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Abstract

Two natural product-like inhibitors of TNF-α have been identified using structure-based virtual

screening. These compounds represent only the third and fourth examples of direct target of TNF-

α by a small molecule and display comparable potency to the strongest TNF-α inhibitor reported

to date.
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Tumor necrosis factor α (TNF-α) is a multifunctional cytokine that acts as a central

biological mediator for critical immune functions, including inflammation, infection, and

antitumour responses.[1] Dysregulation of TNF-α has been implicated in cases of

tumorigenesis, diabetes, and especially in autoinflammatory diseases such as rheumatoid

arthritis, psoriatic arthritis and Crohn’s disease.[2] The synthetic antibodies etanercept,

infliximab, and adalimumab approved for the treatment of inflammatory diseases bind to

TNF-α directly, preventing its association with the tumor necrosis factor receptor

(TNFR).[3] However, their potential to cause serious side effects such as eliciting an

autoimmune anti-antibody response or the weakening of the body’s immune defenses to

opportunistic infections, has stimulated the development of alternative small molecule-based

therapies to TNF-α inhibition.[4] Most such small molecule inhibitors reported in the

literature target TNF-α indirectly.[5–8]

To our knowledge, the only small molecules capable of antagonizing TNF-α directly are the

polysulfonated naphthylurea suramin and its analogues,[9] and the indole-linked chromone

designated SPD304 (Figure 1).[10] Unfortunately, the low potency and poor selectivity of

suramin coupled with its tendency to cause adverse side effects renders it unsuitable for anti-

TNF-α therapies.[11] Furthermore, SPD304 containing the toxic 3-alkylindole moiety was

found to be metabolized by cytochrome P450 enzymes via a similar dehydrogenation

pathway as the potent pneumotoxin 3-methylindole, producing reactive electrophilic

iminium species capable of conjugating protein and/or DNA targets.[12] Therefore, the
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development of relatively less toxic small molecule inhibitors of TNF-α for therapeutic

applications remains a highly desirable goal.

Natural products (NPs) have been refined over evolutionary time scales for optimal

interactions with biomolecules. Not surprisingly, NPs have represented a cornerstone of

pharmaceutical research, as they offer a diverse range of chemical scaffolds, bioactive

substructures, and potentially lower toxicity profiles.[13] Historically, many approved drugs

have been NPs, while numerous others were derived from or inspired by a NP template.[14]

Encouraged by these ideas, and by the relative dearth of potent and non-toxic small

molecule inhibitors directly targeting TNF-α, we sought to apply high-throughput, ligand

docking-based virtual screening methods to identify TNF-α inhibitors from a natural product

chemical libraries. We used the X-ray co-crystal structure of TNF-α dimer with SPD304

(PDB code: 2AZ5)[10] as the molecular model for our investigation.

Like most protein-protein interfaces, the binding pocket of the TNF-α dimer is relatively

large and featureless, and lacks clearly-defined binding crevices or mechanism-based

contacts.[15] The binding site is mostly hydrophobic, consisting primarily of glycine, leucine

and tyrosine residues. Not unexpectedly, the binding interaction of small molecule SPD304

to TNF-α has been described to be predominantly hydrophobic and shape-driven.[10] Small-

molecule inhibitors of TNF-α should thus be relatively hydrophobic and large enough to

contact both subunits of the TNF-α dimer simultaneously, in order to prevent the binding of

the third subunit forming the biologically active trimer complex.

Over 20,000 compounds from a chemical library of natural product/natural product-like

structures[16] were screened in silico. The continuously flexible ligands were docked to a

grid representation of the receptor and assigned a score reflecting the quality of the complex

according to the internal coordinate mechanics (ICM) method [ICM-Pro 3.6-1d molecular

docking software (Molsoft)].[18] The highest-scoring 16 compounds from the virtual

screening results were tested in a preliminary ELISA to assess their ability to inhibit the

binding of TNF-α to TNFR-1. Two chemically distinct structures, the pyrazole-linked

quinuclidine 1 and the indolo[2,3-a]quinolizidine 2, emerged as the top candidates (Figure

1). The binding poses of these two compounds overlap well with the crystallographic pose

of SPD304 to TNF-α (Figure 2). Like SPD304, compounds 1 and 2 are large enough to

contact residues from both subunits of the TNF-α dimer, thus occupying and blocking the

binding site for the third TNF-α subunit.

In the top-scoring binding mode of 1 to the TNF-α dimer, the pyrazole-linked quinuclidine

substructure occupies the hydrophobic binding pocket, and the dioxolane oxygen atom of 1
forms a hydrogen bond with the backbone amino group of Gly121 of TNF-a subunit B

(Figure 2a). Compound 2 is not predicted to occupy the region of space close to Gly121 of

subunit B, but instead forms a hydrogen bond with the side-chain hydroxyl group of Tyr151

of subunit B through its imidazole functionality (Figure 2b). Common features of the

predicted binding modes of 1, 2 and SPD304 are the extended hydrophobic ring systems that

are in contact with the β-strand (Leu120–Gly121–Gly122) of TNF-α subunit A, and the

presence of polar functional groups orientated away from the binding pocket and exposed to

the aqueous environment. Interestingly, whereas the indole substructures of 2 and SPD304
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(Figure 2c) are located in a similar region of space, their orientations with respect to the β-

strand of subunit A are different. The lack of salt bridges or hydrogen bonding networks in

our models of 1 and 2 with TNF-α is consistent with previous findings that the interaction

between the small molecule SPD304 and TNF-α is primarily hydrophobic and shape-

driven.10 The calculated binding scores of −34.7 and −36.4 for 1 and 2 respectively reflect a

strong interaction between the compounds and the dimer complex. As a reference, we

calculated the binding score of SPD304 to be −32.9. The predicted binding coordinates of

SPD304 in the binding pocket are within 1.0 Å root-mean-square deviation of the reported

values based on the protein X-ray crystal structure.[10]

The quinuclidine core of 1 is present in a variety of natural products, such as the antimalarial

cinchona alkaloids.[18] Natural products containing the indolo[2,3-a]quinolizidine scaffold

of 2 include the alkaloids geissoschizine, deplancheine, corynantheidine, and yohimbane.[19]

Waldmann and co-workers employed a biology-orientated synthetic approach to generate

indolo[2,3-a]quinolizidine inhibitors of mycobacterial protein tyrosine phosphatase B.[20]

To the best of our knowledge, no TNF-α-binding activity nor any other biological activity of

1 or 2 has been reported in the literature.

To validate the results of our molecular modeling, we performed dose-response experiments

with compounds 1 and 2 to determine their half-maximal inhibitory concentration (IC50)

values against the TNF-α–TNFR-1 interaction using an ELISA (Figure 3). Encouragingly,

indoloquinolizidine 2 (IC50 = ca. 10 μM) was found to be more active than SPD304, the

most potent small molecule TNF-α inhibitor reported to date (IC50 = 22 μM by a

comparable ELISA).[10,21] Quinuclidine 1 was moderately active against TNF-α with an

IC50 value of approximately 50 μM.

We next investigated the ability of compounds 1 and 2 to inhibit TNF-α signaling in human

cells. TNF-α solutions pre-incubated with the test compound were added to HepG2 cells,

which were stably transfected with the NF-κB–luciferase gene. The inhibition of TNF-α-

induced NF-κB signaling by the test compound was detected by monitoring the reduction in

the luciferase activity of the cell lysates (Figure 4). Surprisingly, indoloquinolizidine 2 (IC50

> 30 μM) was found to be less active than quinuclidine 1 (IC50 = ca. 5 μM) in the cellular

luciferase assay, despite showing greater potency in the cell-free ELISA. Notably, 2
exhibited a similar IC50 value similar to that of to SPD304 (IC50 = ca. 3 μM) as measured by

our system, although it was less potent than SPD304 at higher concentrations. We

hypothesize that the markedly reduced activity of 2 in cell culture could be because of its

low bioavailability resulting from either poor cellular uptake or metabolic degradation of

2.[22]

In conclusion, we have discovered two small molecules TNF-α inhibitors from a natural-

product and natural-product-like chemical library using structure-based design. The

identification of quinuclidine 1 and quinolizine 2 represents, to the best of our knowledge,

only the third and fourth examples of the direct targeting of TNF-α by a small molecule.

Importantly, indoloquinolizidine 2 (IC50 = ca. 10 μM) was found to be more potent against

TNF-α in the ELISA compared to SPD304, the strongest small molecule TNF-α inhibitor

reported to date. Quinuclidine 1 (IC50 = ca. 5 μM) displayed a comparable activity to
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SPD304 (IC50 = ca. 3 μM) against cellular TNF-α induced NF-κB signaling. We are

currently conducting computer-based hit-to-lead optimization to generate further analogues

for in vitro testing.
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Figure 1.
Chemical structures of small molecule TNF-α inhibitors quinuclidine 1, indoloquinolizidine

2 and SPD304.
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Figure 2.
Low-energy binding conformations of a) 1, b) 2 and c) SPD304 bound to TNF-α dimer

generated by virtual ligand docking. The two subunits of the TNF-α dimer are depicted in

ribbon form and are colored in contrasted purple (subunit A) and red (subunit B). The small

molecules are depicted as a ball-and-stick model showing carbon (yellow), hydrogen (grey),

oxygen (red), nitrogen (blue), and fluoride (green) atoms. Hydrogen bonds are depicted as

dotted lines. The binding pocket of the TNF-α dimer is represented as a translucent green

surface.
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Figure 3.
Compound inhibition of TNFR-1 binding to immobilized TNF-α (ELISA). Microtitre plates

coated with TNF-α were incubated with TNFR-1 together with 1 or 2 at the indicated

concentrations. TNFR-1 binding was detected using anti-TNFR antibody and horseradish

peroxidase-conjugated secondary antibody. Approximate IC50 values; 1: 10 μM, 2: 50 μM.
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Figure 4.
Compound inhibition of cellular TNF-α-induced NF-κB activity. HepG2 cells stably

transfected with the NF-κB–luciferase gene were stimulated with TNF-α pre-incubated with

the indicated concentrations of 1, 2, or SPD304. Cell lysates were analyzed for luciferase

activity to determine the extent of NF-κB inhibition. Approximate IC50 values; 1: 5 μM, 2:

>30 μM, SPD304: 3 μM.
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