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Abstract
Many premature babies, especially those with a low 
birth weight are given multiple transfusions during their 
first few weeks of life. The major serious complications 
of prematurity include bronchopulmonary dysplasia, 
with lesser incidences of retinopathy of prematurity, 
intraventricular haemorrhage, and necrotising entero-
colitis. Many studies have shown correlations between 
the receipt of blood transfusions and the development 
of these conditions, but little is known of the underly-
ing pathophysiology of this relationship. Recent studies 
are beginning to provide some answers. This review 
examines recent findings with regard to the influence 
of preparation and storage of paediatric packed red 
blood cell units on heme, iron, and oxidative status of 
the units and relates these to the ability of the prema-
ture baby to deal with these changes following the re-
ceipt of blood transfusions. Paediatric packed red blood 
cell units are a potential source of heme, redox active 
iron and free radicals, and this increases with storage 
age. Haemolysis of transfused red blood cells may add 
further iron and cell free haemoglobin to the recipient 
baby. Premature babies, particularly those with low 
birth weight and gestational age appear to have little 

reserve to cope with any additional iron, heme and/or 
oxidative load. The consequences of these events are 
discussed with regard to their contribution to the major 
complications of prematurity and a novel hypothesis re-
garding transfusion-related morbidity in premature ba-
bies is presented. The review concludes with a discus-
sion of potential means of limiting transfusion related 
iron/heme and oxidative load through the preparation 
and storage of packed red blood cell units and through 
modifications in clinical practice. 
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Core tip: Many premature babies, especially those with 
a low birth weight are given multiple transfusions dur-
ing their first few weeks of life. Studies have shown 
correlations between the receipt of blood transfusions 
and the development of the major complications of pre-
maturity. Little is known of the underlying pathophysi-
ology of this relationship. This review examines novel 
potential mechanisms which are related to the changes 
that occur in iron, heme and oxidative status in paedi-
atric packed cell units during preparation and storage, 
and in the ability of the premature baby to deal with 
these changes following receipt of blood transfusion. 
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weight of  less than 1000 g are given multiple transfusions 
during their first few weeks of  life[1,2]. The major serious 
complications of  prematurity include bronchopulmonary 
dysplasia (BPD), with lesser incidences of  retinopathy of  
prematurity (ROP), intraventricular haemorrhage (IVH), 
and necrotising enterocolitis (NEC). Many studies have 
shown correlations between the receipt of  blood trans-
fusions and the development of  these conditions[1,3-16]. 
Few have been able to provide any strong evidence that 
the receipt of  blood transfusions is an independent risk 
factor in the development of  these conditions[3,4,6,9,15,17], 
although some more recent studies have provided bet-
ter evidence of  transfusion being an independent risk 
factor for NEC[13] and IVH[9]. This lack of  consistency 
is probably related to the multifactorial nature of  these 
conditions, the multifactorial nature of  the consequences 
of  the receipt of  packed cell transfusions[18], and the fact 
that smallest and sickest babies are those most likely to 
receive blood transfusions[19]. This makes it difficult to 
tease out the relative risks of  the many factors involved[20] 
even with sophisticated multiple regression analysis[2,4,19]. 
Despite this, some explanations have been proposed to 
account for the relationship between the receipt of  blood 
transfusions and some of  the consequences of  prema-
turity. Many of  these involve transfusion mediated iron 
induced factors such as infection and oxidative stress[19], 
changes in immune function[21] and also other factors 
such as changes in nitric oxide (NO) mediated vasodila-
tion and responsiveness[22,23]. 

This paper attempts to determine more about trans-
fusion-related morbidity in premature babies by relating 
some of  the recently observed changes which occur in 
paediatric packed cell units during preparation and stor-
age to the particular physiology of  the premature baby. 
The result has provided strong evidence to suggest that 
a major contributor to transfusion-related morbidity in 
these babies is the enhanced level of  non-protein-bound 
iron, heme and oxidative stress in the paediatric packs 
and the limited ability of  the premature baby to deal with 
a transfusion-mediated iron, heme and oxidative load. It 
is a relatively new concept that does not preclude other 
aspects of  the “storage lesion” also contributing[24,25], but 
at present it appears to be a good marriage between the 
known physiology of  the premature baby and the effects 
of  packed red blood cell transfusions. 

BLOOD TRANSFUSION AND CLINICAL 
OUTCOME IN PREMATURE BABIES
The relationship between blood transfusion and NEC 
has been linked to possible adverse immunological con-
sequences of  the receipt of  blood and the timing of  
this with feeding[11,21,26], although this should be less of  a 
problem when using leukoreduced blood preparations[27]. 
Transfusion related gut morbidity is however a multifac-
torial condition related to a dynamic balance of  immune, 
infectious, vascular, angiogenic and mechanical mediators 
of  brush border integrity[28]. It also appears to be related 
to particular changes occurring at 31-32 wk postconcep-

tional age, irrespective of  postconceptional age at birth. 
There is evidence that the older the storage age of  the 
blood transfused the more likely NEC is to develop[17], 
and oxidative stress has been mentioned as a potential 
factor[28]. However, the complexity of  the condition has 
not permitted a clear understanding of  the relationship 
between the receipt of  blood and the development of  
NEC. Also, many babies who receive blood transfusions 
do not develop NEC[15], indicating that those in which 
the relationship is seen may have other underlying factors 
that predispose towards developing NEC following trans-
fusions[29,30]. Certainly the smaller the birth weight the 
more likely the baby is to develop transfusion associated 
NEC[17]. Thus the receipt of  blood may be one factor in 
a complex multifactorial condition. 

The link between IVH and the receipt of  blood may 
be related to volutrauma and damage to the weak blood 
vessels in the germinal matrix[10]. This may be further 
exacerbated by the loss of  NO from erythrocytes during 
storage[22,31] which would impair capillary vasodilation to 
accommodate the donated erythrocytes[9]. It should be 
noted however, that not all studies support this model 
of  erythrocyte mediated vasodilation[9,32]. However, it has 
been shown that blood which had been stored for up 
to 42 d has a progressive vasoinhibitory effect which is 
mediated not by scavenging NO or loss of  NO, but by 
inhibiting endothelial NO production in the recipient[23]. 
Thus there is evidence of  disruption of  NO vasodila-
tory mechanisms in the recipient following the receipt of  
stored red blood cells. Again, it should be noted that not 
all babies who develop IVH receive blood transfusions, 
and many babies who receive blood transfusions do not 
develop IVH[9]. Yet again there is a subset of  vulner-
able babies in which the receipt of  blood becomes a risk 
factor. Current views on the link between transfusion 
and IVH does not include iron-induced oxidative stress. 
However, it could play a major role in events subsequent 
to the haemorrhage as blood (potentially rich in redox ac-
tive iron) entering the extracellular compartment is likely 
to contribute to iron-induced oxidative damage to the 
cells of  the developing brain[33,34].

While volutrauma may also contribute to ROP, most 
studies suggest that iron overload and associated oxida-
tive stress may be a major player in ROP[12,35]. Increased 
iron load due to post-transfusional red blood cell (RBC) 
breakdown and associated oxidative stress has been sug-
gested[12,35]. In addition, enhanced O2 delivery to the devel-
oping retinal vasculature following transfusion with adult 
RBC’s may impair the function of  the growth factors 
which regulate vascularisation of  the retina[12]. Again low 
birth weight and respiratory distress also appeared to be 
independent risk factors for the development of  ROP[35], 
highlighting the multifactorial nature of  the condition.

Though not so well investigated, transfusion-related 
iron overload and resulting oxidative stress has been sug-
gested as a potential mechanism linking transfusion to the 
development of  BPD[19,36-38]. The relationship between 
blood transfusion and BPD may be related to the finding 
that babies with BPD were usually smaller, required more 
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ventilator support and required more blood sampling 
leading to iatrogenic anaemia. Consequently more blood 
transfusions would be required to replace that removed 
by sampling[38]. This suggests a potential consequence of  
very low birth weight rather than a direct cause of  BPD. 
However, the receipt of  blood and associated complica-
tions caused by it may exacerbate a condition developing 
from other causes. A major factor in the development 
of  BPD is endotracheal infection[4]. A recent study in 
critically ill adults has shown that transfusion with blood 
stored for more than 14 d is associated with increased 
bacterial infection[39]. Since iron availability is essential 
for bacterial colonisation[40], and the level of  non-trans-
ferrin bound iron in paediatric packs rises significantly 
throughout storage (around 6 μmol/L on day 14, around 
15 μmol/L on day 35, compared with plasma levels of  
around 0.3 μmol/L in healthy adults[41]), transfusion me-
diated iron promoted bacterial infection may be involved 
in the development of  BPD. 

Thus, in summary, there is a reasonable amount of  
evidence to support of  increased risk of  developing the 
major complications of  prematurity following the receipt 
of  blood transfusions in some premature babies. As in-
dicated above, potential mechanisms which have been 
proposed to account for this relationship include disrup-
tion of  NO mediated vasodilation[22-24], immune dysfunc-
tion[11,21,42], and transfusion mediated iron and oxidative 
load[19,41,43]. These are not necessarily mutually exclusive 
and have not been established as independent risk factors 
in all cases. Interaction between these factors probably 
occurs. For example, structural changes in the stored red 
blood cells which influence the deformability and survival 
of  red blood cells post transfusion, lead to the build-up 
of  extracellular haemoglobin which can have major ef-
fects on NO availability[44-47], and also provides a potential 
source of  heme and iron[48] for iron mediated pathology 
and immune modulation[42]. 

Particularly interesting are the findings that the link 
between blood transfusions and the complications of  
prematurity are more prevalent in the smaller birth weight 
babies, and that one complication may be associated 
with the presence of  another in this group[49]. This may 
indicate that this subset of  premature babies may require 
specific attention with regard to transfusion practice. 

The awareness of  the potential risks of  receiving 
blood transfusions has led to a number of  studies and 
changes in clinical practice to try to limit the use of  blood 
transfusions in the neonatal intensive care unit as a means 
of  improving clinical outcome[50-58]. These procedures are 
beyond the scope of  this review. 

Recent findings have strengthened the idea that 
transfusion-mediated iron and oxidative load may play a 
major role in some of  the complications of  prematurity. 
These findings include factors involved in the prepara-
tion, storage and use of  packed red blood cell units in 
premature babies and the ability of  the baby to deal with 
potential adverse consequences of  the receipt of  blood. 
This review will investigate the possible link between 
transfusion-mediated iron overload and oxidative stress 
and the ability of  the premature baby to deal with such a 

situation, and the implications with regard to the devel-
opment of  the complications of  prematurity.

PREPARATION OF PAEDIATRIC PACKED 
CELL UNITS FOR TRANSFUSION
In order to try to understand the potential mechanisms 
of  any relationship between the receipt of  blood trans-
fusions and clinical outcome some knowledge of  the 
procedures involved in the preparation of  packed cell 
units is required. Paediatric packed red blood cell units 
are prepared from adult blood. One unit of  adult blood 
usually anticoagulated with citrate is spun down to yield 
the red blood cells. Blood for paediatric use is usually fil-
tered to remove the majority of  leucocytes. The majority 
of  plasma is removed and replaced by additive solution 
to provide a haematocrit of  55%-60%. Various different 
additive solutions are used but they all tend to contain 
various amounts of  dextrose, adenine, phosphate, man-
nitol and occasionally citrate, either residual from the 
original anticoagulation or added[59]. The additive solu-
tions are designed to provide anticoagulant and buffer-
ing capacity and a source of  metabolic energy for RBCs. 
In addition, mannitol and adenine act as preservatives 
to allow the storage of  RBCs up to 35 d for paediatric 
use and 42 d for adult use[60] in the United Kingdom. 
These latter substances stabilise the RBC membrane and 
ensure adequate 2,3-diphosphoglycerate and ATP avail-
ability within the RBCs. Each adult unit is then divided 
to provide 6-8 paediatric packs of  40-50 mL each. While 
these additives have been designed to help preserve RBC 
integrity and shelf  life, the removal of  plasma has signifi-
cant implications with regard to iron and iron-induced 
oxidative stress. The replacement of  plasma with additive 
removes the major iron binding proteins and extracellular 
antioxidants from the final preparation[41]. This provides 
the opportunity for the build up of  redox active iron in 
the extracellular medium and the potential to drive iron 
mediated oxidative damage to the RBCs, and to induce 
iron mediated oxidative damage to the baby post trans-
fusion[61]. The purpose of  this review is to evaluate the 
possibility that the contribution of  the receipt of  blood 
transfusions to the development of  the complications of  
prematurity may reside, to some extent, in poor iron sta-
tus in the paediatric packs and the consequences alluded 
to above. This will require an understanding of  changes 
in iron and oxidative status of  paediatric packs during 
storage, and the extent to which the baby might cope 
with increased iron and oxidative load post transfusion. 

THE INFLUENCE OF STORAGE ON 
THE IRON AND OXIDATIVE STATUS 
OF PACKED CELL UNITS AND THE 
RELATIONSHIP BETWEEN STORAGE 
AND CLINICAL OUTCOME
Traditionally, only blood stored for less than 7 d had 
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of  Marwah et al[79]. In this study little non-transferrin-
bound iron (NTBI) was seen in the extracellular medium 
surrounding the stored RBCs over the first 10 d of  stor-
age. Thereafter it rose steadily up to 28 d storage. In our 
laboratory using leucoreduced paediatric packed cell units 
iron was already detectable in the extracellular medium 
on arrival from the blood transfusion centre (3 d post 
donation) and then rose linearly to a level of  34 μmol/L 
after 35 d storage[41,43]. Moreover a high percentage was in 
the potentially damaging NTBI form. This suggests that 
some release of  iron was occurring as a result of  damage 
occurring during preparation[80], and that some changes 
occur very rapidly in the first few days of  storage[81]. It 
is not believed that the filtration process used to remove 
the leucocytes is the cause of  the initial haemolysis, but 
other factors such as shear stress, exposure to antico-
agulants, exposure to additive solutions and contact with 
the plastic material in the bags[80]. Leukoreduction may 
improve the storage of  RBCs[82]. Packed cell units used in 
neonatal intensive care units are routinely leucoreduced. 
In our studies the rise in extracellular iron and NTBI 
with storage is associated with a gradual increase in malo-
ndialdehyde (MDA) over the first 21 d of  storage with 
a steeper rise from 21 d to 35 d. Similar findings have 
recently been reported by Stark et al[83], and the findings 
reflect chances in cellular MDA during storage[84]. The 
appearance of  Hb in the extracellular medium parallels 
the rise in MDA. This indicates that lipid peroxidation 
in the RBC membrane may contribute to the loss of  
iron and Hb. In addition to the rise in iron with storage, 
there is also a large increase in heme in the extracellular 
milieu[48,85] with the pattern of  increase running parallel 
to that of  MDA. MDA is marker of  lipid peroxidation. 
It is well known that oxidative stress, normal ageing and 
aerobic incubation lead to the release of  free chelatable 
iron from Hb within erythrocytes[77,86]. There is evidence 
that iron released within erythrocytes can mediate oxida-
tive damage to the cell membrane, leading to haemolysis 
and the release of  Hb[76]. This may be further oxidised to 
produce superoxide, methemoglobin and free iron[86,87]. 
Methemoglobin is relatively unstable and will readily re-
lease the heme moiety from the heme pocket[77]. Further 
oxidation of  the heme molecule leads to the release of  
free iron. 

The small amount of  residual ascorbate present in 
the extracellular medium was mostly in the oxidised form 
and fell dramatically from 21 to 35 d[41]. Thus the lack 
of  antioxidant protection contributes to oxidative dam-
age to the cell membrane and iron binding proteins such 
as Hb[76,88,89]. The findings from our laboratory support 
the previous findings of  Karon et al[90] who noted simi-
lar findings with regard to the development of  adverse 
effects in the membranes of  stored RBCs including en-
hanced lipid peroxidation and build-up of  extracellular 
Hb. Thus the evidence suggests that oxidatively mediated 
haemolytic changes to RBC membranes and damage to 
iron binding proteins leads to release of  iron from the 
RBCs into the extracellular medium during storage. The 

been deemed acceptable for neonatal transfusions[62]. 
Because some babies require frequent transfusions, the 
number of  different donors that an individual baby may 
be exposed to could be high. This was considered as 
potentially detrimental to the baby and wasteful with re-
gard to resources[63]. For these reasons, the use of  small 
volume paediatric packs prepared from a single donor (as 
described above) was adopted as standard use[63]. This al-
lowed the packs to be stored up to 35 d and ensured that 
the baby should only receive blood from a single donor. 
The move from the use of  fresh blood to stored blood 
required some understanding of  the consequences of  
RBC storage on the status of  the blood and the influence 
of  older stored blood on clinical outcome. A number of  
studies have shown adverse relationships between the 
storage age of  the blood used in transfusion and clini-
cal outcome[64,65]. This relationship holds whether the 
blood is transfused to critically ill infants[64,65] or adults[66]. 
However it should be noted that not all studies support 
this contention. To some extent this may be related to 
the failure to address all the potential confounding vari-
ables[20,67-70]. The potential adverse effects of  storage on 
the biochemistry and validity of  stored erythrocytes has 
been given the term “the storage lesion”[32,71]. The con-
troversy surrounding this contention, and the need to 
improve our understanding of  the influence of  storage 
on clinical outcome is illustrated by the development of  
two current large scale studies looking at the influence of  
storage age on clinical outcome in critically ill adults[72], 
and in premature babies[73]. Both these studies are pro-
spective studies using clearly defined storage ages and 
outcome measures. The initial results of  the latter study 
showed that babies who received blood of  an average 
storage age of  5.1 d did not have an improved outcome 
compared to babies who received blood stored under 
the current standard procedure which averaged out in 
this study at 14.6 d[74]. However, as discussed later, it is 
more likely to observe adverse outcomes in babies who 
have received blood stored for greater than 14 d. This is 
difficult to study prospectively because of  the ethics of  
randomly assigning blood stored for more than 14 d to a 
group of  babies knowing it might compromise outcome. 

The involvement of  iron and oxidative status in the 
storage lesion has received little attention, despite the po-
tential adverse influence of  the procedures involved in the 
preparation of  packed cell units on the iron and oxidative 
status of  the units. This can have consequences on the vi-
ability of  erythrocytes, and the behaviour of  haemoglobin 
within the erythrocytes and on iron bioavailability[75,76]. 

A number of  studies have indicated that transfusion 
mediated iron overload may contribute to morbidity 
and mortality in some situations[78], and that this may be 
increased as a function of  the storage age of  the blood 
transfused. Other studies have indicated that this may 
be mediated by iron released from RBCs during stor-
age as a result of  oxidative damage to RBC membranes 
and haemoglobin[76]. The first study to show that iron is 
indeed lost from packed RBCs during storage was that 
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finding that these changes may occur early in storage, 
coupled with the lack of  antioxidant protection suggests 
that the released iron can generate more free radical spe-
cies and potentially initiate a vicious cycle of  oxidative 
damage and iron release. This scenario is supported by 
the pattern of  changes in heme and MDA, with the rise 
in both parameters initially being gradual over the first 
14-21 d of  storage and then more rapidly during the lat-
ter stages[48,85]. An alternative, but related hypothesis, to 
account for iron-induced adverse effects has been pre-
sented by Hod et al[91,92]. Their work using a murine model 
of  transfusion with stored blood has suggested that extra-
vascular haemolysis of  transfused RBC’s by macrophage-
mediated phagocytosis leads to a pro-inflammatory 
response which is associated with increased circulating 
NTBI. Furthermore, reactive oxygen species induced by 
NTBI may mediate cytokine production and promote 
the pro-inflammatory response. These studies were fol-
lowed up by investigating the situation in healthy human 
adults[93] and premature babies[83]. Both studies reported 
transfusion mediated increases in NTBI, and this was as-
sociated with increased oxidative stress in the premature 
babies[83]. However, neither study was able to demonstrate 
the increased appearance of  pro-inflammatory cytokines. 
Thus the involvement of  NTBI in transfusion related 
immunomodulation in premature babies has yet to be 
established[83], although immune modulation mediated by 
other components that increase during storage (such as 
heme) may occur[42]. 

The enhanced NTBI levels seen post-transfusion may 
also promote bacterial infection, a factor of  relevance to 
conditions such as chronic lung disease of  prematurity[4]. 
It is also suggested that heme present in transfused blood 
may promote nosocomial infection through its effect on 
the innate immune system[42].

To develop these ideas further, some understanding 
of  how well the premature baby is able to handle an en-
hanced transfusion-mediated iron load is required.

THE ABILITY OF THE PREMATURE 
BABY TO DEAL WITH TRANSFUSION 
MEDIATED IRON AND OXIDATIVE LOAD
Because of  the physiological importance of  iron and the 
potential toxic effects of  free iron the body is equipped 
with a very precise homeostatic mechanism to regulate 
iron bioavailability[61]. The function of  the major compo-
nents of  this system in premature babies has been inves-
tigated in a number of  studies. Studies into iron status 
and iron binding and transporting proteins in premature 
babies are complicated because the levels of  these pro-
teins may be influenced by oxidative stress and free iron 
levels[94,95]. Although results are not always conclusive, the 
results suggest that both the levels and binding capac-
ity of  transferrin in the plasma of  premature babies is 
low[96-99]. The most recent study[100] showed that prema-
ture babies had elevated iron and percentage iron binding 

levels compared to normal reference values. This was 
particularly so in male babies, who tend to show a greater 
degree of  morbidity than their female counterparts[101,102]. 
In addition to the specific iron binding to transferrin, 
albumin may also play a role as an antioxidant by binding 
free iron and limiting the ability of  iron to generate free 
radicals[103]. The ability of  albumin to bind iron seems to 
be particularly important as a defence mechanism against 
iron induced oxidative damage[60]. Studies have reported 
significantly lower serum albumin levels in premature 
infants compared with term infants[104]. Serum albumin 
in premature infants is particularly susceptible to oxida-
tive damage[105] which would further limit its ability to 
bind iron. Caeruloplasmin, which converts iron to the 
form necessary to bind to transferrin may also be low in 
prematures. Serum hepcidin concentrations were lower 
in preterm infants than full term babies[106]. This was be-
lieved to reflect the lower total iron stores of  premature 
babies. There was a good correlation between hepcidin 
levels and the levels of  ferritin and erythropoietic activity. 
However, it was not possible to detect a significant cor-
relation between hepcidin and transferrin levels or trans-
ferrin saturation, despite this population of  babies having 
low transferrin levels and high transferrin saturation[96,100]. 
Post-transfusional changes in serum hepcidin have not 
been studied in premature babies, but oral iron supple-
mentation in low birth weight infants led to increases in 
circulating hepcidin[107] as did blood transfusions in adults 
with thalassemia[108]. Should this also occur in premature 
babies it may enhance iron sequestration in macrophages 
and limit iron-induced toxicity. However, more studies 
are required to explore this further. Thus it appears that 
some aspects of  the regulation of  hepcidin activity by 
iron status appear to be functional in premature babies, 
but how well hepcidin is able to be upregulated in re-
sponse to a transfusionally mediated enhanced iron load 
has yet to be elucidated. In addition to potential iron 
overload, the large rise in heme provides a second poten-
tially toxic mediator in stored packed red blood cells. Free 
heme has both pro-oxidant and pro-inflammatory activ-
ity[109,110] and many other potentially toxic activities[111]. 
The potential toxicity of  heme is limited by the presence 
of  the heme binding protein hemopexin[110]. Thus an ad-
equate availability of  hemopexin is necessary to prevent 
the toxic effects of  heme. Premature babies have very 
low levels of  hemopexin[112] which makes them vulnera-
ble to the effects of  transfusion mediated heme overload. 

The results of  studies on the antioxidant status of  pr
emature babies are largely in agreement. It appears that 
they have limited antioxidant defences to protect against 
circulating free radicals[3,4,113-116]. With regard to the low 
molecular weight antioxidants ascorbate, urate and pos-
sibly glutathione in serum and bronchoalveolar lavage fluid 
in premature babies, studies have shown that the levels 
of  these antioxidants fall during the first week of  life and 
recover over the next few weeks[3,4,113,117]. Premature babies 
who require blood transfusions will receive their first trans-
fusion, and possibly the majority of  their treatments within 
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the first week of  life. Thus the receipt of  blood, with the 
possibility of  generating excessive free radicals, coincides 
with a period when antioxidant protection through the low 
molecular weight antioxidants is falling. Studies on the ma-
jor enzymic antioxidants in premature babies have shown 
reduced levels of  glutathione peroxidase and superoxide 
dismutase[116]. Furthermore, the ability to upregulate pul-
monary superoxide dismutase in response to inspired O2 
and free radicals is impaired in premature babies[118] and 
animal models[119,120]. Similarly, peroxiredoxin does not ap-
pear to upregulate in preterm baboons in response to high 
inspired O2 concentrations[121]. 

In summary, the premature baby appears to be poorly 
equipped to deal with any form of  heme and iron over-
load and subsequent iron induced oxidative stress. Con-
sequently the premature baby is likely to be at risk of  
transfusion-related heme, iron and oxidative overload. 

POSTRANSFUSIONAL CHANGES IN 
IRON AND OXIDATIVE STATUS IN 
PREMATURE BABIES
A limited number of  studies have examined iron status 
in premature babies following the receipt of  blood trans-
fusions. Assessment of  premature babies at 35 wk post 
menstrual age indicated that 50% of  babies who received 
more than 3 erythrocyte infusions were iron overloaded 
at that stage of  their care irrespective of  when they re-
ceived the transfusions[122]. Earlier studies[123] showed no 
difference in plasma bleomycin-detectable iron (NTBI) 
between babies who did or did not receive blood transfu-
sions. However, the total number of  samples contain-
ing bleomycin-detectable iron was significantly greater 
in babies who developed BPD compared to those who 
did not. Later studies by Hirano et al[124] showed that 
bleomycin-detectable iron was present in 30% of  pre-
mature babies before transfusion and rose to 80% after 
transfusion. Measurement of  total iron in premature 
babies (post mortem) showed that those who received 
more than 100 mL of  blood had a higher total serum 
iron level than those who received less than 100 mL[125]. 
More recently, Dani et al[126] found that the plasma level 
of  NTBI increased significantly following blood transfu-
sion, but that this was not associated with any evidence 
of  increased oxidative stress in plasma up to 3 h after 
transfusion. In contrast to this, studies in our laboratory 
showed that pulmonary oxidative stress increased follow-
ing blood transfusion[2], and in babies that received more 
than one transfusion oxidative stress increased after each 
transfusion. The most recent study[83] supports our find-
ings showing increases in blood MDA following blood 
transfusion in premature babies. NTBI also increased 
and was correlated to the storage age of  the packed cells 
transfused. Positive correlations between NTBI and 
MDA were also reported. The effect of  transfusion on 
NTBI was transient, as was the increase in pulmonary 
MDA seen in our studies following transfusion[2]. The 

major difference between the studies of  Collard et al[61] 
and Stark et al[83] and those of  Dani et al[126] was the age of  
the babies studied. In the study by Dani et al[126] the gesta-
tional age of  the babies studied was almost 10 wk greater 
than those studied in our study, and also older than those 
studied by Stark et al[83]. The antioxidant capacity, which 
increases with gestational age and birth weight[127], may 
have been sufficiently well developed to deal with the 
pro-oxidant effect of  iron in the babies studied by Dani 
et al[126] but not in those in the other two studies. This in-
terpretation is supported by the findings of  Minghetti et 
al[128] who showed that the antioxidant capacity of  weight 
disparate twin babies was lower in the smaller babies and 
associated with enhanced lipid peroxidation. This adds 
to the previous data that indicated that there may be a 
subset of  smaller lower gestational age babies which are 
particularly vulnerable to transfusion related morbidities. 
Little is known about post-transfusional changes in free 
heme in premature babies. This lack of  knowledge needs 
rectifying urgently. 

INTERIM SUMMARY, IMPLICATIONS 
FOR FUTURE STUDIES AND FOR BLOOD 
TRANSFUSION PRACTICE IN THE 
NEONATAL INTENSIVE CARE UNIT
Premature babies, particularly those with low birth weight 
and gestational age appear to have little reserve to cope 
with any additional iron, heme and/or oxidative load.

Paediatric packed red blood cell units are a potential 
source of  heme, redox active iron and free radicals, and 
this increases with storage age. Haemolysis of  transfused 
red blood cells may add further iron and cell free haemo-
globin to the recipient baby.

The link between the receipt of  packed cell transfu-
sions and the complications of  prematurity may be due 
to some extent to the additional heme, iron and oxida-
tive load caused by transfusion. This relationship may be 
particularly significant in low birth weight and gestational 
age babies.

In order to develop this idea further or to refute 
these suggestions there is an urgent need to conduct 
appropriate clinical studies. Clinical studies have shown 
that blood stored for an average of  14 d does not cause 
any additional complications when compared with fresh 
(5 d storage) blood[72]. This fits well with the findings of  
the biochemical studies which indicate that changes in 
the parameters discussed above progress slowly over the 
first 14-21 d and then change more rapidly. The effect of  
blood stored for longer periods has yet to be established 
in this group of  babies. This would be difficult to study 
by means of  a prospective randomised trial because it 
would be unethical to randomly subject babies to receive 
blood stored for more than 14-21 d. An alternative strat-
egy would be to conduct a study in which all babies in 
a neonatal intensive care unit receive blood stored for 
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less than 14 d for an appropriate period (say 2 years) and 
compare outcomes with data from the previous 2 years in 
which blood stored for up to 35 d was routinely used. 

Perhaps the best way of  obtaining data in a shorter 
time span would be to conduct a retrospective study us-
ing clinical records from neonatal intensive care units in 
which the storage age of  the blood used was recorded. 
This would allow the categorisation of  data into groups 
in which blood beyond 14 d storage could be compared 
with those receiving blood less than 14 d old. This ap-
proach has recently been suggested by Flegel[129]. Because 
of  the multifactorial nature of  the clinical conditions 
under investigation, all confounding variables will need 
to be recorded and a detailed multifactorial analysis con-
ducted in order to tease out the relative risk factors of  all 
the variables[4] including storage age of  blood used. 

There are also some modifications to the prepara-
tion of  the paediatric packed red cell units which might 
be investigated in an attempt to limit the availability 
of  redox active iron and free radicals in the units. This 
could include the addition of  haptoglobin, hemopexin, 
apotransferrin and/or antioxidants to the additive fluid. 
The effects could be easily evaluated in vitro and in animal 
models, but transferring the findings to clinical applica-
tions would be difficult in premature babies without de-
tailed studies on the safety and efficacy of  such prepara-
tions in appropriate human subjects. 

In the short term, until the outcome of  further clini-
cal studies is known, it might make sense to limit the 
storage age of  blood given to premature babies to 14 d. 
This is supported by studies which indicated that, from 
a biochemical and molecular standpoint, the parameters 
defining the integrity of  saline, adenine, glucose mannitol 
stored leucoreduced red blood cells may be acceptable up 
to 14 d of  storage, but then decline[84], and clinical studies 
have shown no additional adverse effects of  blood stored 
for a mean age of  14 d compared to fresh blood[74]. A 
cut-off  point of  14 d is supported by many other stud-
ies. Blood stored for more than 14 d was associated with 
multiple organ dysfunction and prolonged stay in the 
paediatric intensive care unit[65]. In adults, the incidence 
of  bacterial infection increased following transfusion with 
blood stored for more than 14 d[39], and the incidence 
of  mortality almost doubled in those patients receiving 
blood stored for more than 14 d compared to those re-
ceiving blood stored for 7 d[130]. The most detailed investi-
gation conducted on adults undergoing cardiac surgery[131] 
showed conclusively that blood that had been stored 
for more than 14 d was associated with significantly in-
creased risks of  post operative complications, in-hospital 
mortality and poorer long term outcome compared to 
patients receiving fresher blood. The study investigated 
large numbers of  patients and provided strong statistical 
power. Thus the biochemical and clinical data support 
the view that to reduce the incidence of  morbidity and 
mortality in patients requiring transfusions with packed 
red blood cells, the blood should be stored for no more 
than 14 d. Limiting storage age to 14 d would have clear 
logistic and cost implications. Limiting the maximum 

shelf  life from 35 d to 7 d is predicted to result in a 50% 
decrease in the number of  available units and a fourfold 
increase in the number of  units outdated each year[132]. 
An expiration date of  14 d would have a significant im-
pact on hospital reserves, and would require a substantial 
increase in collections to preserve hospital stocks[132]. 
These figures are based on blood group matched adult 
units. The situation regarding O negative paediatric packs 
for use in premature babies would be more disruptive. 
It may make sense to conduct a small pilot study to fully 
evaluate the feasibility of  such a change in practice.

In addition as there appears to be a subset of  prema-
ture babies which are particularly vulnerable to the ad-
verse effects of  transfusion, we should already be giving 
the freshest blood available to the smallest and youngest 
babies. The need to re-evaluate transfusion practice with 
regard to the storage age of  the blood has recently been 
suggested for blood transfusion in adults[129]. There is 
perhaps a more urgent need to do the same in premature 
babies who are probably at a greater risk of  transfusion 
mediated morbidity than adults.
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