tracking errors. 
We developed an algorithm based on our earlier work on cell tracking [34, 35] with 
modifications that take advantage of these features to speed up the computation process. 

The algorithm contains two tracking steps: a coarse tracking step to associate single or 
multi-emitter blobs in time, and a fine tracking step to associate individual emitter centers in 
time. Coarse tracking is achieved using an area overlap criteria. As the spatial shift of the 
same emitters in consecutive frames is minimum even in the presence of segmentation error, it 
is guaranteed that there will be overlap between the masks of the same emitters in successive 
frames. This process results in labeled 3D connected regions that are later used to constrain 
and speed up the finer tracking step [Fig. 1(c)]. 

The fine tracking step involves decomposition of individual blobs through the generalized 
WMS, which results in estimation of the number of modes in the group and their 
corresponding centers. A subsequent centroid-tracking step is applied to associate the 
estimated centers of the individual emitters in time [Fig. 1(d)]. We use a simplified version of 
our earlier tracker [34, 35] with a nearest neighbor match strategy based on spatial proximity 
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to associate the positions. A gating function accounting for the centroid localization error is 
used to eliminate invalid/infeasible associations. We compute the likeliness of two modes as: 

 ( | )
c br r

ij j iP b c e σ
−

−
=

 

 (10) 

where ic is the thi mode in previous frame ( 1)t − and jb is the thj mode in current frame. r


 is 

the position vector of the estimated modes; and σ is the characteristic distance for the 
associated objects (75 nm in our case). Pairwise likeliness is only computed for centers within 
the same 3D connected component to reduce the computational complexity. 

It is not unusual that the numbers of detected modes are different for two consecutive 
frames. For example, there may be M emitters at frame t and N emitters at frame t + 1. When 
N is bigger than M, suggesting newly appearing emitters. If assignments of the N emitters to 
the existing M tracklets can be done without ambiguity, we extend the existing M tracklet 
from frame t to frame t + 1 and initialize the newly appeared (N-M) emitters. If there is 
assignment ambiguity, for example tracklet i  at frame t does not have a matched emitter at 
frame t + 1, we then terminate tracklet i . Non-assigned emitters from frame t + 1 are used to 
initialize new tracklets. When N is smaller than M, indicating disappearance of emitters. If 
assignment of the N emitters at frame t + 1 to the existing M tracklets can be done, then we 
extend existing tracklets from frame t to frame t + 1, and terminate the non-matching (M-N) 
tracklets. If there is assignment ambiguity, we terminate the ambiguous tracklet and initiate 
new tracklets if needed. 

3.3 Center re-estimation using spatiotemporal information 

This step aims to increase center localization accuracy by integrating spatiotemporal image 
information in a selective and controlled way using the tracklets obtained in the previous 
section. First tracklets are scored according to their spatial separability from the other tracklets 
[Fig. 1(e)]. Then individual support regions within the same tracklet are aggregated to 
increase the SNR and photon count. Finally individual emitter centroids are re-estimated from 
these integrated image chips using MLE [Fig. 1(f)]. 

We assign scores for each tracklet according to the percentage of non-overlapping regions. 
For example, as shown in Fig. 1(e), tracklet T1 is assigned a score of 1 since it is a disjoint 
track with no spatial overlapping with other tracklets; tracklet T2 is assigned 0.55 due to the 
55% of non-overlapping region. T3 is assigned a score of zero since the whole tracklet 
overlaps with T2. We process the tracklets sequentially from the highest to the lowest scores. 
For tracklets that are scored 1.0 (no overlapping regions), we sum all the support regions as 
defined by the union of a 7x7 region centered at the position of the mode and the 
corresponding mask. The summed image is then fitted to get the emitter position using the 
MLE. For tracklets with scores higher than a threshold value (0.6), for example tracklet T4 
and T5, we only add up the support regions of non-overlapping frames, ignoring the 
overlapping frames. For other tracklets that have low scores, such as T3 (0.0), we aggregate 
the support regions of all the emitters with overlapping (the overlapping regions from both T2 
and T3). The support regions are defined as the union of all the 7x7 regions centered at each 
estimated emitter locations and the corresponding labeled masks. We then fit the summed 
signal with the known number of modes (2 in this case for T2 and T3) and with the estimated 
positions from WMS as the initial values. The position of the involved emitters that have 
already been processed due to their higher scores will be used as prior information in the 
multi-emitter maximum likelihood estimation. 
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4. Experimental methods 

4.1 Microscopy and data acquisition 

Our home-built STORM system is based on an inverted microscope (IX71, Olympus America 
Inc.) with 1.49 NA 100x oil immersion TIRF objective. Four lasers–405 nm, 488 nm, and 647 
nm diode lasers (Vortran Laser Technology Inc.) and 561 nm DPSS laser (CrystaLaser) cover 
the spectrum of the most commonly used fluorophores. The filter set consists of a multi-band 
dichroic mirror (FF405/496/593/649, Semrock) and an emission filter (692/40, Semrock). An 
electron multiplying CCD camera (iXon Ultra 897, Andor Technologies PLC.) is used for 
imaging with EM gain set to 255. The sample holder is mounted on a 3D piezo stage (Nano-
LPS, Mad City Lab). An infrared 980 nm laser is used in combination with the piezo stage for 
the axial Zero Drift Correction (ZDC) [36]. 

4.2 Cell culture and immunofluorescence staining 

HeLa cells are cultured on 35-mm petri dishes with a No. 1.5 glass coverslip window (MatTek 
Corp) at 37 °C with 5% CO2. The Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) 
is supplemented with 10% FBS, 100 U/mL penicillin and 100 µg/ml streptomycin. For the 
immunofluorescence staining, cells are fixed at room temperature in the fixation buffer (3% 
paraformaldehyde and 0.1% glutaraldehyde in PBS) for 10 minutes, and then rinsed 3 times 
with PBS. To reduce the background induced by glutaraldehyde, cells are quenched in 0.1% 
NaBH4 water solution for 7 minutes. After rinsing quickly 3 times with PBS, cells are blocked 
in blocking buffer (3% bovine serum albumin (BSA) and 0.2% Triton X-100) for 1 hour at 
room temperature. Primary antibody to α-tubulin (Sigma Aldrich) is diluted in blocking buffer 
and added to cells for 1 hour. Cells are then washed 3 times in PBS on a rocking platform and 
then treated with secondary antibody conjugated to AlexaFluor647 for 30 minutes. Antibodies 
are “locked” in place with a post-fixation using the same fixation buffer for 5 minutes. Cells 
are imaged in the imaging buffer (10% glucose, 50 mM Tris pH 8.5, 10mM NaCl, 14mg 
Glucose Oxidase, 50uL 20mg/mL catalase, and 1X B-mercaptoethanol (Sigma Aldrich)) [37]. 

4.3 FDB isolation and immunofluorescence staining 

Adult male Sprague-Dawley rats are euthanized, following The Ohio State University Animal 
IACUC protocol, via CO2 asphyxiation and the flexor digitorum brevis muscles (FDB) are 
dissected. The muscles are digested in type I collagenase (Sigma Aldrich, 2 mg/mL) and 
placed in a 37°C orbital shaker for approximately 1 hour. Samples are then washed in minimal 
calcium Tyrode solution, and sequentially triturated using 1 ml pipette tips with incrementally 
smaller diameters. Once muscle bundles are frayed, and individual fibers could be visualized, 
the fibers are allowed to gravity settle in an Eppendorf tube and fixed in 4% Para-
Formaldehyde for 20 min. Fibers are quickly washed 3 times using minimal calcium Tyrode, 
and suspended in blocking buffer and placed on a rocking platform for 1 hour at room 
temperature. Primary antibody to MG29 [38] is diluted in blocking buffer, and added to fibers 
for overnight incubation at 4°C. Samples are then washed 3 times in washing buffer. Mouse 
IgG antibody is conjugated to Alexa 647 fluorophore (Life Technology, USA), diluted in 
blocking buffer, and fibers are allowed to incubate for 1.5 hours at room temperature. Samples 
are washed 3 times with washing buffer, and post-fixed in 4% paraformaldehyde for 10 
minutes. After quickly washing 3 times in PBS, fibers can be transferred to a 35 mm dish, and 
collected using a 10 µl pipette under a microscope. Individual fibers are placed upon an 
agarose pad (1% m/v) atop a microscope slide, and allowed 10 minutes to adhere. A coverslip 
is placed atop after applying 2 µl imaging buffer, and is sealed carefully with nail polish. 
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5. Results and discussion 

5.1 Mode detection and tracklet generation 

One of the difficulties caused by combining multiple frames is that temporally separated 
emitters may overlap. It is critical to resolve these multiple emitters without losing resolution. 
A number of algorithms have been developed [22, 39–46], and majority of these methods 
require prior knowledge on the number of modes within the cluster. Here we introduce a 
generalized weighted mean shift method to automatically detect the number of modes and 
estimate the positions of the decomposed modes. By integrating temporal information, we 
increase the photon counts of the signal and increase the localization accuracy [23]. 

Mean shift procedure is a non-parametric density estimation method, and it is critical to 
choose the right parameters (stabilization parameter and bandwidth) for the performance of 
the WMS. In our analysis, we used a generalized Gaussian kernel as defined in Eq. (8). We 
test different values of the stabilization parameter p with the bandwidth β fixed to the standard 

deviation of the PSF. When the value of p is too small or too big, the WMS either 

underestimates or overestimates the number of modes respectively [Fig. 2(a) and 2(b)]. To 
choose the right value of the stabilization parameter, we graph the correlation coefficient 
versus different values of p as described in Eq. (9) [Fig. 2(e)], and find that when the 

correlation value is in the range [0.95, 0.97], the corresponding value of p works well to 

identify the right number of modes [Fig. 2(c)]. 

 

Fig. 2. Effect of the stabilization factor in the Gaussian kernel. (a) WMS decomposition with a 
small stabilization factor underestimates the number of emitters. True positions of the emitters 
are labeled with circles and the estimated positions are labeled with crosses. (b) WMS 
decomposition with a large stabilization factor overestimates the number of modes. (c) WMS 
decomposition with the right stabilization factor renders the right number of emitters. (d) Mode 
detection using WMS on an image acquired via a 60x objective yields good match with raw 
data. Scale bars: 300 nm. (e) The stabilization factor is determined using the correlation method 
(Eq. (9), section 3.1). (f) The recall (percentage of detected modes) does not change 
significantly with the background noise or the photon levels as tested via simulation. At each 
condition, the value of the stabilization parameter was adjusted accordingly so that the 
correlation coefficient is 0.95. 
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We perform simulation with different photon levels (500, 1000, and 1500) and 
background noises to test the mode detection efficiency using our algorithm. As shown in Fig. 
2 (f), the recall (percentage of detected modes) does not show significant change with 
different background noise level or different photon levels. In another test, we used a different 
objective (60x oil immersion, N.A 1.3) to check how the method works on real experimental 
data. In this case, β  in Eq. (8) is set to the standard deviation of the 60x objective PSF. We 

choose a p value corresponding to the correlation coefficient of 0.95 for mode detection and 

localization. Figure 2(d) shows detected modes marked with black crosses matched well with 
the raw experimental data. 

We also test the capability of WMS in resolving emitter pairs with various distances. We 
simulate a pair of emitters in a 12x12 region. In our simulation we fix the Gaussian 
background noise to 3.2 photons/pixel and the signal to 1000 photons/emitter/frame. WMS 
can correctly identify the number of modes when the two emitters are as close as 200 nm [Fig. 
3(A)]. As another measure to evaluate the performance of WMS on resolving multi-emitters, 
we vary the density of activated emitters from 0.1 molecules to 5 molecules per micron meter 
squares. We also change the number of photons of an emitter from 500 to 1500 
photons/emitter/frame, with the background Gaussian noise fixed to 10 photons/pixel. We 
apply WMS to estimate the locations of the emitters, and calculate the distance between the 
estimated positions and the true emitter positions. We match the estimated emitter with the 
corresponding true emitter, and we make sure there is a one-to-one correspondence. The 
measured density is defined as the number of correctly detected emitters per micron meter 
square. Figure 4 shows that WMS can reliably provide the correct number of modes when the 
emitter density is up to 3 emitters 2/ mμ . 

 

Fig. 3. Performance of WMS on resolving emitter pairs and high density of emitters with 
overlapping. (a) and (b), WMS is able to resolve an emitter pair when the distances between 
them are 200 nm and 300 nm respectively. True positions of the emitters are labeled with 
circles and the estimated positions are labeled with crosses. (c). WMS is able to resolve the 
right number of emitters when the emitter density is as high as 3 emitters per micrometer 
square. Scale bars: 300 nm. 
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We note that the accuracy of the estimated positions from the WMS calculation is not 
sufficient for single molecule localization microscopy. Instead, we use the estimates to form 
tracklets for further MLE analysis. 

Figure 4(a) demonstrates three tracklets from our simulation. One (yellow) is an isolated 
tracklet, and the other two temporally overlap for most of the sequence. Figure 4(b) and 4(c) 
are two frames of the overlapping emitters. Due to the low signal noise ratio, the localization 
accuracy is low even with the MLE method [Fig. 4(b) and 4(c)]. In contrast, after we integrate 
the supporting regions of all the frames, the photon count of the signal is significantly 
increased [Fig. 4(d)]. We then apply the MLE fitting to get positions that are of much higher 
accuracy. 

 

Fig. 4. (a). Illustration of three tracklets generated from the simulation. The yellow one is an 
isolated tracklet while the other two have significant overlapping in time. (b, c). Two individual 
frames from the two overlapping tracklets as shown in (a). The true positions of the emitters 
are labeled with circles and the estimates are labeled as crosses. Due to the low signal noise 
ratio, the estimates deviate from the true positions. (d). By aggregating all the support regions 
of the tracklets, the signal is significantly increased. Now the estimate positions (crosses) 
overlap with the true locations of the emitters. Scale bars: 300 nm. 

5.2 Resolving overlapping multi-emitters and improving localization accuracy 

The proposed method is able to resolve overlapping multi-emitters using WMS and to 
improve the localization accuracy with the tracklet method. Figure 5 demonstrates the 
advantages of the method. We simulate a cross of four lines with a constant line density of 
emitters. Due to the higher density of the emitters at the center, the probability of the 
appearance of overlapping multi-emitters at the center is much higher. As shown in Fig. 5(a), 
single molecule analysis (SA) [10] fails to locate these emitters, resulting in very low number 
of detected emitters at the center; while the proposed method is able to resolve these emitters 
and precisely locate them [Fig. 5(b)]. We also compare the localization accuracy of the two 
methods. Figure 5(d) shows the line profiles of the selected regions from the two 
reconstructed images. The width of the line constructed using the tracklet method is much 
thinner, demonstrating the increased localization accuracy [Fig. 5(b)]. 
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Fig. 5. Tracklet based reconstruction is able to resolve overlapping multi-emitters with 
improved localization accuracy. (a). Reconstructed image using the SA method. Due to the 
high density of emitters at the central part of the image, SA is not able to resolve the 
overlapping emitters, which results in very low number of detected emitters. (b). Tracklet-
based reconstruction of the same image. Comparing with (a), the central part of the image is 
well reconstructed. (c). Image reconstructed with the combined SA method as defined in the 
main text. (d). Line profiles of the selected regions as shown in (a), (b), and (c). The black 
curve represents the line profile of the selected region in (A), and the blue curve is from (b), 
and red is from (c). The blue curve has smaller width, demonstrating the smaller localization 
uncertainty with the tracklet-based method. Scale bar: 300 nm. 

We note that another approach that has been used in previous studies [10, 37] is that one 
can locate the emitters at each frame, after which all the located centers that are within a 
preset threshold region (usually 1 pixel) are averaged, and the averaged center is used as the 
final estimation of the emitter (combined SA method). Figure 5(c) shows the reconstructed 
image using the combined SA method. As shown in Fig. 5(d), our tracklet-based method 
provides better localization accuracy than the combined SA (the blue curve vs. the red curve). 
Our method differs from it in the following aspects. First, our method is able to resolve 
overlapping multi-emitters, while the SA method in [10, 37] only works for sparse, disjoint 
single emitters. Second, SA discards emitters when the fitting does not meet the criteria that 
assure the detected signal is from a single emitter instead of overlapping multi-emitters. This 
usually results in loss of frames, particularly when the signal is weak and the background is 
high. Third, in our method, we fully utilize the temporal information of the signals. For 
example, if a tracklet partially overlaps with other tracklets, instead of discarding the 
overlapping region, we use the estimated locations from the non-overlapping region to help 
the decomposition and localization of the positions at the overlapping regions, fully 
integrating all the temporal information. 

5.3 Analysis of HeLa cell microtubule structure 

Figure 6(a), and 6(b) show reconstructed microtubule images with the proposed method and 
the SA method [10] respectively. These images are reconstructed from 50,000 frames. Since 
all the overlapping signals are discarded by the SA method, the reconstructed microtubule 
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filaments are discontinuous [Fig. 6(b)]. In contrast, Fig. 6(a) is reconstruction from the same 
data set with the proposed method. With the proposed method, the filaments are more 
continuous since we are able to resolve both overlapping multi-emitters and weak emitters 
that are discarded by SA method. The difference is more significant at locations with high 
emitter density, such as the region labeled with E in Fig. 6(a) and Fig. 6(b). Second, as shown 
in Fig. 6(c)-6(e), the proposed method is able to resolve the two adjacent microtubules as 
close as 38 nm, which are completely missed with the SA method [Fig. 6(d)]. 

 

Fig. 6. Microtubule images in HeLa cells. (a). Image reconstructed using the tracklet-based 
method from 50,000 frames. (b). Image reconstructed using the same data set as in (a) but with 
the SA method. Structures are discontinuous, particularly at crossing regions where emitter 
density is high. Scale bars: 300 nm. (c, d, e). Line profiles of the selected regions in (a) and (b). 
The tracklet-based method is able to resolve two structures as close as 38 nm, which is not 
resolvable with the SA method due to insufficient localization of emitters. 

5.4 Resolving the T-tubule structure in skeletal muscle cells 

In skeletal muscle, the transverse (T)-tubular invagination of the sarcolemmal membrane 
touches the terminal cisternae of the junctional sarcoplasmic reticulum to form a triad junction 
structure that provides the structural framework for excitation-contraction (EC) coupling [47]. 
Most of the ultrastructural analyses of the triad junction involves electron microscopy [47]. 
Recently, T-tubule structure in cardiomyocytes has been investigated using the stimulated 
emission depletion (STED) microscopy with a resolution of ~50 nm [48]. However, T-tubule 
structures in skeletal muscle cells have never been studied optically. 

We use the antibody to mitsugumin29 (MG29), a skeletal muscle-specific protein, to label 
the T-tubule structure in the rat FDB fiber [38, 49, 50]. Different from adherent cells, FDB 
fibers do not attach well to the glass coverslips, which makes it difficult to apply total internal 
reflective fluorescence (TIRF) illumination during the image acquisition. We applied oblique 
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illumination method to acquire the MG29-labelled fluorescence images in order to resolve the 
T-tubule structure. Compared with TIRF, the oblique-illumination method produces high 
background noises that will require the implementation of our tracklet-based reconstruction 
algorithm for data processing. To eliminate out-of-focus emitters, we apply a threshold to the 
fitted Gaussian σ at the end of the image reconstruction. We discard all emitters with fitted 
σ  bigger than 190 nm (~1.5 times of the standard deviation of the PSF). This allows us to 
partially remove out-of-focus emitters. 

As shown in Fig. 7(a), the traditional epifluorescence microscopy produced striated pattern 
of MG29-labelled T-tubule network, with doublet pattern that resembles the typical 
membrane structure in rat skeletal muscle. Within each of the doublets, there are two T-tubule 
membranes running in parallel that could not be resolved in traditional optical imaging. With 
the proposed method, we are able to reconstruct the images, clearly showing the two sides of 
the T-tubule membrane within a single doublet. Figure 7(b) shows the overlay of the 
superresolution image (green) and the conventional epi-fluorescence image (red). Figure 7(c) 
shows the line profiles of the selected region. The epi-fluorescence image does not show any 
fine structures of the T-tubule, while the superresolution image shows the two sides clearly 
[Fig. 7(b)]. To our knowledge, this is the first time that the T-tubule structure in skeletal 
muscle cells is resolved optically. One of our future studies is to investigate the remodeling of 
the T-tubule structures in different disease models. 

 

Fig. 7. T-tubule structures in rat FDB fiber. (a) Epifluorescence image of MG29-labelled T-
tubule network in rat skeletal muscle. Scale bar: 2 μm. (b) Overlay of the epifluorescence 
image (red) of the T-tubule and the corresponding superresolution image (green). Scale bar: 1 
μm. (c). The line profiles of the selected region in (b). The green curve corresponds to the line 
profile from the superresolution image, which shows clearly the distance between the two T-
tubule membranes is about 82 nm. The conventional epifluorescence image completely misses 
the fine structure (red curve). 

6. Conclusion and future work 

In this paper, we describe a tracklet based image reconstruction algorithm for localization 
based superresolution microscopy imaging, which enables us to resolve overlapping multi-
emitters (low to medium emitter density) and to fully integrate the temporal information of the 
emitters to achieve improved localization accuracy. Because our image analysis routine 
contains the WMS and tracklet features, it provides a better way to dissect the spatial and 
temporal relationship of overlapping emitters for broader application in biological imaging. 

In a typical single molecule localization microscope experiment, it is not unusual to have 
tens of thousands frames. Effectively incorporating temporal information is critical to improve 
the spatial resolution. By forming different reliable tracklets of emitters and analyzing these 
tracklets separately, we are able to incorporate temporal information of different emitters, and 
increase the localization accuracy by increasing the photon counts of the signal. When two 
tracklets have spatiotemporal overlapping regions, instead of discarding the information, we 
apply the MLE method to locate these multiple emitters simultaneously. One required input of 
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our MLE method is the number of the modes in the data set. Here we introduce a weighted 
mean-shift (WMS) method for the mode detection. Our analysis shows that WMS is robust to 
the background noise, and is able to reliably provide the right number of modes for the MLE. 

In summary, our progressive superresolution microscope image reconstruction system 
uses and integrates reliable information at multiple stages resulting in improvement of the 
localization accuracy. A previous study by Cox et al. [51] introduced a Bayesian analysis of 
the blinking and bleaching (3B analysis) method that also incorporates temporal information 
to analyze high-density superresolution data. However, since the 3B method incorporates 
temporal information by modeling the entire data set using a factorial hidden Markov model, 
the data processing requires extensive computation resources and analysis takes a long time, 
making it hard to handle by conventional desktop computers. Our method integrates temporal 
information with single molecule tracking to form tracklets, and significantly reduces the need 
of expensive computation resources and shortens the computation time. For example, in the 
original paper by Cox et al. [51] and a recent publication by Rosten et al. [52], they showed 
that analyzing an image stack of 200 frames 15 pixels x 15 pixels took 6 hours using a single 
core i7 (3.33 GHz) computer. Another publication by Hu et al. [53] using the 3B approach 
showed that with 300 instances of 600 virtual cores using the commercial (paid service) 
Amazon EC2 cloud server, it took 210 minutes to analyze 150 pixels x 100 pixels x 1,500 
frames, while analyzing the same data set using 3B on a state-of-the-art desktop computer 
would take ~9 days. With a similar data set, our algorithm will take a few min to complete the 
data processing process using a desktop personal computer. 

Our method is also of particular advantage for high frame rate image acquisition. By 
increasing the frame rate, there is a better chance to temporally separate two adjacent emitters, 
a prerequisite for superresolution imaging. However, high frame rates usually result in low 
signals. By associating these weak signals through the tracklet, we are able to increase the 
localization accuracy. Another potential usage of our method is molecule counting. Knowing 
the blinking (switching) dynamics of the emitters, we can do a global association of the 
tracklets to get more precise counting of the molecules. For example, Alexa 647 labeled 
molecules can reversibly turn on and off for many times, resulting in multiple tracklets. By 
associating these tracklets with the proper modeling of the switching dynamics, we can 
associate these tracklet to eliminate the multi-appearance of the emitter, which is critical for 
precise counting of molecules. 

Our method is implemented using Matlab 2013b (The Mathworks, USA). Most of the 
analysis procedures can be parallelized, or to be distributed to the graphic processing unit 
(GPU). By converting the program to C/C +  + and combine with parallel and GPU 
programming, we expect significant improvement of computation speed that can lead to 
potential application in live cell superresolution imaging. 
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