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Abstract

Protein folding is a complex, error-prone process that often results in an irreparable protein by-

product. These by-products can be recognized by cellular quality control machineries and targeted

for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds

another layer to the protein folding “problem,” as the endoplasmic reticulum maintains a unique

chemical environment within the cell. In fact, a growing number of diseases are attributed to

defects in secretory protein folding, and many of these by-products are targeted for a process

known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on

the mechanisms underlying the ERAD pathway has provided new insights into how ERAD

contributes to human health during both normal and diseases states. Links between ERAD and

disease are evidenced from the loss of protein function as a result of degradation, chronic cellular

stress when ERAD fails to keep up with misfolded protein production, and the ability of some

pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also

illuminated the differences in the machineries used to recognize and degrade a vast array of

potential clients for this pathway. Despite all that is known about ERAD, many questions remain,

and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within

defining the molecular details of the ERAD pathway and in understanding how this conserved

pathway selects and degrades an innumerable cast of substrates.

I. INTRODUCTION

A. The Folding Problem: Inefficiency and Inaccuracy During Protein Folding

Accurate protein folding is key for biological function, but this process is hampered by the

fact that folding is chemically complex. In eukaryotes, the translation of mRNAs occurs on

80S ribosomes, which are either free in the cytoplasm or tethered to the endoplasmic

reticulum (ER), giving the organelle a studded or rough appearance by electron microscopy.

As a nascent protein emerges from the ribosome exit tunnel, the polypeptide must adopt a

functional conformation out of a huge number of possible conformations. It was originally
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thought that protein folding followed a direct pathway and was dictated by the sum of the

interactions that can form between amino acids, including ion pairs, van der Waals forces,

hydrophobic interactions, and hydrogen bonding. However, decades of biophysical and

computational research have yielded the more sophisticated view that protein folding is

instead a nonlinear process. Proteins can navigate through a number of different energy

landscapes, which may adopt a funnel-like shape with the lowest energy (folded) state at the

bottom of the funnel. Folding information is mainly present in the amino acid side chains,

but involves both local and distant interactions and is driven largely by the need to isolate

hydrophobic residues within the protein core (105). However, even this view may be naive,

as protein folding must occur in a complex, highly crowded environment that has been

estimated to reach concentrations as high as 300 mg/ml in the cytoplasm (118). Thus intra-

molecular interactions impinge on the efficiency of protein folding in the cell.

To prevent illegitimate inter- and intramolecular interactions, and to protect hydrophobic

amino acid side chains as they emerge from the ribosome, folding is aided by a class of

proteins known as molecular chaperones. Based on their propensity to bind short peptides

with hydrophobic character (47, 133), molecular chaperones guard against misfolding and

aggregation. In most cases, molecular chaperones do not increase the rate of folding, but

rather increase the number of productive interactions and prevent misguided interactions,

thus augmenting folding efficiency (106).

Heat shock proteins (Hsp) of ~90, 70, and 40 kDa represent three important classes of

chaperones (59, 60, 89, 274, 450, 573). Hsp70s have a substrate-binding pocket and a low

ATPase activity, which is stimulated by the interaction with Hsp40 cochaperone partners

that contain an ~70 amino acid motif known as the J-domain. Hsp70s are highly conserved

and are critical for protein folding, protein translocation, protein degradation, and the

assembly and disassembly of protein complexes. The Hsp40s also bind substrates and via

their interaction with Hsp70 are thought to hand-off substrates to Hsp70s. Because Hsp40s

enhance the basal ATPase activity of Hsp70s, and because Hsp70 in the ADP-bound state

exhibits a higher affinity for peptide substrates, the transfer of substrate to Hsp70 results in a

tight Hsp70-peptide complex. Ultimately, a member of a diverse class of nucleotide

exchange factors helps release ADP from Hsp70, which in turn frees the peptide substrate.

Thus the Hsp70-Hsp40 complex helps to control and maintain the solubility of proteins that

may otherwise aggregate.

The interaction of Hsp90s with substrates is mediated through more than one domain in this

dimeric chaperone (464, 520). In this case, the relationship between ATP hydrolysis and

substrate binding and release is more complex, and a nucleotide-free state may be an

important intermediate in the chaperone cycle. It is generally accepted, though, that Hsp90s

usually function at later steps in the protein folding pathway than Hsp70s and Hsp40s.

Given the complexity of protein folding, it is not difficult to imagine that one of many

problems may arise. For example, nascent polypeptides may aggregate due to unwanted

interactions amongst hydrophobic amino acid side chains. It has been estimated that as many

as one-third of all newly synthesized proteins may be degraded in some cell types,

presumably due to problems during their synthesis or folding (438). Protein misfolding and
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aggregation are actually quite common and are responsible for a number of human

pathologies, such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and

α1-antitrypsin deficiency (22). Protein aggregation can lead to the formation of amyloid

deposits in tissues throughout the body. Even though the proteins that result in amyloid fibril

production are quite varied, the fibrils share many general structural features, suggesting a

common fate amongst many aggregated products. However, the propensity of a given

polypeptide to form amyloids is highly sensitive to the cellular environment (see, for

example, Ref. 106).

B. The Trafficking Problem: Difficulty Transiting Throughout the Secretory Pathway

Nearly one-third of all newly synthesized proteins are targeted to the ER, which is the first

step in the delivery of these proteins for trafficking to other organelles of the secretory

pathway or to the extracellular space (157). As a nascent secreted protein emerges from the

ribosome exit tunnel, it presents an NH2-terminal hydrophobic signal sequence to the

aqueous environment of the cytoplasm. Signal sequences do not follow a strict consensus,

but are generally ~20–30 residues in length and contain 3 common features: a basic motif, a

hydrophobic core, and a short polar region (196). The emerging signal sequence is then

captured by a ribonucleoprotein complex known as the signal recognition particle (SRP),

which consists of six proteins and a single RNA (242, 422, 547). One of the SRP subunits

binds GTP, which is required for the particle to function. SRP has two general roles: 1)

translational arrest, which provides a window of opportunity for the ribosome-nascent chain

complex to “find” the ER membrane, and 2) targeting and release of the nascent peptide to

the ER membrane translocation complex (see FIG. 1). At the ER membrane, SRP associates

with the heterodimeric SRP receptor, which stimulates SRP’s hydrolysis of GTP (389). SRP

is then released from the ribosome-nascent chain complex and translation resumes, resulting

in the insertion of the nascent peptide into the translocation pore, or “translocon.”

Protein translocation occurs through the Sec61 complex (365, 408). In mammalian cells, the

three subunits of the Sec61 complex (alpha, beta, and gamma) provide an aqueous pore

through which proteins can be inserted either into the ER lumen or, if hydrophobic

membrane-spanning segments are encountered, directly into the lipid bilayer of the ER

(FIG. 1, A AND B). Insertion of membrane-spanning domains is thought to occur through

the opening of the translocon and lateral movement into the hydrophobic environment of the

membrane. Several studies indicate that the translocon is quite flexible and may

accommodate multiple transmembrane helicies at once during the insertion of polytopic

membrane proteins (457). During translocation, the hydrophobic signal sequence is cleaved

by the signal sequence peptidase complex, which is intimately associated with the ER

membrane (473). Upon insertion into the ER space, translocating proteins also interact with

chaperones to promote folding and undergo cotranslational modifications, as discussed

below.

Protein targeting and translocation were originally thought to be highly efficient, but there is

now evidence to the contrary. Given the fact that signal sequences are quite diverse, it is not

surprising that they are sometimes interchangeable and can tolerate certain alterations (see,

for example, Ref. 234). However, signal sequence diversity is now known to be important
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for targeting, translocation, and signal sequence cleavage efficiency (196). For example, the

signal sequence of the ER lectin calreticulin is somewhat inefficient, resulting in a cytosolic

population of this chaperone in addition to an abundant ER pool. Chimeric proteins

containing the signal sequence of calreticulin or prolactin, another well-characterized

secretory protein, were used to demonstrate inefficient translocation of chimeras containing

the calreticulin signal sequence both in vitro and in vivo (447). In addition, the use of a

translocation reporter that was appended onto a variety of signal sequences suggested that up

to 50% of some other proteins that normally enter the secretory pathway are inefficiently

targeted to and inserted into the ER (291). Whether this represents the need to retain a

cytosolic pool of some secreted proteins or an inherently inefficient targeting system is not

completely clear.

Signal sequence inefficiency has been proposed as the underlying mechanism for the

pathophysiology of a neurodegenerative condition caused by prion protein (PrP), a

glycoprotein of unknown function that resides on the cell surface. Prion diseases can be

sporadic, genetic, or infectious and result in the accumulation of misfolded PrP and fatal

neurodegeneration (392). During PrP synthesis, the protein is cotranslationally inserted into

the ER and is modified with a glycophosphatidylinositol anchor that initially tethers PrP to

the ER membrane and ultimately to the cellular plasma membrane. By examining the

biogenesis of disease-causing mutations in PrP, it was suggested that PrP pathogenesis was

the result of inefficient maturation in the ER, followed by “retrotranslocation” and

aggregation in the cytosol (317). However, subsequent studies indicated that the cytoplasmic

accumulation of PrP is not due to retrotranslocation (110, 401). Instead, the inefficiency of

the PrP signal sequence results in the formation of either a cytoplasmic (cyPrP) form or a

transmembrane (CtmPrP) form of the protein (71). Of note, CtmPrP accumulates as a stable

species, and its expression correlates with neurodegeneration in mice and humans (197,

198). Consistent with these data, disease-causing mutations that result in the accumulation

of CtmPrP can be rescued by increasing the efficiency of signal sequence insertion (400).

These results highlight the sensitivity of protein homeostasis and disease to subtle

differences in protein synthesis, targeting, and/or translocation efficiency. In further support

of this view, silent mutations in a multidrug resistance transporter that simply change the

protein’s translation rate, but leave the amino acid sequence unchanged, alter the

transporter’s substrate specificity (249).

C. Protein Modification in the Unique Environment of the ER

Coincident with translocation, nascent proteins encounter the ER’s unique environment,

which contrasts sharply with other organelles in its chemical properties and protein

composition. Chemically, the ER is more oxidizing and is calcium-rich. The oxidizing

potential favors the formation of disulfide bonds, and calcium serves as a necessary cofactor

for many chaperones and is vital for cellular signaling. In addition, the ER is packed with

proteins that aid the folding of other proteins, that catalyze ER-specific posttranslational

modifications, and that form the protein quality control machinery. Unique posttranslational

modifications also occur in the ER. After signal sequence cleavage, translocating proteins

may be modified with sugar moieties on specific Asn side chains via a process known as N-
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linked glycosylation, and as noted above, they may acquire disulfide bonds. Each of these

modifications contributes to a protein’s native fold (14, 56, 190, 256, 455).

Disulfide bonds are formed through the oxidation of pairs of free thiols on cysteine residues.

Disulfide bonds help stabilize a protein, which may be especially important if a protein is to

be secreted into the harsh extracellular milieu or into the lysosome, which is acidic.

Sometimes disulfide bonds serve as the only link between proteolytically cleaved subunits,

such as in cholera toxin (582) or insulin (see below) and help maintain the stability of

oligomeric secreted proteins, such as immunoglobulins (80). The incorrect acquisition or

maintenance of disulfide bonds can give rise to a form of the clotting disease, von

Willebrand disease (435), and the connective tissue disorder, Marfan disease (543).

The enzymes that catalyze the formation of disulfide bonds are generally referred to as

protein disulfide isomerases (PDIs). PDIs can also function during the isomerization of

disulfide bonds. The mammalian ER contains 20 different PDI family members, which are

characterized by the presence of one or more thioredoxin-like domains (190). During protein

folding, disulfide bonds are formed and incorrectly formed bonds must be broken; therefore,

cycles of PDI action are vital during protein folding. The family was first named for PDI,

which was the first protein shown to have the ability to form disulfide bonds on ER proteins

(61, 161, 511). Interestingly, PDI possesses both oxidoreductase activity as well as a

chaperone-like activity, both of which are essential for the folding/secretion of many

proteins, including procollagen trimers (20).

ER calcium concentrations range from 100 to 300 µM, which is in stark contrast to the

cytoplasmic calcium concentration (10 to 100 nM; Refs. 65, 165). ER calcium release is

mediated through inositol 1,4,5-trisphosphate receptors (IP3R), which open upon binding to

the second messenger IP3. Plasma membrane excitation by various signaling proteins,

including hormones, growth factors, and neurotransmitters, results in phospholipase C-

mediated cleavage of a plasma membrane phospholipid to generate IP3 (42). The wave of

released calcium is critical for numerous cellular events, such as muscle contraction,

exocytosis, cell proliferation, the immune response, transcriptional activation, and apoptosis

(43, 69). Of note, following activation by certain signals, IP3R levels are downregulated by

ERAD as a mechanism to attenuate the response to IP3 signaling (551). Released calcium is

reconcentrated by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs), which couple the

free energy of ATP hydrolysis to pump calcium against its concentration gradient back into

the ER (393). Many ER chaperones, including the PDIs and BiP (also known as Grp78),

Grp94 (an ER lumenal Hsp90 homolog), calnexin, and calreticulin (see above), bind calcium

and are thought to help buffer calcium levels, in addition to their roles in protein folding

(85). The importance of ER calcium became even more evident when it was discovered that

disturbing ER calcium stores altered the secretion of several proteins (306). Not surprising,

many diseases, including spinocerebellar ataxia, heart disease, and Darier’s disease, have

been directly linked to defects in IP3 receptor and SERCA function (54, 346, 355).

As introduced above, another posttranslational modification that occurs in the ER during

protein translocation is the addition of sugar moieties guided by the consensus signal Asn-X-

Ser/Thr. The sugar is transferred to the Asn side chain, and thus this event is termed N-
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linked glycosylation. N-glycans not only protect proteins and stabilize protein structure/

interactions, but they mediate the interaction with quality control lectins in the ER, such as

calnexin and calreticulin (also see below). Therefore, N-linked glycans are intimately

involved in early protein folding events. A large number of diseases are also linked to the

improper glycosylation of secreted proteins. Currently, there are 16 known genetic diseases

that arise either from improper assembly or processing of N-glycans, and these are

collectively known as congenital disorders of glycosylation (226, 265). For example,

individuals with mutations in ALG6, which encodes glucosyltransferase I, have hyptonia,

strabism, seizures, and low circulating levels of certain glycoproteins, including the

coagulation inhibitors protein C and anti-thrombin.

The acquired N-glycan is composed of two N-acetylglucosamines, nine mannoses, and three

glucose moieties, which are transferred by the oligosaccharyltranferase complex (OGT) en

bloc from a precursor to the Asn side chain (14, 194, 372). Following enzymatic cleavage to

remove two of the three glucose residues, the nascent glycoprotein can interact with the

lectin-like chaperones calnexin and calreticulin. Protein interaction with calnexin and

calreticulin is maintained until cleavage of the final glucose residue, following which a

“decision” about folding status must be made. If still unfolded, glycoproteins can rebind

calnexin/calreticulin after being reglucosylated by UDP-glucose:glycoprotein

glycosyltransferase. This gives the protein more time to attain a folded conformation.

However, if the protein fails to fold soon enough, the stochastic removal of mannose

residues by ER mannosidases triggers the selection of the misfolded protein for degradation

by the ERAD pathway. A particularly important player in these events is the ER degradation

enhancing α-mannosidase-like protein I, EDEM1. EDEM1 has been proposed to interact

with a specific glycan conformation produced by glycan trimming during repeated folding

cycles, and/or functions as a “timer” for degradation by trimming the mannoses on the

glycoprotein so that the substrate is committed for degradation (84, 87, 357, 395). However,

recent studies have challenged this view, by demonstrating that EDEM1 can interact with

misfolded substrates regardless of their glycosyation state (87, 169). A reconciling of these

two contrasting views is provided by the observation that under low expression of EDEM1,

the ERAD of a misfolded version of the asialoglycoprotein receptor (H2a) requires glycan

trimming, whereas under high expression of EDEM1, mannose trimming is not required.

Furthermore, overexpression of EDEM1 stimulates the ERAD of a nonglycosylated version

of H2a, suggesting a dual role for EDEM1 that is perhaps regulated by cellular EDEM1

levels (411).

In addition to diseases that arise directly from defects in N-linked glycosylation, the

importance of glycosylation in human health and disease is underscored by the fact that

cellular stress results from defects in protein glycosylation. Experimentally, this is best

evidenced by the fact that tunicamycin, a fungal metabolite, prevents N-glycosylation by

inhibiting early steps in the assembly of the glycan chain (390). Treatment with tunicamycin

results in a build-up of misfolded glycoproteins within the ER and the induction of the

unfolded protein response (UPR). Diseases as diverse as diabetes, neurodegeneration, heart

and kidney disease, and cancer have been linked to UPR induction (93, 207, 327, 478, 585).
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In at least some cases, disease progression arises from the fact that prolonged UPR

activation triggers apoptosis (301, 323, 417, 581).

D. Strategies to Deal With Misfolded Proteins: The UPR

As discussed in the preceding sections, many problems can occur during protein targeting to

the ER and subsequent folding events. Protein misfolding is detrimental as it results in a loss

of native protein function and can lead to a toxic gain of function due to aggregation.

Misfolded proteins in the ER also induce the UPR. Fortunately, cells evolved two main

strategies to clear unwanted proteins from the secretory pathway: ERAD, which is the main

focus of this review, and autophagy, which is beyond the scope of this article, but is

discussed briefly in subsequent sections. If these degradative processes fail to effectively

remove misfolded and aberrant proteins from the ER, then UPR induction becomes critical

to maintain cellular homeostasis.

The UPR is a conserved cellular stress response that triggers the activation of three signal

transduction pathways. The net effect of UPR activation is general translational repression

coupled with an expansion of the ER’s folding and degradative capacity. First hints of the

UPR’s existence arose from the observation that various stress conditions, including glucose

starvation, inhibition of glycosylation, and treatment of mammalian cells with calcium

ionophores, increased the expression of two ER-localized chaperones, BiP and Grp94 (270).

Data from this study indicated that the presence of unfolded proteins in the ER was the

primary trigger for the response. The identification of a stress response element in the

promoter of the yeast BiP homolog (262, 339) and subsequent genetic approaches led to the

identification of a conserved, ER-localized kinase, inositol-requiring protein 1 (Ire1; Refs.

88, 338). During ER stress, Ire1 activation initiates the cleavage of an intron from the

message encoding a transcription factor, Hac1 (in yeast) or XBP1 (in mammals), which

removes a translational inhibitory region. The protein product activates the transcription of

genes that encode chaperones and enzymes required for ER protein folding, factors required

for ERAD, lipid biosynthetic enzymes to enlarge the ER, and components that augment ER-

to-Golgi protein trafficking (302, 358, 495). Subsequent work indicated that the mammalian

UPR included the actions of two additional ER components, PERK and ATF6, which

respectively activate down-stream responses that inhibit protein synthesis and activate

stress-responsive and proapoptotic genes.

Two models have been proposed to describe how unfolded proteins activate the Ire1 branch

of the UPR. First, Ire1 interacts with BiP, an ER luminal Hsp70 that participates in both

protein folding and degradation processes (44). The Ire1-BiP interaction may act as a sensor

of ER protein folding status. Accumulation of misfolded proteins would titrate BiP away

from Ire1, thereby allowing for Ire1 dimerization, phosphorylation, and activation of its

ribonuclease domain and splicing activity. In support of this model, it was demonstrated that

diffusion of BiP within the ER lumen inversely correlates with the levels of misfolded

proteins in the ER (278). In the second model, Ire1 directly binds to misfolded proteins via a

peptide-binding pocket. These data, based on a crystal structure of yeast Ire1 and by the fact

that mutations in the peptide-binding pocket compromise UPR induction, suggest that Ire1

and the UPR are activated directly by misfolded proteins (91). However, it is less obvious
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whether the mammalian Ire1 homolog also accommodates unfolded polypeptides (588). In

the end, it is likely that UPR activation proceeds via some combination of the two models

(248), and indeed, there is evidence that BiP modulates UPR efficiency, Ire1 localization,

and signal duration (382).

E. Strategies to Deal With Misfolded Proteins: ERAD

Several of the UPR targets are genes encoding proteins that facilitate ERAD, which in

principle provides the most rapid and direct means to clear the ER of potentially toxic

proteins. In general, ERAD can be broken down into four steps: substrate recognition,

ubiquitination, retrotranslocation to the cytosol, and proteasome-mediated degradation. In

addition to clearing misfolded proteins from the ER due to cell stress and degrading proteins

that are mutated and misfolded, the ERAD pathway is also used to regulate the levels of

specific enzymes and lipid carriers. These include 3-hydroxy-3-methylglutaryl-coenzyme A

(HMG-CoA) reductase, which catalyzes the rate-determining step in cholesterol

biosynthesis, and apolipoprotein B, which is required for the assembly of cholesterol-

containing liposomes (131, 183). Defects in the metabolically-regulated destruction of these

ER residents lead to a variety of diseases linked to lipid homeostasis and atherosclerosis. For

all of these reasons, ERAD is vital for human health, and increasing evidence links this

pathway to many diseases (TABLE 1). But, before embarking on a discussion of select

ERAD-associated diseases, we will begin with a discussion of some of the key findings that

have defined the ERAD pathway since its discovery. We will also provide an overview of

the steps and describe the key players in the pathway that are highlighted in the remaining

sections of this review.

Early studies on the assembly of the T-cell receptor (TCR) were the first to hint at the

existence of what is now known as ERAD. Klausner and colleagues (303) discovered that

unassembled alpha, beta, and delta subunits of the heptameric TCR were degraded in a

nonlysosomal compartment. It was hypothesized that degradation either was occurring by an

ER-resident protease or in another prelysosomal compartment. Further evidence for pre-

Golgi degradation came from studies examining other mammalian proteins, including a

subunit of the asialoglycoprotein receptor, HMG-CoA reductase, unassembled

immunoglobulin light chains, and cytochrome P-450 (151, 333, 546). In addition to these

reports using mammalian cell systems, parallel work in the budding yeast Saccharomyces

cerevisiae also hinted at the existence of a novel, lysosome-independent degradation

pathway. For example, translocation defects elicited by a temperature-sensitive mutant of

Sec61, a translocon component, were found to be rescued by deletion of the gene encoding

Ubc6; Ubc6 is a ubiquitin-conjugating enzyme that is integrated into the yeast ER

membrane (461). These data suggested a role for the cytoplasmic proteasome in the turnover

of a misfolded ER membrane protein, i.e., the Sec61 mutant. Soon after, the proteasome-

dependent degradation of immature wild-type and mutant forms of the cystic fibrosis

transmembrane conductance regulator (CFTR) was reported in mammalian cells (also see

sect. IIA). The requirement for the delivery of an aberrant soluble protein in the ER to the

cytoplasm emerged from studies on misfolded yeast secretory proteins, pro-alpha factor, and

CPY*. Using both in vitro and genetic tools, these proteins were found to be

retrotranslocated from the ER and destroyed by the proteasome (201, 330, 540). The
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retrotranslocation and degradation of soluble proteins from the mammalian ER was also

observed (394). Ultimately, it quickly became clear that ERAD and most of the core

requirements that underlie the mechanism of this pathway are conserved from yeast to

humans.

ERAD begins with the recognition of a misfolded protein by molecular chaperones (FIG. 2).

ERAD substrates can present a misfolded lesion either in the ER lumen, ER membrane, or

cytoplasm, which will influence the types of chaperones with which they interact (55). BiP,

which was introduced above, is an ER luminal Hsp70 that was discovered by virtue of its

stable binding to immunoglobulin (Ig) heavy chains (174). As with other Hsp70s (see

above), the binding of BiP to newly synthesized proteins occurs through exposed

hydrophobic surfaces on the client protein, an event that obscures these aggregation-prone

surfaces as the protein attempts to attain its natively folded state. However, if folding is

delayed or if the protein is terminally misfolded, extended chaperone interaction may serve

one of two functions: 1) the prolonged prevention of aggregation and maintenance of an

unfolded substrate and/or 2) a more elaborate process in which the misfolded protein is

shuttled to other chaperones and/or to the ERAD machinery. Evidence for the second

function came from a study demonstrating that BiP and Grp94 bound to Ig light chains (Ig

λ). BiP associated with both reduced and oxidized forms of Ig λ, whereas Grp94 bound

primarily to the oxidized form, suggesting that the chaperones interact with Ig λ in a

sequential fashion (334). BiP also bound more tightly to nonsecreted forms of Ig λ (259).

Evidence for the first function came from a study examining the degradation of soluble yeast

substrates. In yeast that have a temperature-sensitive allele in the gene encoding BiP, the

substrates aggregated at high temperatures; the same phenomenon was observed when the

Hsp40 cochaperone partners were mutated (351). Together, these studies highlight how

chaperones work together during different stages of protein folding/degradation.

N-glycans, which bind to chaperone-like lectins in the ER, play an essential role in protein

folding and in ERAD. The funneling of glucose-trimmed glycoproteins into the calnexin-

calreticulin folding cycle, which is governed by OGT, is in competition with exit from the

cycle and degradation. As discussed above, exit from the cycle is triggered by the action of

ER mannosidases. In mammalian cells, ERManI and EDEM1 and their isozymes trim the

mannose residues on specific branches of the glycan structure, preventing reglucosylation

while simultaneously promoting substrate retrotranslocation and degradation (204). As

expected, then, modulation of ER mannosidase levels has a direct effect on the efficiency of

degrading specific substrates, such as a mutant form of the protein that causes anti-trypsin

deficiency (205, 325, 357; see sect. IIE). Interestingly, the yeast homolog of EDEM1 is in a

complex with PDI, and a similar interaction has been observed in mammalian cells between

EDEM1 and the ER oxidoreductase ERdj5 (84, 154, 176, 421). These observations may

indicate that substrate selection is linked to the acquisition of a protein’s proper disulfide

bonds. In accordance with this view, a PDI homolog also associates with calnexin (386).

Protein ubiquitination is critical to target most substrates to the proteasome (129). The

ubiquitin chain is usually attached onto a Lys residue on the misfolded protein, although

recent data indicate that some ERAD substrates contain ubiquitin chains on Ser or Thr

residues (223, 452, 530). Protein ubiquitination occurs via a three-step process that is
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mediated by a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a

ubiquitin ligase (E3), which catalyzes the final transfer of ubiquitin to the substrate. It is

thought that the E3 ligase provides substrate specificity, and accordingly, E3s are the most

abundant of the three classes, with over 500 putative ligases identified in mammalian cells

(500). Key E3s involved in ERAD are Hrd1, gp78, RMA1, TEB4, and CHIP (29, 103, 123,

188, 236, 245, 272, 326, 574). On the basis of the chemical and structural diversity of

ERAD substrates, it is likely that additional E3s that contribute to this pathway will emerge.

After initial E3-mediated ubiquitin attachment, ubiquitin chain extension

(“polyubiquitination”) occurs by the covalent modification of additional ubiquitin monomers

onto a Lys residue in a previously linked ubiquitin. This forms an extended isopeptide-

linked polyubiquitin chain. In some cases, the cooperative extension of a polyubiquitin chain

is mediated by another group of enzymes, the E4s, which augment ERAD efficiency (261,

345, 405).

A chain of four ubiquitins must be appended onto a substrate for efficient proteasome

interaction (396, 491), and polyubiquitin chains are distinguished based on the residue upon

which the chain is built. In other words, the type of linkage can determine the fate of the

ubiquitinated substrate. Initially, a polyubiquitin chain built upon Lys-48 isopeptide linkages

was assumed to be specific for proteasomal degradation, whereas a Lys-63 polyubiquitin

chain served as a nonproteasomal signal for endocytosis and DNA repair (83). However,

proteomic studies revealed that several other ubiquitin linkages (Lys-6, -11, -27, -29, and

-33) exist in cells and that both Lys-48- and -11-linked chains are appended onto ERAD

substrates (557). Future research will continue to unravel the functions of different linkages

and mixed linkages that exist. Nevertheless, it is clear that proteins with extended

polyubiquitin chains can be found in intracellular inclusions in neurodegenerative diseases,

suggesting that inefficient proteasome degradation is linked to the disease phenotype (see

Section IIB).

After or during polyubiquitination, the ERAD substrate must be delivered, or

retrotranslocated to the proteasome. While the existence or identity of a retrotranslocation

channel in the ER membrane remains contested, several putative channels have been

considered. These include Sec61, which is the translocation channel, the Derlins, which are

a family of polytopic membrane proteins intimately linked to some ERAD substrates and

components of the ERAD machinery, and Hrd1, which is a polytopic E3 ubiquitin ligase.

The use of Sec61 as a retrotranslocation channel initially seemed most logical. In yeast it

was found that Sec61 mutants prevented the ERAD of some substrates (381, 385) and that

an ERAD substrate formed disulfide bonds with Cys residues in Sec61 en route to its

degradation (443). This result suggested that the protein was unfolded and retrotranslocating

through Sec61. Another ERAD substrate, apolipoprotein B, clearly retrotranslocates through

the Sec61 channel when it is cotranslationally targeted for ERAD (370). Cholera toxin also

appears to utilize Sec61 to leave the mammalian ER during its journey from the plasma

membrane, back through the secretory pathway, and ultimately into the cytoplasm (433; also

see sect. IID). However, another yeast ERAD substrate depended on the functions of both

Sec61 and a yeast Derlin homolog (548). The contribution of Derlin is consistent with

findings that antibodies against this protein thwart the retrotranslocation of a model substrate
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from mammalian ER vesicles (518) and that a dominant negative form of Derlin disrupts the

viral-induced retrotranslocation and degradation of MHC class I molecules (see sect. IIF).

Moreover, Derlin recruits Cdc48/p97 (299, 567), which provides the energy required to

drive ERAD substrates from the ER (see below). To add to an already complex situation,

yeast Derlin interacts with the E3 ligase Hrd1, which has itself been implicated in the

retrotranslocation of both ER luminal proteins and in the degradation of HMG-CoA

reductase (70, 152). TEB4 and the yeast homolog Doa10 may act similarly (402, 477).

Together, these studies highlight the enigmatic nature of the retro-translocation process and

suggest that one of many proteins/complexes may provide the channel required for ERAD,

or that the channel may be composed of several different proteins.

For most ERAD substrates, the mechanical force necessary to remove proteins from the ER

lumen or membrane is provided by the cytoplasmic AAA+ ATPase p97 (also known as

valosin-containing protein, VCP, or Cdc48 in yeast). p97/Cdc48 functions in several cellular

processes, including cell division, membrane fusion, and the processing of membrane-

associated transcription factors (26). In fact mutations in this protein give rise to the

complex syndrome, inclusion body myopathy associated with Paget’s disease of bone and

frontotemporal dementia (538). A role for p97/Cdc48 in proteasome-dependent degradation

first emerged from a yeast genetic screen (158). Given its diverse activities, it makes sense

that Cdc48 interacts with a wide range of partners that provide specificity for this ATPase’s

energy-coupled functions (439). Thus, during ERAD, a complex containing p97/Cdc48,

Npl4, and Ufd1 is required to extract soluble and integral membrane polyubiquitinated

substrates from the ER for degradation (31, 227, 398, 566). p97/Cdc48 also interacts with

E3 ligases, placing it in an ideal position to aid in the retrotranslocation of polyubiquitinated

proteins (28, 587).

Following extraction, proteins must be ushered to the 26S proteasome, but with the

exception of two cytosolic proteins in yeast (397), the identities of the factors that participate

in this step are not clear. Membrane proteins pose a formidable challenge as some of these

substrates can be retrotranslocated intact (152, 211, 287, 345, 545); therefore, the

hydrophobic membrane-spanning domains are exposed to the aqueous environment of the

cytoplasm and must be protected. A recent study suggests that a protein complex that

participates in the recognition of tail-anchored proteins at the ribosome may help maintain

membrane proteins in a soluble form en route to the proteasome; however, this complex

does not seem to recognize membrane-spanning regions of its associated substrates (528),

which are probably the regions most prone to aggregate.

ERAD substrate proteolysis occurs in the cytoplasm via the action of the 26S proteasome

(129). The proteasome is a large (~2.5 MDa) protein complex that can be subdivided into

two main assemblies: the 20S core particle and the 19S regulatory particle (also known as

the 19S “cap” or PA700). The polyubiquitin tag on a substrate is recognized either by

subunits in the proteasome cap and/or by proteasome-associated proteins (213, 436). After

recognition, substrates must be deubiquitinated by deubiquitinating enzymes (DUBs). For

example, the Rpn11 subunit in the 19S cap deubiquitinates proteasome substrates, which is a

prerequisite for degradation and is important for maintaining high levels of free ubiquitin

(328, 514, 565). DUBs have also been proposed to remove ubiquitin linkages from
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substrates as they are threaded through p97/Cdc48 (120) and a large-scale proteomic

analysis identified a DUB, USP13, that associates with p97/Cdc48 and two p97/Cdc48

partners; USP13 knock-down stabilized an ERAD and a cytosolic ubiquitinated substrate,

suggesting that this DUB regulates p97/Cdc48 function (465). In contrast, if DUBs interact

with the substrate prior to proteasome association, they can trim ubiquitin chains and delay

substrate degradation.

The 20S proteasome core contains three distinct proteolytic activities: trypsin-like,

chymotrypsin-like, and caspase-like. The net result of proteasome-mediated degradation is

the generation of small, ~2–30 amino acid peptides that can be further processed by other

cellular proteases (251). Several proteasome inhibitors have been discovered, which target

different activities of the proteasome and have proven useful in determining the contribution

of the ubiquitin-proteasome system (UPS) (82, 513) in the regulation of cellular pathways,

including ERAD. For example, acetyl-Leu-Leunorleucinal (ALLN) and Cbz-Leu-Leu-

leucinal (MG-132) are reversible inhibitors of the chymotrypsin-like activity (147, 409) and

laid the foundation for the discovery of proteasome inhibitors that are used clinically, i.e.,

Bortezomib (see sect. IIIA).

II. SPECIFIC EXAMPLES OF PATHOLOGIES LINKED TO ERAD

In this section, we focus on six examples of how ERAD is directly linked to human health

and disease. We also provide a table (TABLE 1) that includes 67 diseases that have been

connected to the ERAD pathway. Because the pace of research on newly discovered rare

diseases is rapid, and because there are many disease-relevant proteins for which there are

insufficient data to be classified as being ERAD-linked, the table is not exhaustive. Our goal

is instead to illustrate the diverse nature of the diseases linked to this pathway. To be

included in TABLE 1, there had to be a demonstration of a protein’s ER retention/impaired

trafficking together with either proteasome-dependent degradation and/or

polyubiquitination.

A. Cystic Fibrosis and Other Diseases of ATP-Binding Cassette Transporters

The first disease unambiguously linked to the ERAD pathway was cystic fibrosis (CF). CF

is caused by defects in a chloride transporter, the CFTR. Mutations in CFTR alter salt and

water balance across a variety of epithelia, and as a result, the main clinical features of CF

are delayed growth due to digestive and nutrient-related disorders, severe constipation, and

mucus build-up in the lungs, which results in recurring and prolonged infections. Over 1,000

disease-causing alleles have been reported in CFTR, and it is estimated that 1 in 29

Caucasian Americans carry a mutant CF allele (2, 4). Currently approved treatments are

only supportive and focus on reducing the number and duration of lung infections and on

providing diet supplementation to meet the patient’s nutritional needs. Unfortunately, the

average life expectancy for a CF patient is ~35 years, a value that has increased significantly

during the past three decades. Due to the devastating nature of this disease and its

prevalence, a large research effort is devoted to uncovering the molecular mechanisms

underlying CF. These efforts include studies on CFTR channel activity and regulation,

CFTR folding in the early secretory pathway, and CFTR trafficking through the secretory
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pathway. Studies to identify modifiers of the disease phenotype have also been undertaken

(see, for example, Ref. 30).

CFTR is a member of the ATP-binding cassette (ABC) family of transporters, which as their

name implies couple ATP hydrolysis to solute transport. While CFTR is perhaps the most

widely recognized member of the ABC family, other diseases are also attributed to mutated

ABC family members (see TABLE 1). In general, ABC transporters are multipass integral

membrane proteins that contain two membrane-spanning domains (MSD), each followed by

a nucleotide-binding domain (NBD). However, CFTR is unique among ABC transporters in

that it functions as an ion channel and possesses a regulatory (R) domain lying between

NBD1 and the second MSD. CFTR channel opening is regulated in part by protein kinase

A-mediated phosphorylation of the R domain and is tightly coupled to nucleotide binding to

the NBDs (148, 250, 407).

Based on its size (1,480 amino acids) and complex domain organization, even the wild-type

form of CFTR encounters a significant number of hurdles during synthesis. In fact, CFTR

begins to fold cotranslationally, even though post-translational folding events must also take

place before the protein achieves its native conformation (112, 113, 244, 257, 489, 490). To

aid in folding, and to select misfolded species for ERAD, nascent CFTR engages both

cytoplasmic and ER luminal chaperones (15, 309, 331, 472, 531, 564, 580). In addition, as

portions of the protein enter the ER, nascent CFTR is N-glycosylated, producing an

immature ER-localized form, termed “band B.” This species interacts with the lectin-like

chaperones that reside in the ER, i.e., calnexin and calreticulin (124, 125, 162, 184, 360,

383, 414). After folding and upon ER exit, the core glycan structure is further elaborated in

the Golgi apparatus, which decreases CFTR’s electrophoretic mobility on a polyacryl-amide

gel and leads to the presence of “band C.” This species is most commonly designated as the

mature form and can be found at the plasma membrane. Consistent with its many folding

hurdles, as much as 45–80% of wild-type CFTR is degraded during or soon after synthesis

(77, 229, 315, 535), although under some conditions and in some epithelial cells the wild-

type protein may mature quite well (512).

The most common disease-causing mutant allele in CFTR is a deletion of a phenylalanine at

position 508 (ΔF508). This mutation causes virtually all of the protein to misfold or prevents

folding, which in either case leads to its degradation (77). However, the mutation only

partially reduces channel function (94, 191). Computational and structural evidence suggest

that the ΔF508 mutation disrupts the interaction between NBD1 and a cytoplasmic loop

within MSD2 (446), and consistent with these data, earlier cross-linking experiments

suggested that the ΔF508 mutation alters MSD packing (75). Interestingly, “rescued” forms

of ΔF508-CFTR that reach the plasma membrane are also subject to protein quality control

and are targeted for lysosomal degradation by some of the same chaperones and ubiquitin

ligases that act during ERAD (see below; Ref. 359). Although ~90% of CF patients possess

at least one ΔF508 allele, another disease-causing mutation in CFTR is G551D, which

results in a channel gating defect rather than in a trafficking defect (111, 182).

Early studies revealed that ΔF508-CFTR was only present as band B (77). This result

suggested that the protein had not been processed by Golgi-resident enzymes and that the
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disease was linked to an ER quality control phenomenon. Consistent with this hypothesis,

Ward and Kopito (535) showed that both the immature wild-type form of CFTR and the

ΔF508 mutant form of CFTR were degraded soon after translation, and thus before

lysosomal delivery. Indeed, ΔF508-CFTR levels were unaffected by inhibitors of lysosomal

proteases, and degradation was insensitive to treatment with the fungal toxin Brefeldin A

(BFA) (315), which prevents ER to Golgi trafficking. Even though a role for the UPS in

destroying secretory pathway proteins had not yet been observed, parallel studies by the

Kopito and Riordan labs (229, 536) next demonstrated that the proteolysis of ER resident

forms of CFTR required the activity of the cytoplasmic 26S proteasome. Together, these

data established the first direct link between a disease caused by a mutated protein and

ERAD.

As with most proteasome-targeted proteins, CFTR is polyubiquitinated once it is selected for

degradation. By using a cell-free assay, it was found that ΔF508-CFTR polyubiquitination

occurs cotranslationally while the nascent chains are associated with the ribosome (425).

Moreover, polyubiquitinated ΔF508-CFTR can accumulate in an insoluble form when the

activity of the proteasome is compromised (231). These data suggested that the amelioration

of CF-linked maladies would require a more elaborate treatment than simply inhibiting

ΔF508-CFTR degradation (see sect. IIIA). In fact, nonspecific “chemical chaperones,”

osmolytes that improve the protein folding environment in the cell, partially repaired the

ΔF508-CFTR folding defect such that band C and channel activity became evident (57, 208,

426, 583; also see sect. IIIA and TABLE 2). Incubating cells at low temperature similarly

repaired the ΔF508-CFTR folding defect, consistent with ΔF508 exhibiting the features of a

classical temperature-sensitive, folding-compromised mutant (100).

Since then, much work has been devoted to characterizing the ubiquitination machinery that

mediates ΔF508-CFTR quality control. Establishing a specific E3 ubiquitin ligase for

ΔF508-CFTR was not trivial, as mammals encode up to 500 of these enzymes (see above),

often with overlapping specificities and partially redundant functions (129). To date, three

E3 ligases are the best candidates as being implicated directly in the ERAD of CFTR. These

include the cytoplasmic protein CHIP and the integral ER membrane proteins RMA1 and

gp78 (170, 332, 340). Since folding defects may occur at any one of several points during

CFTR synthesis, it is not surprising that more than one E3 facilitates the ubiquitination of

CFTR. However, it is unclear how these E3s coordinately target CFTR for degradation. One

possibility is that different E3s work in a sequential manner to ubiquitinate CFTR, e.g., co-

and posttranslationally. Evidence for this scenario comes from studies in which the

overexpression of either RMA1 or CHIP decreased the levels of wild-type CFTR; however,

RMA1 and CHIP showed different preferences for mutant forms of CFTR. Namely, CFTR

containing mutations within NBD1 are more sensitive to RMA1, whereas CFTR with an

NBD2 truncation is more sensitive to CHIP expression (574). These data suggest that

RMA1 acts on CFTR cotranslationally, recognizing early folding defects with the assistance

of select chaperones (see below), whereas CHIP and Hsp70 (332) recognize folding defects

as CFTR translation is completed.

During protein quality control, chaperone and E3 function are tightly intertwined (329, 345;

and see below). Therefore, the targeting of chaperones that are associated with E3 ligases
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may either facilitate the degradation of the misfolded protein, as suggested above, or prevent

the premature degradation of CFTR. Thus chaperone modulation may provide a means to

fold ΔF508-CFTR so that it can escape ERAD and ultimately function, albeit less

efficiently, at the plasma membrane. In fact, an effective scheme to rescue ΔF508-CFTR

was recently achieved by altering the activity of an Hsp40 cochaperone, which functions at

the same step as RMA1. The chaperone, DNAJB12, is ER-associated, and decreasing

DNAJB12 levels by siRNA increases CFTR folding efficiency (170, 560). When DNAJB12

was silenced in combination with a small molecule corrector, Corrector 4a (Corr-4a), which

partially rescues ΔF508-CFTR maturation (375; also see sect. IIIA), a strong synergistic

effect on CFTR maturation was evident (170). These data emphasize the importance of

targeting both the degradation and folding machineries to achieve maximal, therapeutic

effects.

Molecular chaperones act as ERAD gatekeepers, closely monitoring protein folding and

regulating the decision between folding and degradation (59, 350). It remains mysterious

how the same chaperone can engage in protein folding and degradation processes. One

possibility is that the amount of time a client protein interacts with the chaperone is critical

for this decision. In this model, as a protein folds, exposed chaperone-binding sites can go

through several cycles of binding and release. But, as a protein attains its final conformation,

these sites are obscured and the protein is released from the ER and traffics to the Golgi. If,

however, binding sites remain accessible to chaperones for extended periods of time, then

the bound chaperone may recruit the degradation machinery. Notably, chaperones have been

suggested to act as bridging factors between misfolded proteins and E3 ligases (329, 345),

and in support of this model, Hsp70 and Hsp40s regulate the degradation of ΔF508-CFTR

together with the E3 ligases CHIP andRMA1 (also see above; Refs. 170, 332). In further

support of this model, cytosolic Hsp70 interacts with ΔF508-CFTR longer than wild-type

CFTR (564), and an enhanced interaction between ΔF508-CFTR and an Hsp70-Hsp40

chaperone pair was observed (331).

It is also mysterious how a distinct chaperone may exhibit a “profolding” versus

“prodegradative” effect on different substrates. Studies in yeast show that Hsp70 acts in a

prodegradative manner during CFTR quality control (584), but the cytoplasmic Hsp90 plays

an important role in maintaining the solubility of NBD1 and facilitating CFTR folding

(571). Specifically, perturbation of Hsp90 function, either by genetic ablation in yeast or

chemical inhibition in mammalian cells, accelerates the degradation of CFTR or both CFTR

and ΔF508-CFTR, respectively (309, 571). For other substrates, Hsp90 promotes ERAD

(173). In mammals, the ATPase activity of Hsp90 is intrinsically low, but the cochaperone

Aha1 binds to and stimulates Hsp90 ATPase activity (369). Since Hsp90 promotes CFTR

folding, one might predict that increased levels of Aha1 might further promote CFTR

maturation. Unexpectedly, an increase in Aha1 accelerated CFTR degradation, and

decreasing Aha1 levels rescued ΔF508-CFTR folding/maturation (268, 531). One

explanation for this result is that a slow rate of Hsp90 cycling benefits CFTR maturation, but

by accelerating this cycle, CFTR maturation is compromised because the protein is delivered

too soon to the degradation machinery. Ultimately, it is likely that additional chaperones and
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cochaperones, which might themselves become therapeutic targets to treat CF, will be

discovered that augment ΔF508-CFTR maturation.

In addition to CFTR, other ABC transporters have been identified as substrates for ERAD,

including the multidrug resistance proteins, P-glycoprotein, and the breast cancer resistance

protein (BCRP) (see TABLE 1). P-glycoprotein and BCRP are members of the MDR/TAP

and White subfamilies of ABC transporters, respectively (96). A key function of the

multidrug resistance proteins is ATP-dependent export of xenobiotics, such as those

administered as chemotherapeutics. Drug resistance is a major clinical problem, impacting

the effective treatment of many diseases, especially cancer. In fact, sequencing studies have

found that BCRP variants can have dramatic effects on protein levels and methotrexate

transport, a measure of BCRP activity (222). This finding suggests that the variants affect

either protein biosynthesis or trafficking. In particular, cells containing one of two alleles,

F208S and S441N, produce comparable amounts of mRNA compared with those expressing

wild-type BCRP, but have reduced protein levels. It was also shown that the mutant proteins

produced by these variants remain sensitive to endoglycosidase H (endo H). In higher

eukaryotic cells, as N-glycosylated proteins transit through the Golgi, their glycans are

processed by Golgi α-mannosidase II, which renders glycoproteins insensitive to endo H.

Therefore, prolonged sensitivity to endo H is indicative of ER retention. Furthermore, both

the F208S and S441N mutants are ubiquitinated, and protein levels increase when cells are

incubated with MG-132, a proteasome inhibitor that was noted above (343). These data

strongly suggest that the BCRP variants are retained in the ER and targeted for ERAD.

While no diseases are directly caused by mutant forms of these transporters, correlations

between polymorphisms and patient responses to chemotherapeutics have been documented

(222). Therefore, the importance of understanding the mechanisms that regulate the

expression of multidrug transporters should not be underestimated. This knowledge may

help predict how a patient will respond to chemotherapeutics. In addition, new strategies to

combat drug-resistant tumors may be developed.

B. Neurodegenerative Disorders

Several disorders result from the accumulation of ERAD substrates in neuronal cells.

Neuronal cells have a relatively low regenerative capacity and an age-dependent decrease in

their ability to withstand cellular stress, rendering them particularly sensitive to toxic

aggregates that result in apoptosis (516). In general, neurodegenerative diseases cause

mental impairment and movement disorders, such as those seen in Alzheimer’s disease

(AD). In AD, the accumulation of an incorrectly processed form of the amyloid precursor

protein, termed amyloid beta (Aβ) is thought to be linked to the neurodegenerative

phenotype in AD. Accumulation of Aβ has been proposed to result in neurodegeneration due

to mitochondrial dysfunction, oxidative stress, disruption of synaptic transmission,

disruption of axonal trafficking, and/or general membrane disruption (92, 445). While the

specific molecular defect due to Aβ accumulation remains to be determined, the pathology

of this disease highlights the sensitivity of neuronal cells to aggregating or aggregation-

prone proteins. Although there are several examples of neurodegenerative diseases that

follow the typical ERAD paradigm (protein misfolding, followed by proteasome-dependent
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degradation; TABLE 1), we focus our discussion here on two neurodegenerative diseases

linked to the ERAD machinery in a somewhat atypical fashion.

Huntington’s disease (HD) results from abnormally high numbers (>35) of polyglutamine

(polyQ) repeats in the huntingtin (Htt) protein. In HD, the length of the CAG codon repeats

in HTT positively correlates with an increased propensity of Htt aggregate formation. In line

with this observation, the length of the CAG repeat in HTT also directly correlates with the

age of onset and disease severity in HD patients (469). The disease is inherited in an

autosomal dominant pattern and afflicts nearly 1 in 10,000 Americans (10). In adult-onset

HD, patients present with a combination of behavioral changes, movement disorders, and

progressive dementia (8, 591). The native function of Htt is poorly understood, and the

unusual nature of the link between HD and ERAD stems from the fact that Htt is a

cytoplasmic protein, instead of a secretory protein.

An early hint that the UPS might be connected to the pathogenesis of HD came from a study

demonstrating that HD inclusions in brain sections from affected individuals are

immunoreactive for ubiquitin (104). A possible, functional link between HD and the UPS

was provided by the Kopito lab, which showed that the UPS is less active in cells expressing

polyQ Htt. Specifically, as the length of the polyQ repeat increased beyond a threshold that

correlates with disease presentation, the ability of the proteasome to degrade a fluorescent

reporter in cells was inhibited (34). These data provided one mechanistic explanation for

why HD develops: the generation of Htt polyQ aggregates decreases UPS activity, which

will then lead to a further accumulation of unprocessed UPS substrates and an escalation of

aggregate toxicity. However, it is still debated whether the HD aggregates are a secondary

effect of the disease or are the cause of neurodegeneration (24, 246, 427, 459). Thus

misfolded Htt preaggregates might also accumulate, which may initiate disease onset.

Nevertheless, support for the UPS inhibition model comes from a study examining the levels

of K48 ubiquitin-linked, proteasome-directed peptides present in an Htt polyQ-expressing

cell line and in tissue taken from a mouse model for HD. In both experimental systems,

there was a significant increase in the amount of K48 ubiquitinated peptides present in

samples containing an Htt reporter with 150 polyQ repeats (37). Furthermore, K48 chain

accumulation correlated strongly with proteasome inhibition. However, it was possible that

the increase in K48 linked chains resulted from the accumulation of polyubiquitinated Htt

aggregates, rather than from global impairment of the proteasome. To test for global

impairment, the levels of other ubiquitin chain linkages, i.e., K11 and K63, were examined.

Both the levels of K11 and K63 ubiquitin chains increased in the presence of either MG-132

or the 150 polyQ repeat form of Htt, which points toward wholesale dysregulation of the

UPS (37).

Do ERAD substrates also accumulate under these conditions? The answer appears to be yes,

as Duennwald and Lindquist (114) found that the concentration of several well-characterized

ERAD substrates increases in the presence of aggregation-prone Htt. The accumulation of

these ERAD substrates may arise from direct proteasome inhibition, as suggested above,

and/or from the observed colocalization of p97/Cdc48 to the Htt inclusions. Also, a recent

study reported an in vitro interaction between Htt polyQ aggregates and the ER-resident E3
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ubiquitin ligase gp78, which is required for the ERAD of several substrates (230, 247, 297,

340); Htt aggregates block the association of gp78 with polyubiquitinated proteins and with

p97/Cdc48 (563).

If ERAD substrates accumulate, one might predict that the UPR is induced in the presence

of polyQ Htt. In fact, the connection between a long-term UPR induction and apoptosis (see

sect. ID) might explain at least in part the neurodegenerative phenotype in HD. Indeed,

expression of polyQ Htt in yeast activates the UPR and is synthetically lethal when

combined with other inducers of ER stress, such as tunicamycin, the inhibitor of N-linked

glycosylation (114). Studies in mammalian cells show that polyQ Htt induces cell stress,

increases chaperone levels, and results in the conversion of IRE1 and PERK into their

active, phosphorylated forms (114, 269, 353). Together, these data strongly suggest that

polyQ Htt aggregates alter the activity of the ERAD machinery and induce the UPR, further

contributing to cytotoxicity. This is not to say that Htt polyQ preaggregates don’t also

contribute to the disease (427, 458, 459), and in fact, it has been proposed that the

mechanism of pathogenesis of HD stems from disruption of other pathways, either through

aberrant interactions or by loss of Htt function. For example, Htt localizes to the Golgi,

endosomes, and vesicular carriers, among other locations in cells. If Htt function in axonal

trafficking is blocked due to polyQ Htt, this could lead to decreased synaptic transmission

and cell death (159). Together, future therapies for HD may need to focus on addressing the

cytotoxicity associated with ER stress.

Another example of a neurological disease linked to the ERAD pathway is Parkinson’s

disease (PD). PD is a member of the family of movement disorders and results from the loss

of dopaminergic neurons. PD occurs in ~1–2% of the population, usually developing after

60 years of age. Patients with PD present with four main categories of symptoms: tremors,

bradykinesia, rigidity, and postural instability (11). The probability of developing PD

increases with age and either can be sporadic or arise from specific genetic mutations. For

instance, mutations in PARK2, which encodes the E3 ubiquitin ligase Parkin, lead to an

autosomalrecessive form of early-onset PD. Parkin is normally localized to the cytoplasm,

which with the exception of CHIP (see above) is generally atypical for E3 ligases that

participate in ERAD. However, it was demonstrated that Parkin is induced by the UPR

(218). In addition, a candidate for a Parkin substrate is the Parkin-associated endothelin

receptor-like receptor PaelR (217). PaelR, also known as GPR37, is a putative G protein-

coupled receptor that is highly expressed in the central nervous system, but for which no

endogenous ligands have been found (290). The connection between PaelR and PD is

supported by the observation that PaelR accumulates in Lewy bodies, which are

electrondense inclusions that serve as a histological indicator of PD (342). Furthermore,

PaelR is polyubiquitinated in cells and can be ubiquitinated by Parkin in vitro. In addition,

the proteasome-dependent degradation of PaelR is stimulated by Parkin overexpression

(217). Finally, PaelR accumulates in a detergent-insoluble fraction in cells treated with a

proteasome inhibitor or with ER stressors, indicating that PaelR has a natural propensity to

misfold under stress conditions. These data indicate that Parkin mediates the quality control

of PaelR.

Guerriero and Brodsky Page 18

Physiol Rev. Author manuscript; available in PMC 2014 September 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Another connection between Parkin and ERAD was provided by the observation that Parkin

function may be supplanted by another E3 required for the ERAD of select substrates in

mammals, Hrd1 (41, 79, 206, 223). Modulation of Hrd1 levels changes PaelR levels, and

Hrd1 expression can protect against PaelR-induced cell death (361). Furthermore, Hrd1 is

expressed in dopaminergic neurons throughout the mouse brain, providing additional

evidence that Hrd1 and Parkin function might be coordinated (362). However, Parkin has

also been implicated in mitophagy, a process in which mitochondria are engulfed and

destroyed via an autophagy-related pathway (239, 572). It was found that the mitochondrial

serine/threonine kinase PINK1 accumulates on damaged mitochondria and in turn recruits

Parkin. Parkin ubiquitinates the mitochondria fusion-promoting factor mitofusin. This

results in the degradation of mitofusin via a p97/Cdc48-dependent ERAD-like process.

Mitofusin degradation then triggers mitophagy (368). This pathway appears to be important

for the pathogenesis of PD, as mutations in PINK1 can also cause inherited PD. However,

the relationship and relative importance between the mitochondrial and ER functions of

Parkin remain to be determined. But, in the past few years, communication between

mitochondria and the ER has been established. Mitochondria directly interact with the ER,

and this interaction is important for many processes, including lipid transfer, calcium

signaling, and cell death (384). Also, some factors that comprise the ERAD machinery also

function to recognize, extract, and destroy components that reside in the mitochondrial

membrane (86, 199, 558). A recent study revealed that Parkin is not only upregulated by ER

stress, but also by mitochondrial stress (50). Surprisingly, however, the cytoprotective effect

associated with Parkin expression may occur independent of the proteasome. These

collective data highlight the enigmatic nature of Parkin’s true function and the need to

further examine Parkin’s role at the interface between ERAD and disease.

C. Metabolic Disease

Diabetes mellitus is a metabolic disease in which individuals either produce too little insulin

or are unable to respond properly to insulin, resulting in hyperglycemia. In general, diabetes

can be broken into two main classes based on the underlying cause of the disease and/or the

conditions surrounding the onset of the symptoms. Type 1 diabetes accounts for ~5–10% of

all cases and is usually diagnosed at a young age. Type 1 diabetes results from immune

system-mediated destruction of pancreatic β-cells, thereby decreasing the levels of insulin.

In contrast, type 2 diabetes accounts for the majority of cases (90–95%) and results

primarily from insulin resistance due to a decreased ability of target cells to respond to

insulin (25). Diabetic individuals can present with a range of both short-term and long-term

symptoms, including blindness, heart disease, kidney failure, and the need for limb

amputation due to poor circulation (6). Classification of patients into type 1 or type 2 is

sometimes difficult due to a large number of disease modifiers (25). For the purpose of this

review, we will focus on the genetic factors that can cause diabetes and have been directly

linked to ERAD.

Normally, the peptide hormone insulin is produced by pancreatic β-cells and stimulates the

clearance of blood glucose by muscle, fat, and liver cells (356). Clearance is achieved via

interaction with insulin receptors on these cells, thereby initiating a signaling cascade.

Pancreatic β-cells are specialized in that they have a highly elaborated secretory system that
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is designed to synthesize and export large amounts of insulin under hyperglycemic

conditions. In fact, insulin production in these cells accounts for 50% of total protein

synthesis under stimulated conditions (440, 470). Insulin biosynthesis begins with the

cotranslational insertion of a 110 amino acid preproinsulin into the ER. Subsequent removal

of the signal sequence from this precursor generates the 86 amino acid peptide proinsulin. In

the oxidizing environment of the ER, proinsulin acquires three disulfide bonds. Following

export to the Golgi complex, further proteolytic processing of proinsulin results in the

production of mature insulin that is then packaged into secretory granules.

The demand placed on the biosynthetic and folding machinery by insulin production has

been suggested to result in increased amounts of ER stress in β-cells (515). As discussed

earlier, unresolved activation of the UPR can lead to apoptosis, and heterozygous mice that

are unable to activate one leg of the UPR, which is mediated by PERK, become diabetic and

glucose intolerant (432). And, XBP-1+/− mice, in which UPR signaling is only partially

inhibited, develop insulin resistance (367). Thus, as anticipated, β-cell apoptosis is relevant

for both type 1 and type 2 diabetes, and ER stress may play a significant role in cell death

and insulin deficiency (135). These events suggest the presence of a positive-feedback loop:

stressed β-cells are destroyed, which in turn potentiates the disease due to a decreased ability

to produce insulin. Consistent with a link between insulin production, the UPR, and

diabetes, ER stress is increased in the diabetic Akita mouse model. In this case, the disease

arises from the expression of a single copy of an insulin mutant (Ins2C96Y) that is unable to

form an intrachain disulfide bond (16, 21). Interestingly, the levels of both wild-type insulin

and Ins2C96Y are increased in the presence of MG-132, which implies that even native

insulin is subject to misfolding and proteasome-dependent degradation (16). Further support

for a role for ER stress in the pathogenesis of diabetes comes from the finding that

guanabenz, a small molecule, rescues cells from death resulting from exposure to ER

stressors, including tunicamycin and expression of Ins2C96Y. Investigation into the

mechanism of action of guanabenz revealed that rescue was due to an enhancement of UPR-

mediated translational attenuation (501). This finding represents a novel approach to

mitigate ER stress and may be useful in treating metabolic syndromes associated with

misfolded insulin variants or other peptide hormones.

The data described above suggest that allelic variants of insulin in humans may contribute to

the “normal” levels of ER stress in β-cells, a phenomenon that may push these cells over the

edge and lead to apoptosis and diabetes. In support of this model, several point mutations in

the insulin gene have been identified in patients with neonatal diabetes. The identified

mutations result in the ER accumulation of proinsulin and an accompanying secretion defect

(371). Interestingly, one of the naturally occurring mutations, C96Y, is the same one found

in the Akita mouse (523). Other studies with the Akita model demonstrated robust Hrd1-

dependent ubiquitination of Ins2C96Y, directly implicating the ERAD pathway in the

pathogenesis of genetically linked diabetes (16). A mouse model with inducible expression

of Ins2C96Y confirmed the relationship between ER stress, increased apoptosis, and

diabetes. Of note, the apoptotic response was increased either by proteasome inhibition or by

downregulation of a member of the Hrd1 complex (186). Therefore, ERAD plays an

important role in mitigating the stress incurred upon expression of misfolded insulin.
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Diabetes-causing mutations have also been identified in the insulin receptor (IR), which

target the mutant receptor for ERAD. IR is synthesized as an immature form, which must

then undergo posttranslational modifications that include N-glycosylation, dimerization, and

proteolytic cleavage (534). Substitution of the highly conserved His at position 209 with Arg

prevents receptor dimerization and reduces transport to the cell surface (233). A decrease in

the levels of mutant IR precursors over time suggested that the protein was degraded.

Further analysis of the H209R and another IR variant, F382V, revealed that these mutants

exhibit an enhanced interaction with BiP, indicative of increased ER retention and perhaps

recognition for degradation (12). Two additional IR variants, D1179E and L1193W, were

identified in patients with insulin resistance and which result in decreased surface expression

coupled with increased degradation of the pro-receptor form (220). Further study revealed

that pro-receptor levels increased upon the addition of proteasome inhibitors (219). In

addition, the mutant forms of IR associated with cytosolic Hsp90 to a greater extent than

wild-type IR. To define the role of Hsp90 in IR degradation, anti-Hsp90 antibodies were

microinjected into cells transfected with mutant IR. This treatment increased the amount of

the mutant IR (219), suggesting that cytosolic Hsp90 enhances the degradation of mutant IR.

In contrast, chemical inhibition of Hsp90 increased the proteasome-dependent degradation

of wild-type immature forms of IR, suggesting that this chaperone also facilitates the

formation of early biogenic intermediates of the receptor (399).

D. Bacterial Toxins and ERAD

Pathogenic bacteria, including Vibrio cholera, Bordetella pertussis, Shigella dysenteriae,

and Shiga toxigenic Escherichia coli, infect hundreds of millions of people each year.

Combined, these infections result in millions of deaths annually (391). For example, Vibrio

cholera is a serious threat in developing nations and is estimated to infect 3–5 million

persons each year, resulting in ~100,000 deaths (1). Infectious outbreaks occur primarily in

these nations due to poor sanitation and inadequate medical care. Patients infected with

pathogenic variants of Vibrio cholera present with abrupt-onset watery diarrhea and

dangerous levels of fluid loss. If not properly treated, death can result within hours.

The key to Vibrio cholera’s virulence begins with the secretion of AB5 protein complexes,

which alter host cellular homeostasis. The AB5 toxin family consists of four subfamilies

based on the method of toxin entry into the host cell via the B subunit and upon the

enzymatic activity of the A subunit. Cholera toxin (CTx) is composed of a B-homopentamer

and disulfide-linked A1 (catalytic) and A2 (linking) domains. The AB5 holotoxin is

internalized from the apical plasma membrane of enterocytes following cell surface

interaction with gangliosides. After entry into endosomes, CTx is trafficked in a retrograde

manner to the Golgi, possibly due to its association with the ganglioside. Further retrograde

trafficking of CTx to the ER occurs via the KDEL receptor, which recognizes the KDEL ER

retrieval signal in the A2 subunit. Once in the ER, the catalytic A1 subunit (CTA1)

disassociates from the A2B5 subunits, due to the action of ER oxidoreductases (289, 466,

509). CTA1 is then retrotranslocated from the ER to the cytoplasm where it folds and

catalyzes the addition of an ADP-ribosyl group onto the Gs subunit of adenylate cyclase.

This results in constitutive activation of adenylate cyclase, increased cAMP production, and
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continuous activation of CFTR (509). Overactive CFTR causes diarrhea and the resulting

water and electrolyte loss.

Retrotranslocation of CTA1 from the ER to the cytoplasm appears to follow an ERAD-like

pathway. As observed during ERAD, the toxin must first be recognized prior to

retrotranslocation. Interestingly, recognition involves the ERresident PDI. PDI does not

function as an oxidoreductase in the CTA1 unfolding reaction, but rather as a “redox-

dependent chaperone” (499). In one model, PDI directs CTA1 unfolding, which was found

to depend on another ER oxidoreductase, Ero1α (136, 137, 336). Ero1α helps PDI cycle

between the reduced (toxin binding) and oxidized (toxin releasing) states. In another model,

CTA1 spontaneously unfolds once dissociated from PDI (482). Unlike other ERAD

substrates, CTA1 retrotranslocation is p97/Cdc48-independent (267). What then is the

driving force for CTA1’s retrotranslocation from the ER to the cytosol? One possibility is

that CTA1 is extracted by the 19S cap of the proteasome, which is sufficient for the removal

of pro α-factor from yeast (284) and mammalian (518) vesicles. However, data directly

supporting a role for the 19S cap in CTA1 dislocation are currently lacking. Yet another

hypothesis is that spontaneous refolding of CTA1 in the cytosol ratchets CTA1 through a

retrotranslocon, while simultaneously helping CTA1 avoid recognition by the cytosolic

quality control machinery. Evidence in support of yet another model derives from the fact

that the cytosolic chaperone Hsp90 interacts with CTA1 in an ATP-dependent manner and is

required for the ER dislocation of CTA1 (483). Finally, treatment of cells with the

multifunctional drug 4-phenylbutyric acid (PBA) inhibits cholera intoxication (482). In

contrast to its other modes of action (see sect. IIIA), PBA may stabilize the tertiary structure

of CTA1 since the compound increases the thermal stability of CTA1, as assessed by

circular dichroism and fluorescence spectroscopy. Cell lines treated with PBA also exhibited

reduced translocation of CTA1 from the ER to the cytoplasm and were spared CTA1

intoxication (482).

There are three proteins that have been implicated as the retrotranslocon for CTA1. In 2000,

Schmitz et al. (433) used a cell-free system to examine the role of Sec61 in CTA1

retrotranslocation. They showed that CTA1 can be retrotranslocated from CTA1-loaded

microsomes, but this process was inhibited by the addition of a ribosome nascent chain

complex to block Sec61 (433). In contrast, the retrotranslocation of CTA1 subunit was

facilitated by Derlin-1 in human embryonic kidney cells. CTA1 interacted with Derlin-1,

and reduced CTA1 retrotranslocation was evident in cells expressing a dominant-negative

version of Derlin-1 (39). Derlin-1 also interacts with PDI, which could provide for a

convenient mechanism to hand CTA1 from the holotoxin to the retrotranslocon. Recently,

the interaction of CTA1 with the E3 ligases gp78 and Hrd1 were noted (40). Besides

functioning as an E3, Hrd1 has been implicated in the retrotranslocation of HMG-CoA

reductase (152, 424) and CPY* (70) in yeast (see sect. IE). Consistent with these data,

downregulation of Hrd1 or the use of dominant-negative mutants of Hrd1 attenuated CTA1

retrotranslocation. Interestingly, the dominant-negative form of Derlin-1 also blocked the

interaction of CTA1 with gp78 and Hrd1, suggesting that CTA1 interacts with Derlin-1 prior

to the E3 ligases (40). These collective data support a role for multiple, putative channels in
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CTA1 retrotranslocation, although it is unclear if they act together, sequentially, or

redundantly.

After retrotranslocation, it is unknown how CTA1 escapes polyubiquitination and

proteasome-dependent degradation, which is the typical fate of ERAD substrates. It was

hypothesized that CTA1 avoids polyubiquitination because it has only two lysines, which

may be inaccessible to modification by the E3s (193, 410). Direct ubiquitination of CTA1

has not been observed, and one study demonstrated that CTA1 retrotranslocation continues

in a lysine-less version of CTA1. However, as noted in section IE, ubiquitination has been

noted on noncanonical sites such as Ser or Thr (67, 223, 452, 530). Therefore, the role of the

E3 ligases and ubiquitination during CTA1 retrotranslocation remain uncertain. An alternate

possibility is that polyubiquitinated CTA1 may be acted upon by a deubiquitinating enzyme

that rescues proteins from being degraded. Or, the rapid refolding of CTA1 in the cytoplasm

(see above) may obscure residues that might otherwise be ubiquitinated. This model is

supported by data showing rapid acquisition of trypsin resistance upon release from PDI

(410). Overall, these studies reveal that CTA1 intoxication requires a functional ERAD

machinery and that CTA1 masquerades as an ERAD substrate, albeit one with unique

features. But, because the AB5 toxins are structurally similar and seem to have evolved

similar mechanisms to coopt the ERAD machinery, understanding the factors and processes

required for CTx toxicity might provide useful targets for the treatment of symptoms

resulting from other pathogenic bacteria harboring AB5 toxins. In fact, ricin (a plant AB5

toxin produced by Ricinus comminus) may spontaneously unfold once dissociated from PDI

in the ER (33, 467) and also appears to forego ubiquitination after its retrotranslocation

through either Sec61 or a Hrd1-based retrotranslocon (97, 293, 453). Since ricin is

synthesized within eukaryotic cells, rather than in bacteria like CTx, it is glycosylated in the

ER (102). This may explain some of the observed differences between the fates of ricin and

CTA1, such as the interaction between ricin and EDEM1, and a measurable amount of

degradation of ricin toxin in the cytoplasm, presumably due to its failure to efficiently

translocate into the ER or completely refold after its retrotranslocation (453, 460, 541).

E. Serpinopathies

The family of serine protease inhibitors (serpins) is responsible for a class of diseases known

as the serpinopathies (164). These diseases result from mutations in serpin family members,

including α1-antitrypsin (AT), neuroserpin, antithrombin, and β2-antiplasmin. Mutant

serpins can adopt altered, unstable conformations, leading to loss of native protein function

and in some cases the acquisition of a toxic gain-of-function aggregate or polymer. The net

outcomes are a group of pathologies that result in lung and liver disease, dementia, and

blood clotting deficiencies.

Members of the serpin family share >30% sequence homology, as well as a conserved

tertiary structure. Mutations in SERPINA1, which encodes the prototypical serpin α1-AT

result in AT deficiency. Approximately 1 in 2,000 people of Northern European descent is

homozygous for disease-causing alleles of AT (307). AT-deficient patients may present with

chronic obstructive pulmonary disease (COPD) and can develop cirrhosis (3). Among

individuals affected by AT deficiency, nearly 1–2% develop COPD symptoms, which is

Guerriero and Brodsky Page 23

Physiol Rev. Author manuscript; available in PMC 2014 September 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



exacerbated by smoking. Liver disease is more common, with 10% of infants being born

with jaundice and up to 50% of homozygous adults (over the age of 50) with some evidence

of cirrhosis at death (116). This observation highlights the progressive nature of AT

deficiency and the need for early diagnosis. Current treatment for AT-associated COPD

relies on intravenous enzyme replacement therapy (3). It is much more difficult, to treat

cirrhosis that results from polymer accumulation, and the only viable option is a liver

transplant. Therefore, a significant body of research has been devoted to uncovering the

pathways that degrade misfolded AT in hopes of developing therapies to reduce polymer

formation and/or increase protein clearance in the liver.

AT is a 394-amino acid protein that is synthesized primarily in hepatocytes, and in the ER it

becomes N-glycosylated. AT functions both in the bloodstream where it inhibits neutrophil-

derived proteases and in lung tissue where it regulates elastase. The wild-type protein,

known as the “M” allele, binds to and is cleaved by these proteases, thereby inducing a

conformational change that inactivates them (117, 212). The most common disease-causing

variant of AT is termed the Z variant (E342K), ATZ, based on its slower migration on an

isoelectric focusing gel relative to ATM. Due to its inherent instability and the loss of an

intramolecular salt bridge, ATZ self-associates and forms dimers and higher order polymers

within the ER in hepatocytes. As a result, serum levels are only ~10–15% of wild-type

levels (308, 378, 456). In essence, ATZ self-assembly underlies the two main pathologies

associated with AT deficiency: 1) AT deficiency is a loss-of-function disease as a

consequence of increased elastase activity, which results in the destruction of connective

tissue in the lung; and 2) AT deficiency is a gain-of-function disease from the accumulation

of toxic aggregates in the liver, which can lead to hepatitis, cirrhosis, and an increased risk

for hepatocellular carcinoma (379).

Early work in mammalian cells and in a yeast model demonstrated that ATZ degradation

requires the activity of the proteasome, pointing toward a role for ERAD in clearing soluble

forms of ATZ from the secretory pathway. First, ATZ degradation was significantly delayed

in a yeast strain lacking the chymotrypsin-like activity of the proteasome (540) and in a

strain in which proteasome assembly was defective (442). Second, the half-life of ATZ

expressed in human skin fibroblasts was increased threefold in the presence of a proteasome

inhibitor (394). The proteasome is also required for the degradation of a naturally occurring

truncated version of AT, null Hong Kong (NHK) (304). Surprisingly, it remains unclear

whether mutant AT is ubiquitinated prior to degradation, although gp78 may be involved in

ATZ turnover (451) and NHK resides in a Hrd1-containing complex (79). Moreover, a

dominant-negative Hrd1 construct decreased the ubiquitination of NHK in HeLa cells (260),

and ATZ solubility and degradation were enhanced by Hrd1 overexpression (522).

Other work demonstrated that ATM interacts with calnexin during its maturation (366);

therefore, it is not surprising that lectins play an important role in the ERAD of misfolded

forms of AT. ATZ was shown to interact with calnexin in patient fibroblasts transfected with

the ATZ gene (554), and a similar interaction was demonstrated for NHK (282). Ongoing

studies using NHK have yielded additional insights into the machinery required to degrade

misfolded forms of AT. For example, calnexin-bound NHK appears to be transferred in a

sequential manner to EDEM1 (see sect. IE) and then perhaps to the retrotranslocon (357).
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Another study suggested that EDEM1’s role during NHK degradation is cell-type specific,

and ERManI may instead be the critical “timer” that choses NHK for degradation (553).

Nevertheless, EDEM1 and the ERManI can act synergistically to trigger the degradation of

NHK (205). NHK also binds two other lectins, XTP3-B and OS-9, which with BiP (66) act

early in the pathway for ERAD substrate selection (79, 206).

Increasing evidence indicates that autophagy may play a complementary role to ERAD to

destroy difficult-to-manage proteins (275). Because the autophagic pathway can remove

large aggregates and even significant portions of damaged ER, one might imagine that

autophagy could clear higher order ATZ polymers. Early evidence for this hypothesis came

from studies examining ATZ polymer residence by immunoelectron microscopy. As

predicted, ATZ was found not only in the ER but also in autophagosomes (486). Notably,

chemical disruptors of autophagy stabilized ATZ, albeit rather modestly compared with

proteasome inhibition (394, 486). This evidence was corroborated through the use of the

yeast model, in which it was shown that autophagy became necessary to degrade ATZ but

only when the protein was overexpressed and aggregated (276). Ultimately, the importance

of the autophagic pathway and the fate of ATZ were demonstrated in mouse models (235).

This model proved essential for the testing of small molecules that might one day improve

the pathologies associated with AT deficiency (see sect. IIIA). Overall, the level of ATZ

expression and components that regulate autophagy may represent genetic modifiers of AT

deficiency. The identification of genetic modifiers for AT is vital given that <10% of ATZ

homozygotes develop clinically relevant liver disease in childhood (476).

Surprisingly, there are some serpin family members that do not exhibit serine protease

inhibitor activity but instead function as chaperones. Hsp47 resides in the ER and aids in the

assembly of procollagen into a triple-helical form of procollagen (320). Mutations in Hsp47

compromise chaperone function, but at this point, the mutations do not appear to result in

toxic polymerization (78). Instead, the loss of Hsp47 function manifests as osteogenesis

imperfecta due to delayed secretion of procollagen trimers. Patient fibroblasts have virtually

no detectable levels of Hsp47 protein; however, treatment with MG-132 increases Hsp47

levels, suggesting that the ERAD pathway plays a role in this form of the disease. In

contrast, aggregates that arise in the ER directly from mutant forms of procollagen and that

also cause osteogenesis imperfecta are destroyed by autophagy (221).

It should be mentioned that in addition to the serpinopathies described here, three other

mutant forms of serpins exist that are ER retained (23, 503). Defects in these proteins lead to

thyroxine binding globulin deficiency, alpha-1-antichimotrypsin deficiency, and type I

hereditary angioedema. It remains unknown whether the mutant proteins are targeted for

ERAD and/or autophagy, but based on the fates of other mutant serpins (273), it is likely

that these pathways will contribute to their turnover.

F. Viruses and ERAD

In addition to bacteria, select viruses have also evolved ways to subvert host cells by

capitalizing on ERAD-associated activities. Immune surveillance for virally infected cells

requires the presentation of viral peptides by MHC-I molecules to cytotoxic T cells. The

generation of viral peptides is accomplished by proteasome processing and cleavage by

Guerriero and Brodsky Page 25

Physiol Rev. Author manuscript; available in PMC 2014 September 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



other proteases, which is followed by loading onto MHC-I in the ER and trafficking to the

cell surface (98, 107). MHC-I biosynthesis is complex, requiring disulfide bond formation,

N-linked glycosylation, heterodimerization, and peptide loading, and the failure to properly

assemble these complexes can result in ERAD (74). In one example, the turnover of MHC-I

molecules was accelerated by infection with human cytomegalovirus (HCMV) (32). HCMV

is a herpes-type virus that can cause persistent, latent infections, but is usually only life-

threatening in immunocompromised individuals. For those individuals, HCMV leads to

mononucleosis-like symptoms, including fatigue, joint stiffness, and muscle pain, but the

virus can also target specific organs, such as the eyes, lungs, gastrointestinal tract, and brain

(5).

The study of MHC-I downregulation contributed significantly to early investigations of

ERAD. Two viral genes were identified, US2 and US11, that direct newly synthesized

MHC-I molecules to the ERAD pathway (232, 544, 545). Other early studies also

demonstrated retrotranslocation of full-length MHC-I into a cytoplasmic pool in the

presence of US11 (128, 449, 544). The retrotranslocated, or “dislocated” material, was

deglycosylated, which may be important to feed the protein into the proteasome (203, 292).

HCMV-induced degradation of MHC-I also required polyubiquitination, but interestingly

ubiquitination does not occur on the cytoplasmic tail of MHC-I, which suggested that

ubiquitination was occurring on the luminal domain of MHC-I (144). Thus the protein must

form a hairpin across the ER membrane, and at least partial retrotranslocation is required for

MHC-I ubiquitination. It is not surprising, then, that BiP plays a role in the US2- and US11-

mediated degradation of MHC-I (195).

Interestingly, there are differences between the machinery used by US2 and US11, such as

in the involvement of Derlin for US11 retrotranslocation, but not for US2 (299). In contrast,

there is a requirement for signal peptide peptidase (SPP) for US2-mediated

retrotranslocation (313), which at first glance is somewhat surprising given the fact that US2

is a type I membrane protein with a noncleavable signal sequence (156). However, a recent

study found SPP in a complex together with PDI (285). These data suggest that substrate

recruitment by SPP can occur independently of signal sequence cleavage. More generally,

SPP may be important to clip integral membrane spans of select ERAD substrates, and

consistent with this view a misfolded region in an integral membrane protein associated with

SPP (90).

Other differences between US2 and US11 deserve mention. US2-induced ubiquitination of

MHC-I has been attributed to the mammalian E3 ligase TRC-8 (468). By comparison,

US11-dependent polyubiquitination of MHC-I appears to be facilitated by Hrd1 (189, 448).

However, a recent study demonstrated that Hrd1 contributes to the physiological regulation

of unfolded MHC-I but is dispensable for degradation induced by the presence of US11

(63). Together, the discovery of US2 and US11 has helped shed light on the molecular

details underlying various facets of the ERAD pathway.

Another example in which the ERAD pathway has been co-opted by a virus is provided by

the human immunodeficiency virus (HIV), which downregulates several aspects of host

immunity, including CD4 function. HIV is spread through transmission of body fluids and
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results in a gradual decrease in CD4+ T cells. Ultimately, this can progress into acquired

immune deficiency syndrome (AIDS) once the patient’s CD4 T-cell count has dropped

below 200 cells/mm3. HIV-AIDS has reached epidemic proportions, affecting ~33 million

individuals worldwide, and has caused over 25 million deaths (7). At first glance, the effect

of HIV on MHC-I is unlike that of HCMV, since MHC-I is cleared from the cell surface and

degraded through the action of the HIV protein Nef. However, the presence of CD4 at the

cell surface, which is the primary cell surface receptor for the virus, also hinders HIV

because it inhibits virus budding, interferes with assembly of the HIV virion, and can trigger

a CD4+ T-cell immune response (314). To overcome these barriers, HIV expresses the Vpu

protein. Vpu was first shown to induce the rapid degradation of CD4 in a prelysosomal

compartment (549), and eventually Vpu-induced CD4 degradation was demonstrated to be

dependent on a functional UPS (437). Interestingly, Vpu is a tail-anchored protein that

interacts with the COOH terminus of the β-transducin repeat containing protein, β-TrCP

(324). Through its F-box domain, an E3 Skp1-Cullin1-F-box (SCF) ligase is recruited to β-

TrCP and therefore to CD4 (142). Normally, the SCFβ-TrCP complex does not participate in

ERAD. Consistent with CD4 being “tricked” into becoming an ERAD substrate, recent data

indicate that CD4 downregulation by Vpu also requires the p97/Cdc48 complex (46, 319).

Coronavirus and hepatitis C virus also interact with the ERAD machineries, but in very

different ways from those discussed above. Coronaviurses (CoV) are RNA viruses that

infect mammals, including humans, resulting in respiratory infections, i.e., severe acute

respiratory syndrome (SARS) (376). Recently, it was shown that CoV replication occurs in

virally induced membranous compartments that are enriched for EDEM1 and OS-9 (404).

The importance of concentrating EDEM1 and OS-9 in these non-ER compartments is

unknown, but among other possibilities, these data suggest a need to downregulate ERAD

for efficient CoV replication. In line with this possibility, hepatitis C virus (HCV)

replication was recently linked to the ERAD pathway. Specifically, ubiquitination of an

HCV protein is increased by EDEM 1 or EDEM 3 overexpression, while viral replication is

increased by treatment EDEM1 or EDEM3 siRNA (419).

III. CONCLUDING REMARKS

A. Current Experimental Treatments and Prospects for Future Therapies

As evidenced from the previous sections and TABLE 1, the ERAD pathway has been

implicated in the underlying mechanisms of several diseases. But, because of the many

factors that facilitate ERAD substrate selection and degradation, and because of diverse

mechanisms by which different substrates may be destroyed, the treatment of ERAD-related

diseases will be no simple task. In addition, any therapeutic treatments must take into

account the proteostasis network within a cell, which comprises all of the factors that

influence protein fate, such as synthesis, folding, degradation, and trafficking (363, 388).

Even though these are still the “early days” for ERAD therapeutics, a growing number of

approaches have been explored to correct ERAD-linked disease (TABLE 2). These

approaches have had varying degrees of success for a number of reasons. For example, the

proteostasis network is cell type specific, and cell toxicity is always problematic since

modulation of ERAD may have secondary effects on the UPR and consequently lead to
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apoptosis. In addition, as described in the preceding sections, other degradative pathways,

such as autophagy, may act complementary to ERAD. Therefore, autophagy may

compensate for chemical inhibition of the ERAD pathway. In this section, we will discuss

select examples of recent therapeutic strategies as they have applied to cystic fibrosis, a

lysosomal storage disease, AT deficiency, and familial transthyretin amyloid disease.

Because the ΔF508-CFTR folding and trafficking defects were rescued by incubating cells

at a lower temperature (94, 100, 111) (see sect. IIA), the destruction of the diseasecausing

protein appeared to be a temperature-sensitive process. Consistent with this fact,

temperature-dependent aggregation of wild-type CFTR can even be observed in vitro (162).

Unfortunately, low temperature incubation of affected tissues in CF is not a viable

therapeutic option. However, these data do suggest that modulating kinetic and/or

thermodynamic aspects of the folding problem associated with ΔF508-CFTR may be

sufficient to keep the protein from being selected for ERAD.

The most obvious approach to reduce the degradation of ΔF508-CFTR, thereby allowing the

protein more time and perhaps a better environment in which to fold, is to inhibit the

proteasome. Some of the most common proteasome inhibitors used are MG-132 (Cbz-Leu-

Leu-leucinal), ALLN (acetyl-Leu-Leu-norleucinal), and lactacystin (a natural product

isolated from a fungus; Refs. 49, 147). Refined proteasome inhibitors are currently used in

the clinic and have shown efficacy in the treatment of late-stage multiple myeloma (434).

These compounds acts as pseudosubstrates of the proteasome and inhibit the chymotryptic-

like activity or both the chymotryptic- and tryptic-like activities (in the case of lactacystin;

Ref. 283). Unfortunately, proteasome inhibition with ALLN or lactacystin shifted wild-type

CFTR from a soluble form to a detergent-insoluble form (536). These results suggested that

strategies to augment the folding and trafficking of ΔF508-CFTR must rescue the immature

protein before it has been committed for degradation, since this pool is aggregation-prone

once ubiquitinated.

Providing aid to the endogenous chaperone-assisted folding machinery in the cell has been

considered as an attractive, alternate strategy to rescue ΔF508-CFTR and other

conformationally challenged, disease-causing proteins. One means to achieve this outcome

is via the administration of chemical chaperones. Chemical chaperones were first defined as

osmolytes that provide a more favorable milieu in which a protein can fold, often by simply

increasing the strength of the intramolecular hydrophobic bonds that are buried within a

protein. Chemical chaperones may also more globally affect the cellular proteostasis

network, thus leading to a more favorable folding/trafficking environment. Other chemical

chaperones directly bind to the misfolded protein and have been termed “pharmacological

chaperones” (51, 363, 505). These compounds lower the protein’s free energy state, which

may help the protein fold, escape ERAD, and/or limit aggregation. For ΔF508-CFTR, one

chemical chaperone that has been examined is curcumin. Curcumin is a component of

turmeric and is derived from the plant Curcuma longa. Curcumin is something of a panacea,

having been studied as a treatment for diseases from cancer to inflammatory bowel disease

as a result of its in vitro effects as an anti-inflammatory, anti-oxidant, proapoptotic, and anti-

cancer agent (119). Initial reports indicated that curcumin was able to rescue the ΔF508-

CFTR trafficking defect and some disease-related phenotypes in a CF mouse model (115).
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However, the inability to reproduce some of these results casts doubt on curcumin’s efficacy

for CF (321, 462, 533). These findings do not preclude the use of curcumin to treat CF, as

the compound may function at different steps in CFTR biogenesis or work more effectively

for other CFTR mutants (38, 529, 577).

More successful attempts to chemically correct ΔF508-CFTR were achieved by the

outcomes of high-throughput screens for small molecules that increase ΔF508-CFTR

activity at the cell surface. In one case, this led to the isolation of Corr-4a, which is a

bisaminomethylbithiazole derivative (375). Although the mechanism of action of this

compound is unknown, there is some evidence that Corr-4a binds directly to CFTR (532).

More recent results suggest that Corr-4a rescues ΔF508-CFTR by repairing MSD2-related

folding defects (171). Another ΔF508-CFTR corrector that was isolated through a high-

throughput screen, Vertex-325 (508), may bind directly to NBD1 in CFTR (576). These

combined data are consistent with evidence that the ΔF508 mutation disrupts interactions

between NBD1 and MSD2 (446). Another compound, Vertex-770, rescues the gating defect

in a less common CFTR mutant (G551D) that leads to disease (507). More likely than not,

this potentiator also binds directly to CFTR to increase the channel’s open probability.

Overall, there is continued interest in performing functional screens for small molecule

modulators of ΔF508-CFTR, and in the end, the best therapeutic outcome may be through a

combined application of drugs that restore both the folding/trafficking defect associated with

the protein, as well as its reduced channel activity.

Chemical chaperones have also been used to treat lysosomal storage diseases (LSDs), such

as Gaucher disease (GD). GD results from a deficiency in glucocerebrosidase (GC), a

lysosomal enzyme that normally breaks down the glycosphingolipid glucosylceramide. The

inability to metabolize glucosylceramide affects many organs, resulting in hepatomegaly,

splenomegaly, anemia, thrombocytopenia, bone lesions, and in some cases central nervous

system (CNS) deficiencies (45, 211, 430). Some of the allelic variants that cause GD have

been linked to ERAD, including N370S, G202R, and L444P (431). While enzyme

replacement therapy has been successful for some LSDs, this strategy is ineffective for GD,

presumably due to poor targeting of the exogenous enzyme to macrophages (430). This

problem has been partially overcome by the development of a tagged version of GC that is

recognized by a macrophage receptor; however, the modified enzyme is ineffective for

patients with CNS symptoms due to its inability to cross the blood-brain barrier (578).

Because reduced temperature also appears to rescue the G202R and L444P mutants (431),

several chemical chaperones have been examined that increase the folding and trafficking

efficiency of GC variants, some of which bind to GC’s active site as a pseudosubstrate

(578). Unfortunately, one of the most common GC mutations, L444P, is largely

unresponsive to chemical chaperones, as the mutation is not in the active site.

To circumvent the special problem associated with L444P, proteasome inhibitors and a

proteostasis regulator were examined. The proteostasis regulator is celastrol, which is used

in traditional Chinese medicine and induces the heat shock response and the UPR (341,

542). Surprisingly, both MG-132 and celastrol repaired the mutant GC, but lactacystin was

insufficient to rescue L444P, in spite of the fact that the measured proteasome inhibition by

MG-132 and lactacystin was indistinguishable (341). The explanation for this difference
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may stem from the finding that MG-132 and celastrol alter the expression of 400–500 genes,

suggesting that the proteostatic network was affected. Among these genes were several

factors regulated by the heat shock response and UPR, the latter of which is required for the

effect of MG-123 and celastrol. Notably, upon treatment with celastrol, the L444P GC

mutant now became receptive to treatment with chemical chaperones, and combining these

treatments resulted in synergistic rescue (341). This study highlights the importance of

considering the off-target, but potentially beneficial effects of a compound. In other

observations, the accumulation of glucosylceramide has been noted to increase calcium

efflux from the ER (264, 305, 377). As calcium is an important cofactor for components of

the ER folding machinery (see above), increased efflux has been hypothesized to further

impair the ER’s folding capacity. Indeed, altering ER calcium levels by inhibiting efflux, or

by the overexpression of SERCAs, which increase ER calcium, increases the processing and

activity of L444P GC (364, 521). In addition, it was noted that calcium modulation

combined with proteostasis modulation yields synergistic rescue. These studies demonstrate

the delicate nature of the ER folding environment and reinforce the benefit of combining

therapeutic approaches.

Another compound for which a known and off-target, but desired, effect is evident is PBA.

PBA is an FDA-approved drug for the treatment of urea cycle disorders due to its ability to

function as a nitrogen scavenger (58). PBA has also been explored for the treatment of

sickle cell anemia, β-thalassemia, and various malignancies (387). Thus it was something of

a surprise that PBA administration led to measureable rescue of ΔF508-CFTR in several

different cell types, including patient-derived epithelial cells (415). In a clinical trial

examining the use of PBA to treat CF, a partial rescue of CFTR activity in nasal airway

epithelium was observed, supporting continued research on the mechanism of action of this

compound (416). In fact, a proteomic analysis of the outcome of PBA treatment revealed,

among other changes, increases in BiP and Hsp70 and Hsp90, and a downregulation of the

constitutively expressed Hsp70 (Hsc70) and a subunit of the 26S proteasome (454). Thus

PBA may exert a desired effect on several key players in the protein folding and ERAD

pathways. This effect is most likely mediated by the ability of PBA to inhibit histone

deacetylases (HDAC) (76, 406). Histone acetylation and deacetylation are important

regulators of gene expression (68, 175, 406). A second FDA-approved drug, suberoylanilide

hydroxamic acid (SAHA), is also an HDAC inhibitor, and is currently used to treat

cutaneous T-cell lymphoma and is in clinical trials for the treatment of other forms of

lymphoma (288, 322). SAHA was recently shown to rescue ΔF508-CFTR channel activity

to ~28% of wild-type levels in primary airway epithelial cells. The silencing of specific

HDACs led to the identification of HDAC7 as a key mediator of ΔF508-CFTR rescue.

Perhaps not surprisingly, HDAC7 silencing broadly altered the transcriptional profile in the

epithelial cells and influenced the levels of many genes implicated in CFTR folding and

trafficking (215).

The pleiotropic effects of HDAC inhibitors are likely responsible for their effectiveness in

ameliorating disease phenotypes associated with other ERAD-targeted proteins, including

ATZ. PBA increases the secretion of ATZ from patient-derived fibroblast cells expressing

ATZ and in mice engineered to produce human ATZ (64). Unfortunately, PBA was

ineffective in a clinical trial aimed at increasing serum AT levels, likely due to the difficulty
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in delivering an optimal dose to the affected tissues (484). However, another FDA-approved

drug, carbamazepine (CBZ), was examined in a model for ATZ-associated liver disease.

CBZ has been used to treat epilepsy and has applications as a mood stabilizer because of its

effects on inositol (487, 550). Because of the effects on IP3 levels, CBZ also enhances

autophagy and the clearance of polyQ HTT aggregates (423). Recently, CBZ was shown to

enhance the degradation of both soluble and insoluble ATZ in a mouse model (200). These

data make CBZ an attractive candidate to treat AT-associated liver disease.

In our last example, we discuss one of the rare cases in which knowledge about protein

structure led to the design of an effective therapeutic that is being used in the clinic.

Transthyretin (TTR) is a secreted protein that functions as a tetramer to transport thyroid

hormone and retinol-binding protein in the bloodstream. Certain disease-causing variants of

TTR, such as D18G, are secreted inefficiently because they are retained in the ER and

degraded by ERAD (444). As might be expected, this variant binds to BiP to a much greater

extent than wild-type TTR or to the variants that result in disease through an ERAD-

independent mechanism (463). Other unstable TTR variants escape ERAD but form serum

amyloid fibrils that can lead to cardiomyopathy, familial amyloid polyneuropathy, and CNS

amyloidosis (180). On the basis of extensive biophysical studies, TTR amyloidosis was

shown to arise due to a kinetic destabilization of secreted TTR tetramers into monomers,

which then form fibrils (181). Therefore, molecules that stabilize the tetramer should have

therapeutic potential. After X-ray crystallography was used to determine the key features by

which amyloid inhibitors bind to TTR, computational analysis guided the design of more

potent and specific small molecule inhibitors of TTR amyloidosis (255). Further refinement

led to the discovery of a halogenated benzoxazole, compound 20, which bound tightly to

TTR and prevented fibril formation (403). Compound 20, now referred to as Tafimidis, is

currently used to treat familial transthyretin amyloid diseases (9).

B. Summary and Future Questions

The purpose of this review was to highlight key factors that direct ERAD substrates for

degradation and to provide select examples on the number of unique ways in which ERAD

can impact human physiology and disease. For more specific details and for a more

inclusive list, we have provided TABLE 1. However, we are quite aware that this table is

incomplete and that in the future many more diseaseassociated ERAD substrates will be

added. In other cases, the data linking a particular disease-associated protein to the ERAD

pathway are not definitive, but are only suggestive. Many proteins are only loosely

associated with various aspects of ER quality control, but their residence in the ER and

proteasome-dependent degradation have not been studied. We hope that our work will lead

to a more in-depth investigation into potential connections to ERAD and stimulate future

research efforts. Given the nearly infinite number of conformations that a secreted protein

can adopt, especially when all possible mutant forms are considered, it is not surprising that

the list is already relatively long. We suspect that the table will grow as additional secreted

proteins are characterized and as ill-characterized genes encoding secreted proteins are

better defined. We also hope that our work will raise important questions about how current

and future research efforts can best be directed to treat these conditions. In the era of

personal genomics, care must be taken to accurately define the underlying effects of disease-
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causing mutations that result in protein misfolding. And, as promising therapeutics are

examined for their effects on a variety of disease models, secondary effects on the ERAD

pathway will need to be examined. As TABLE 2 demonstrates, compounds that can control

for effects on the fates of ERAD substrate are already in-hand for these efforts.
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FIGURE 1. Protein targeting to the endoplasmic reticulum
As a nascent secretory protein emerges from the ribosome exit tunnel, it presents a

hydrophobic signal sequence that is recognized by the signal recognition particle (SRP).

Binding of SRP to the signal sequence slows translation and targets the ribosome-nascent

chain complex to the ER membrane via its interaction with the dimeric SRP receptor.

Following release, SRP is recycled and translation resumes. A nascent soluble protein (A) is

translocated into the ER lumen, and an integral membrane protein (B) is incorporated into

the membrane by the Sec61 translocation complex, and for all soluble proteins and some

membrane proteins the hydrophobic signal sequence is cleaved by the ER localized signal

peptidase complex.
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FIGURE 2. Steps in endoplasmic reticulum-associated degradation (ERAD)
Recognition: during protein synthesis and translocation, a misfolded region (red star) may

reside in a protein’s cytoplasmic, ER luminal, or transmembrane domains. Recognition is

mediated by ER luminal or cytoplasmic chaperones, as depicted, depending on the location

of the folding lesion. For glycoproteins, lectins (pink) interact with N-glycans and in some

cases they monitor the folding status of the protein. Ubiquitination: following recognition,

the ubiquitination machinery is recruited to the misfolded substrate, either directly within the

membrane or by interactions with cytoplasmic chaperones. A ubiquitin activating enzyme

(E1) transfers ubiquitin (gray circle) to an active site cysteine in a ubiquitin conjugating

enzyme (E2) in an ATP-dependent process. The ubiquitin is then transferred most
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commonly to a lysine residue on a client protein via a ubiquitin ligase (E3). Ubiquitination

at the ER membrane can occur via cytoplasmic or ER-localized E3 ligases, both of which

are shown. Retrotranslocation: for polytopic membrane proteins (pictured),

retrotranslocation may occur by removal of the protein through a channel (retrotranslocon)

and/or by removal of the protein and the surrounding membrane (not pictured). In either

case, retrotranslocation almost always depends on the p97/Cdc48 complex, which includes

Ufd1 and Npl4 and interacts with ubiquitin and misfolded regions on a substrate. p97/Cdc48

provides the mechanical force via ATP hydrolysis for substrate removal. Degradation:

following retrotranslocation, misfolded proteins are ushered to the 26S proteasome and must

be kept soluble to prevent aggregation. N-glycans are clipped by N-glycanse (not pictured),

and ubiquitin moieties are removed by deubiquitinating enzymes either in the cytosol or in

the proteasome cap. The proteasome contains three peptidase activities, trypsin-like,

chymotrypsin-like, and caspase-like, which cleave proteins into short peptide fragments.
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Table 2

Select experimental compounds used to rescue disease-related ERAD substrates

Protein Compound Reference Nos.

Alpha-1-antitrypsin (AT)

Carbamazepine (CBZ) 200

4-Phenylbutyric acid (PBA) 64

Alpha-D-galactosidase (α-Gal A)

1-Deoxy-galactonojirimycin (DGJ) 36, 122, 179

Aquaporin 2 (APQ2)

Dimethyl sulfoxide (DMSO) 479

Glycerol 479

Trimethylamine-N-oxide (TMAO) 479

Beta-hexosaminidase alpha subunit

Bisnaphthalimide 497

Celastrol 341

DMSO 497

N-acetylglucosamine thiazoline 318, 498

Nitro-indian-1-one 497

Pyrrolo[3,4-d]pyridazin-1-one 497

Pyrimethamine 318

Cystic fibrosis transmembrane conductance regulator (CFTR)

Benzoquinolizinium compounds 109, 471

Betaine 583

Corrector-4a 170, 171, 532

Curcumin 38, 115, 529, 577

Glycerol 57, 426

MG-132 229, 536

Myo-inositol 208, 583

S-nitrosoglutathione 208, 579

PBA 415, 416, 454

Suberoylanilide hydroxaic acid (SAHA) 215

Sorbitol 208

Taurine 208, 583

TMAO 57, 130, 208

Glucocerebrosidase (GC)

Celastrol 341

Dantrolene 364, 521

Diltiazem 364

N-(n-nonyl)deoxynojirimicin (DNJ) 428, 429

MG-132 341, 521
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Protein Compound Reference Nos.

Human ether-a-go-go-related gene (HERG) protein

Astemizole 126, 127, 590

Cisapride 127, 590

Methanesulfonanilide, E-4031 127, 590

P-glycoprotein (P-gp)

Capsaicin 311

Corrector-4a 533

Curcumin 533

Cyclosporin 310, 311, 533

Verapamil 310, 311

Vinblastine 310, 311

Rhodopsin

11-cis−7-ring retinal 354

Sulfonylurea receptor 1 (SUR1)

Diazoxide 373

Transthyretin (TTR)

Benzoxazole, Tafimidis 403

Diclofenac 255

Flufenamic acid 255

Resveratrol 255

Tyrosinase

LLnL (proteasome inhibitor) 177

V2 vasopressin receptor (V2R)

SR121463A (V2R antagonist) 337

Several different classifications of small molecules have been used to rescue ERAD substrates, including pharmacological and chemical
chaperones, and proteostatic regulators, such as heat-shock and stress-inducing agents, transcriptional regulators, ion channel inhibitors, and
proteasome inhibitors. However, in some cases precise placement into these groups is difficult as the exact mechanism of action is unknown and/or
the compound may have multiple effects (see text for additional details). The references included in the table are those that demonstrate a
connection between the protein and ERAD and are not necessarily the first studies to describe the molecular basis of a particular disease.

Physiol Rev. Author manuscript; available in PMC 2014 September 12.


