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Abstract

Stem cell technology is a promising branch of regenerative medicine that is aimed at developing

new approaches for the treatment of severely debilitating human diseases, including those

affecting the central nervous system (CNS).

Despite the increasing understanding of the mechanisms governing their biology, the application

of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in

vivo via the replacement of endogenous cells lost or damaged owing to disease has been

challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the

remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the

level of the neural microenvironment to promote tissue healing via combination of immune

modulatory and tissue protective actions, while retaining predominantly undifferentiated features.

Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are

under extensive investigation with regard to their therapeutic plasticity after transplantation. The

significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS

diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms

behind their therapeutic impact, could soon be translated to human studies.

This review aims to provide an update on the most recent evidence of therapeutically-relevant

neuroimmune interactions following NPC transplants in animal models of multiple sclerosis,

cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges

related to the early translation of some of these exciting experimental outcomes into clinical

medicines.
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Introduction

The discovery of adult neurogenesis and the development of protocols that allow in vitro

growth and significantly large scale-up of stem and precursor cells of the brain (Reynolds

and Weiss, 1992) have fostered the development of innovative therapies aimed at stem cell

transplantation for acute and chronic disorders of the nervous system (Cossetti et al., 2012).

Motivated by the expectation of achieving CNS repair and/or regeneration via functional

neural cell replacement, these studies have demonstrated a potential benefit of neural stem/

precursor cell (NPC)-based experimental treatments in animal models of several

neurological diseases (Martino et al., 2011). However, mounting evidence suggests that the

effects orchestrated by transplanted NPCs are not only associated with the generation of new

neurons or glial cells but also that the pathological setting in which these cells are

transplanted critically determines the outcome (Cossetti et al., 2012). Cell replacement is

therefore only one of the multiple ways in which transplanted NPCs promote tissue repair,

and a much more complex therapeutic scenario should be foreseen. The concept of stem cell

therapeutic plasticity (Martino and Pluchino, 2006) (or functional multipotency) (Teng et al.,

2011) has therefore emerged, as it describes the multiple way(s) grafted NPCs which

mediate systemic homeostasis, e.g. by the secretion of tissue trophic factors, as well as

interaction with tissue-resident vs. -infiltrating immune cells, at the level of the

inflammatory tissue context in which they are either transplanted or to which they migrate

after transplantation.

The newest picture is therefore that stem cell therapies, contrary to single-molecule-based

pharmaceutical interventions, hold the potential to deliver a complex series of information to

a multitude of targets in the diseased microenvironment (Cossetti et al., 2012). While no

final mechanisms (or direct evidence) of stem cell-to-host immune system interaction is yet

available, a number of studies are now focussing on the cellular signalling that exists

between grafted stem cells and endogenous target cells, with the aim of clarifying its

physiological or circumstantial nature, and elucidating its molecular signature and

therapeutic potential.

Here we will review the most recent evidence of immune modulation following syngeneic

NPC transplants in animal models of multiple sclerosis, spinal cord injury and stroke, and

discuss the next challenges related to the translation of some of these exciting experimental

outcomes into clinical medicines.

Multiple sclerosis

Multiple sclerosis (MS) is a complex, highly debilitating CNS autoimmune disease that

constitutes the most common cause of neurological disability in young adults (Compston

and Coles, 2002). The main pathological hallmark of MS is the presence of highly

heterogeneous, chronic inflammatory and demyelinating perivascular lesions within the

CNS (Compston and Coles, 2002; Dyment and Ebers, 2002; Flugel et al., 2001; Lucchinetti

et al., 2000; Noseworthy et al., 2000; Wingerchuk et al., 2001). Most of the demyelinated

regions undergo partial remyelination and show structural repair and recovery of function

(Barkhof et al., 2003; Chang et al., 2002; Compston, 1996, 1997; Prineas et al., 1993; Raine
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and Wu, 1993). However, remyelination in MS is typically patchy and incomplete, and

ultimately fails (Blakemore et al., 2002; Franklin, 2002; Franklin and Ffrench-Constant,

2008). The failure of remyelination in MS has multiple causes:

i. Inadequate provision of OPCs (recruitment failure) (Chari et al., 2003) or a failure

of recruited OPCs to differentiate into remyelinating oligodendrocytes

(differentiation failure) (Jepson et al., 2012; Syed et al., 2011);

ii. Ageing of the perilesional microenvironment where recruited OPCs show impaired

differentiation into oligodendrocytes (Ruckh et al., 2012);

iii. Inhospitable environment generated by pro-inflammatory Th1/Th17 cells and

cytokines (Steinman, 2007); and

iv. Anatomical barriers around chronic lesions impeding the recruitment of OPCs

(Franklin, 2002).

Furthermore, recurring inflammation may have profound consequences on the health of

anatomically intact axons, resulting in progressive and irreversible damage/dysfunction that

accounts for the degenerative nature of MS (Franklin and Ffrench-Constant, 2008; Patrikios

et al., 2006). The sequential involvement of most of the above processes underlies the

clinical course of MS, which is characterised by recurrent episodes of relapses that

eventually leave temporary or persistent deficits, to finally deteriorate into a secondary

chronic progressive phase (Compston and Coles, 2002).

The issue of (stem) cell therapies for MS has therefore gained in complexity as its success

relies on the capacity of transplanted (stem) cells to target the specific sites of disease,

integrate into the host tissue and eventually differentiate into neural functional cells (neurons

and glia), while surviving in the chronically inflamed CNS environment. This adds crucial

concerns of identification of cell source, its constitutive vs. reactive immunogenicity,

window of opportunity, route of cell delivery, as well as ways in which to help the

integration and long-term survival of grafted cells in the ‘inhospitable’ inflammatory CNS

environment. All these are critical aspects of stem cell therapies that must be critically

considered when envisaging therapeutic cell transplants for MS (Martino et al., 2011).

The route of cell administration has always been a major constraint for stem cell

transplantation in CNS diseases and appeared to be very much dependent on the presence of

focal vs. multifocal lesions to target. With MS being a multifocal disease, it is unrealistic to

propose lesion-targeted injection of cells (Pluchino and Martino, 2008). This is also

complicated by the fact that it is generally difficult to determine which of the multiple

lesions identified by magnetic resonance imaging (MRI) would underscore clinical

significance, and whether they would eventually be amenable to effective (therapeutically

relevant) remyelination upon (stem) cell therapy (Chen et al., 2007).

Following a number of successful proof-of-concept in vivo remyelination studies with

focally-transplanted glial progenitor cell types, including oligodendrocytes (Blakemore and

Crang, 1988), OPCs (Groves et al., 1993; Windrem et al., 2004, 2008) and Schwann cells

(Blakemore, 1977; Zujovic et al., 2012), NPCs were the very first candidate stem cells for

systemic cell treatment of experimental autoimmune encephalomyelitis (EAE), as an animal
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model of MS [reviewed in Pluchino et al. (2004) and Goldman et al. (2012)]. During the last

decade, rodents and non-human primates with acute, relapsing and chronic EAE (Martino

and Pluchino, 2006) have been treated with NPCs injected intracerebroventricularly (icv),

intrathecally (it) or intravenously (iv). These studies have shown that systemically injected

NPCs enter the CNS where they survive for months in perivascular inflammatory areas

while retaining mostly undifferentiated features, and remarkably reduce the clinical and

pathological burden of the disease (Martino and Pluchino, 2006). Interestingly, the majority

of these reports have substantially failed to show convincing differentiation and integration

of transplanted NPCs in vivo, but rather contributed to the provocative idea that NPC

transplants would work through mechanisms other than direct cell differentiation that imply

the interaction between NPCs and immune cells (Cossetti et al., 2012; Martino and

Pluchino, 2007).

The first evidence that NPCs possess immune-like features came from the observation that

systemically injected NPCs use functional leukocyte-specific cell adhesion molecules (such

as CD44 and very late antigen [VLA]-4) and inflammatory chemokine receptors (e.g. CCR2,

CCR5 and CXCR4) to interact with activated ependymal and endothelial cells and

ultimately enter the brain (Ben-Hur et al., 2003; Einstein et al., 2003; Pluchino et al., 2003).

Once into the CNS, NPCs are found around inflamed blood vessels, in close contact with

endogenous neural cells (e.g. astrocytes and neurons) and CNS-infiltrating blood-borne

CD45+ immune cells, while creating niche-like areas that are ultrastructurally and

molecularly reminiscent of the prototypical stem cell niches from which NPCs were derived

(Pluchino et al., 2005). NPC transplants are also associated with significantly reduced glial

scar formation (Pluchino et al., 2003) and local inflammatory response (Ben-Hur et al.,

2003; Einstein et al., 2006; Pluchino et al., 2005, 2009a, 2009b), which in turn lead to the

increased survival and recruitment of endogenous neural cells (e.g. oligodendroglial

progenitor cells) participating in the brain’s intrinsic reparative response upon myelin

damage (Einstein et al., 2009; Pluchino et al., 2005). The underlying molecular mechanisms

by which transplanted NPCs confer this broad tissue protection were first indirectly linked to

the increased in vivo bioavailability of major neurotrophins (Chu et al., 2004a, 2004b;

Einstein et al., 2006; Lu et al., 2003; Pluchino et al., 2003; Teng et al., 2002) and to the

modulation of the host environment into one that is more permissive for regeneration.

Several neurotrophins that are found increased after NPC transplants have also been shown

to inhibit EAE, and neurotrophins like insulin-like growth factor (IGF)-1 and glial growth

factor (GGF)-2 promote the survival and proliferation of oligodendrocyte lineage cells

(Barres et al., 1992; Canoll et al., 1996, 1999; Mason et al., 2000).

However, the observation that (icv)-injected NPCs primarily attenuate brain inflammation,

in correlation with a reduction of CD3+ T cells and an increase in CD25+ and CD25+/

CD62L+ regulatory T cells (Einstein et al., 2003), suggested a completely novel mechanism

of action that deserved further investigation. The iv injection of NPCs also protects against

chronic neural tissue loss as well as disease-related disability in EAE, via induction of the

apoptosis of blood-borne CNS-infiltrating encephalitogenic T cells (Pluchino et al., 2005).

In vitro, NPCs increase the apoptosis of antigen-specific Th1 pro-inflammatory (but not Th2

anti-inflammatory) cells selectively through the engagement of death receptors, including

FasL, TRAIL and APO3L, on the surface of NPCs (Pluchino et al., 2005). Mouse and rat
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NPCs also inhibit T cell activation and proliferation in response to T cell receptor (TCR)-

mediated stimuli (Einstein et al., 2003; Fainstein et al., 2008). NPC-T lymphocyte co-

cultures suggest that part of the anti-proliferative effect of NPCs might depend on the

inhibition of IL-2 and IL-6 signalling on T lymphocytes (Fainstein et al., 2008). Knight et al.

show that NPCs have a selective pro-apoptotic effect on Th17 cells in vitro via a FasL-

dependent mechanism, identifying the axis Fas-Birc3 as an additional survival pathway for

NPCs (Knight et al., 2010). NPCs also suppress T cell proliferation by the reactive

production of nitric oxide (NO) and prostaglandin E2 (PGE2). Interleukin (IL)-10-

transduced NPCs show enhanced ability to induce remyelination, neuronal repair and

immune suppression after systemic NPC injection in EAE mice (Yang et al., 2009). Human

NPCs suppress the proliferation of non-human primate activated T cells through both direct

cell-to-cell contacts and via the release of soluble mediators into the culture supernatant

(Kim et al., 2009; Pluchino et al., 2009a).

Other studies have shown that systemically injected NPCs also inhibit EAE by a peripheral

immune modulation in lymph nodes (Einstein et al., 2007; Pluchino et al., 2009b). Einstein

et al. first showed that EAE-derived lymph node cells were strongly inhibited by NPCs in

the production of pro-inflammatory cytokines in response to MOG35-55. Furthermore,

primed T cells from mice treated with NPCs were also deficient in their ability to adoptively

transfer EAE, thus demonstrating a long-lasting inhibition of the encephalitogenicity of the

T cells that are transferred to a naïve host, rather than an effect specific to the in vivo

environment (Einstein et al., 2007).

We have reported a specific and almost exclusive targeting of the peripheral immune system

in SJL mice with PLP-induced EAE in which NPCs were injected subcutaneously (sc) at 3

and 10 days post-immunisation (dpi) (Pluchino et al., 2009b). After sc injection in EAE,

NPCs consistently accumulate and persist in draining lymph nodes, where they increase the

availability of major stem cell regulators (including bone morphogenetic protein [BMP]-4)

and interact with lymphoid dendritic cells (DCs) that are hindered in their maturation to

professional antigen-presenting cells (APCs). In vitro, NPCs specifically impair the

maturation of immature DCs (iDCs) via a BMP-4-dependent mechanism (Pluchino et al.,

2009b). A recent study has shown that the preventive intravenous administration of NPCs

ameliorates EAE by selectively inhibiting the differentiation of encephalitogenic T helper 17

(Th17) through secreted factors. Recently, Cao et al. have identified leukaemia inhibitory

factor (LIF) as the first key factor responsible for the observed inhibition of Th17 cell

differentiation by transplanted NPCs, and elucidated the signalling pathway behind this

novel mechanism of action, where LIF antagonises interleukin (IL)-6-induced Th17 cell

differentiation through the ERK-dependent inhibition of STAT3 phosphorylation (Cao et al.,

2011).

Whether most of the immune regulatory effects of systemically injected NPCs in EAE act

directly in the CNS or in the periphery is still an unanswered question and further studies are

needed to establish the absolute relevance of these pre-clinical data in EAE – where

peripheral lymphoid organs play an important role in the regulation of the immune responses

to self myelin antigens – and indeed the possibility that both sites of action may become

interrelated and pathophysiologically relevant to the future applications of NPCs in MS
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(Kokaia et al., 2012; Martino et al., 2011). Evidence of the neuro-immune interactions

observed following NPC transplantation in EAE is shown in Table 1 and summarized in Fig.

1.

Spinal cord injuries

Spinal cord injuries (SCIs) are devastating and debilitating conditions affecting all regions

of the world – predominantly in young adults – which are associated with severe physical,

psychological, social and economic burdens on patients and their families [reviewed in Ho

et al. (2007) and van den Berg et al. (2010)]. An important premise for the development of

effective treatments for SCIs is the precise understanding of the main pathophysiological

events following the acute injury and how these interact in the development of established

anatomical and functional deficits (Rowland et al., 2008).

The most common mechanisms of SCI developed into two exclusive broad chronological

phases that are sustained by the primary and secondary mechanisms of injury. Primary

injuries include shearing, laceration, and acute stretching vs. acceleration–deceleration

events, which very rarely lead to complete transection or disruption of the anatomical

continuity of the spinal cord (Rowland et al., 2008). The severity of neurological injury, the

level of the injury and the presence of a zone of partial cord preservation are accepted

predictors of recovery and survival after SCI. Indeed, the presence of spared axons crossing

the injury site holds great therapeutic potential as a substrate of a number of emerging

therapeutic strategies (Wilson et al., 2012).

A number of processes are triggered by primary injuries and lead to much more prolonged

secondary injury phases that start within a few hours and remain active up to weeks after

SCIs; thus, progressively exacerbating the consequences of the mechanical injury to the

cord. Immediate, acute, intermediate and chronic secondary injury phases have been

identified, characterised and staged (Rowland et al., 2008). Some of these phases include the

early traumatic severing of the axons, the death of neurons and glia and the instantaneous

loss of function at and below the injury level (spinal shock) (Ditunno et al., 2004; Kakulas,

2004). The spinal cord undergoes diffuse swelling and the central grey matter shows signs of

petechial haemorrhage (Tator and Koyanagi, 1997). Cell necrosis and the activation of local

astrocytes and microglia are also observed immediately after the injury (Watanabe et al.,

1999). Subsequent secondary events include free radical production, ionic (e.g. Ca++)

deregulation (Tymianski et al., 1993) and glutamate excitotoxicity (Li and Stys, 2000)

(immediate — hours); changes in the blood–brain barrier (BBB) permeability (Noble and

Wrathall, 1989), activation of a multifaceted inflammatory response that involves soluble

inflammatory mediators and a variety of cells such as astrocytes, microglia, T cells,

neutrophils and cord-infiltrating monocytes (Donnelly and Popovich, 2008; Fleming et al.,

2006), oligodendrocyte apoptotic cell death and demyelination (Crowe et al., 1997) (acute

— days); astroglial proliferation and formation of a gliotic scar (Silver and Miller, 2004)

that interferes with axonal sprouting (intermediate — weeks to months); and retrograde

Wallerian axonal degeneration (Coleman and Perry, 2002), dynamic maturation of the lesion

up to the development of cysts and/or syrinxes, and delayed neuronal dysfunction and

neuropathic pain (Stoodley, 2000) (chronic — several months).
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Despite the important advances in the understanding of SCI pathophysiology, to date,

virtually all therapies that have shown promise at the preclinical stage of study have failed to

translate into clinically effective treatments. For this reason, the potential of NPC

transplantation to drive spinal cord repair has been widely investigated, as NPCs may

provide an effective treatment by either directly replacing those cells lost owing to the injury

(e.g. oligodendrocytes), influencing/modifying the environment in a way that supports

axonal regeneration, providing neuroprotection, or re-setting the inflammatory response to a

mode that heals the damaged tissue (Sahni and Kessler, 2010).

Adult mammalian NPCs from different sources have been transplanted into a wide range of

SCI models with significant clinical improvement. Most of the studies have delivered NPCs

focally to increase their viability at the injury site. While evidence exists in support of an

astroglial differentiation default mode shown by transplanted embryonic NPCs in both the

developing and the adult cord (Lepore et al., 2006), some pioneering work suggests that

NPCs survive, migrate and generate functional remyelinating oligodendrocytes, which

promote functional recovery when transplanted subacutely (namely 2 weeks) – but not

chronically (namely 8 weeks) – after SCI (Karimi-Abdolrezaee et al., 2006).

However, other approaches have more convincingly established that the transplantation of

somatic NPCs in experimental SCI yields a generally low degree of survival – as the injury

creates a highly toxic environment – and differentiation (Bottai et al., 2008; Cao et al.,

2002), most of which was biassed towards a glial fate (Cao et al., 2001; Pfeifer et al., 2004;

Vroemen et al., 2003), thus challenging the initial expectation of achieving predominant

neuronal/oligodendroglial cell replacement (Cao et al., 2001; Vroemen et al., 2003) in vivo.

There is also a growing belief that the severity (and type) of the injury, as well as the time

after injury at which cells are transplanted, are two major key factors influencing the

capability of grafted NPCs to affect the healing of the damaged spinal cord tissue. As such,

rat spinal cord-derived somatic NPCs failed to induce any detectable functional recovery

when transplanted hyperacutely at the level of injury in a severe (35-g) clip-induced SCI

model (Parr et al., 2007), but were indeed significantly efficacious when transplanted as

early as 9 days after injury in a milder (27-g) model of SCI (Parr et al., 2008). Furthermore,

the homogeneity vs. heterogeneity of the neural stem/progenitor cell preparation is a key

point. As such, prominent neuronal differentiation is reliably achieved with primary foetal

tissue and when glially and neuronally restricted progenitors are combined, but not when

only neuronally restricted progenitors are grafted to the injured spinal cord [reviewed in

(Fischer, 2000)].

Strategies to overcome the observed poor survival and differentiation potential of

transplanted NPCs have included combination with valproic acid (Abematsu et al., 2010) or

neurotrophic growth factors (Bonner et al., 2010, 2011), which promoted neuronal

differentiation and established functional synapses between host axons and graft neurons at

the injury site.

The use of engineered NPCs transduced with transcription factors or survival genes (Hwang

et al., 2009; Lee et al., 2009), as well as the co-transplantation with ‘scaffold’ cells such as
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mesenchymal/stromal stem cells or olfactory ensheathing cells (Oh et al., 2010; Wang et al.,

2010), has increased the survival, migration and differentiation of transplanted NPCs and the

final functional recovery observed.

Furthermore, the combined transplantation of adult NPCs with minocycline treatment and

growth factor delivery promoted cell survival and remyelination of spared axons into a rat

model of compressive SCI (Karimi-Abdolrezaee et al., 2006). Transplanted NPCs were

mainly incorporated into the white matter of the dorsal or lateral column and substantially

differentiated along the oligodendroglial lineage. Exogenous (NPC-derived) myelin basic

protein (MBP)-positive cells were found in close association with endogenous neuronal

processes, finally correlating with the recovery of locomotor function (Karimi-Abdolrezaee

et al., 2006). Interestingly, the net functional significance of exogenous remyelination in

promoting behavioural recovery has been further confirmed by the recent observation that

mice receiving NPC-derived oligodendrocytes isolated from myelin-deficient mice failed to

acquire locomotor functionality after SCI (Yasuda et al., 2011). The concomitant use of

chondroitinase ABC (ChABC) to reduce the presence of chondroitin sulphate proteoglycans

(CSPGs) together with NPC transplantation in a chronic model of compressive SCI greatly

increased the long-term survival, migration and integration of grafted cells (Karimi-

Abdolrezaee et al., 2010).

In the majority of cases, the transplantation of NPCs has resulted in the significant recovery

of functions that were highly specific to the treatment applied, as they were completely

abolished in human NPC-transplanted SCI mice treated with diphtheria toxin (DT; as human

cells are about 100,000 times more sensitive to DT than mouse cells) (Cummings et al.,

2005). Interestingly, when more lineage-restricted neural precursors have been transplanted,

a much higher rate of neuronal differentiation has been achieved, presumably because these

latter cells are less sensitive than NPCs to inhibitory signals coming from the environment

(Han et al., 2002; Yan et al., 2007).

Based on some of these assumptions, several strategies have been developed to promote

regeneration and functional recovery by delivering biomaterial scaffolds engineered with

cells and/or bioactive molecules (e.g. hydrogels, sponges, single- and multi-channelled

guidance tubes, and nanofibre scaffolds (Bamber et al., 2001; Chen et al., 2010; Hurtado et

al., 2006; Johnson et al., 2010; Taylor et al., 2006; Tobias et al., 2003; Wang et al., 2011;

Xiong et al., 2012; Zeng et al., 2011). Interestingly, the implantation of a scaffold–neural

stem cell unit into an adult rat hemisection model of SCI led to overall tissue preservation

with limited atrophy and scar formation that finally resulted in significant functional

improvement up to 1 year post-engraftment (Teng et al., 2002).

Alternative routes of administration (e.g. systemic) have also been investigated to avoid the

damage to the spared cord tissue at the time of focal cell injection, as well as other

procedure-related complications, with the final aim of improving the chances of translation

into clinical practise. After injection into the tail vein of nude SCI mice, human NPCs were

able to reach the injury site (Takeuchi et al., 2007), leading to significantly better

behavioural recovery compared with SCI mice transplanted intraspinally with NPCs (Bottai

et al., 2008).
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Importantly, the shaping of new intraspinal circuits should be tightly controlled to avoid

serious side effects such as aberrant host fibre sprouting associated with allodynia-like

hypersensitivity (Hofstetter et al., 2005; Macias et al., 2006). These latter effects of

transplanted NPCs may derive from their ability to release biological molecules able to

protect damaged cells and/or promote endogenous CNS repair/regeneration. Indeed, in vitro

(Hawryluk et al., 2012; Kamei et al., 2007) and in vivo (Lu et al., 2003) studies have shown

how NPCs can release a milieu of biological factors able to attract injured axons and

promote the growth of host spinal axons after injury.

As such, strong parallel evidence suggests that undifferentiated NPCs can also influence the

injury environment at the spinal cord through the establishment of functional interactions

with endogenous neural and immune cells. On the one hand, the transplantation of mouse

NPCs both provided a cellular substrate and secreted several neurotrophic factors (e.g. nerve

growth factor [NGF], brain-derived neurotrophic growth factor [BDNF] and GDNF),

leading to substantial host axonal re-growth (Lu et al., 2003). Also, adult NPCs themselves

were shown to induce the up-regulation of neurotrophic factors and chemokines such as

BDNF, NGF and LIF, and inflammatory molecules such as TNF-α (Bottai et al., 2008). In

line with this, NPCs, engineered to express a human NT-3 capable of binding to both trkB

and trkC, showed increased survival and enhanced myelin formation, although they led only

to a modest improvement in locomotor function, when transplanted into a chronic SCI

model (Kusano et al., 2010). Furthermore, when combined with a self-antigen (e.g. myelin)-

specific T cell vaccination that is expected to promote recovery from CNS insults provided

that their activity (in terms of onset, intensity and duration) is well controlled (Butovsky et

al., 2001, 2006), NPCs transplanted in mice with SCI migrated to the injury site and

synergistically promoted functional recovery via modulation of the nature and intensity of

the local T cell and microglial response, expression of BDNF and Noggin, and appearance

of newly formed neurons from endogenous precursor-cell pools (Ziv et al., 2006). This

immune regulatory effect was also present when NPCs were transplanted locally (at the

lesion borders) into an extremely severe (e.g. 200 kdynes) model of contusion SCI. Sub-

acutely (but not chronically) transplanted NPCs remained undifferentiated and altered the

inflammatory infiltrate of the injured spinal cord by reducing the proportion of ‘classically-

activated’ (M1) inflammatory macrophages, and increasing that of regulatory T cells, in turn

promoting the healing of the injured cord (Cusimano et al., 2012).

Thus, NPC transplantation in SCIs contributes to anatomical and behavioural recovery in

SCI models through cell replacement and integration of grafted cells into local circuits, as

well as tissue trophic effects. Recent evidence has identified an additional novel protective

mechanism that grafted undifferentiated NPCs exert on innate immune responses to remodel

the perilesional inflammatory environment towards a tissue-healing mode (Kokaia et al.,

2012; Martino et al., 2011).

Evidence of the main outcomes following syngeneic NPC transplantation in experimental

SCIs is shown in Table 1 and summarized in Fig. 1.
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Stroke

Clinical recovery after stroke remains very poor despite advances in therapy, and stem cell

treatment is considered a promising alternative (Lindvall and Kokaia, 2011). Transplantation

of NPCs with different delivery strategies, intraparenchymal (ipc) or icv injection, as well as

systemic administration, has been shown to improve clinical signs in experimental stroke

models (Liu et al., 2009; Pluchino et al., 2010).

Irrespective of the route of administration, transplanted NPCs migrate towards the infarct

site in models of transient middle cerebral artery occlusion (MCAo) and intracerebral

haemorrhage (ICH) (Chu et al., 2003, 2004b; Darsalia et al., 2007; Jeong et al., 2003; Kelly

et al., 2004; Modo et al., 2002; Roitberg et al., 2006; Zhang et al., 2003), where gradients of

pro-inflammatory cytokines and chemokines are released (Bacigaluppi et al., 2008), and

CCL2/CCR2 and CXCL12/CXCR4 play a crucial role in transendothelial recruitment and

intraparenchymal migration, respectively (Andres et al., 2011a; Darsalia et al., 2007; Imitola

et al., 2004). Once they reach the ischaemic boundary zone (IBZ), grafted NPCs interact

with the inflammatory environment, as suggested by the increase in the gene expression

levels of VEGF, CXCL12/SDF1-α and TGF-β in the NPC-transplanted mouse brain with

middle cerebral artery (MCA) occlusion 4 h after the insult (Capone et al., 2007). Similarly,

the up-regulation of the cell adhesion molecule VCAM-1 onto the surface of endothelial

cells facilitates the targeting and the subsequent extravasation of CD49d expressing NPCs to

the site of injury (Guzman et al., 2008).

Intracerebrally transplanted NPCs survive up to 1 month, migrate towards the peri-infarct

area and partially differentiate into mature neurons, finally resulting in a reduced lesion

volume and functional recovery. Their beneficial effects were first attributed mainly to a

combined action between trophic support and the ability of newly generated neurons to

establish new synapses (Ishibashi et al., 2004). NPC-derived neurons have been described to

produce neurotransmitters, form dendrites and show electrophysiological properties

characteristic of integrated functional neurons (Buhnemann et al., 2006; Englund et al.,

2002; Park et al., 2002). In most of the cases, it has been observed that transplanted NPCs

remained confined to the penumbra (Jin et al., 2011), leading to a decrease in white matter

atrophy and a reduction in endogenous apoptotic cells (Shen et al., 2010). Remarkably,

NPCs grafted close to the lesion edges showed less prominent survival, most likely because

of a gradient of factors and molecules released from the core of the injury that might have

influenced NPC migration and maturation (Darsalia et al., 2007). Histopathological and

MRI analyses showed that NPCs may also have profound effects on the white matter

reorganisation within the IBZ (Jiang et al., 2006). More importantly, the number of cells

surviving the transplantation does not strictly correlate with the observed clinical restoration.

Indeed, a very low percentage of surviving cells (0.28%) could result in a robust behavioural

recovery (Bacigaluppi et al., 2009).

On the other hand, NPCs injected systemically into MCAo mice mostly maintain an

undifferentiated phenotype, while accumulating at the boundaries of the lesioned area

(Bacigaluppi et al., 2009; Sun et al., 2010). Therefore, besides the (limited) cell replacement,

NPCs are believed to also exert tissue trophic and immune modulatory effects (Bacigaluppi
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et al., 2008) in stroke models [reviewed by (Kokaia et al., 2012; Martino et al., 2011)]. In

line with this, the sub-acute (delayed) NPC injection after MCAo has been shown to

significantly down-regulate multiple RNA species involved in inflammation, including IFN-

γ, TNF-α, IL-1β, IL-6 and leptin receptor (Bacigaluppi et al., 2009). NPCs may exert an

immune modulatory action, while in an undifferentiated state, causing a profound down-

regulation of inflammatory lymphoid (T cells) and myeloid cells (macrophages) within

inflamed brain areas. While the inhibition of the T cell responses by NPCs is quite an

established concept (Ben-Hur, 2008), the effects on microglia/macrophages at the ischaemic

injury site remain controversial, as professional phagocytes can exert both protective and

deleterious effects after brain injuries, including stroke (Iadecola and Anrather, 2011). In

addition to having a beneficial effect on axonal sprouting (Daadi et al., 2010), NPC

transplantation promotes the infiltration of CD11b+ myeloid cells in the brain of MCAo

mice (Capone et al., 2007; Daadi et al., 2010), thus suggesting that some myeloid cell

activation might be required for transplanted NPCs to exert part of their neuroprotective

action (Capone et al., 2007). Mice with MCAo, selectively ablated of CD11b-positive

microglia or mineralocorticoid receptor (MR)-expressing macrophages, show exacerbation

or reduction of the ischaemia-dependent brain injury, respectively (Frieler et al., 2011;

Lalancette-Hebert et al., 2007). However, other studies show a significant reduction in

microglia/macrophages in the brain of mice with either ischaemic or haemorrhagic stroke

after NPC transplantation, with improved neuronal survival and locomotor functions

(Bacigaluppi et al., 2009; Lee et al., 2008). Interestingly, when injected systemically into

mice with collagenase-induced intracerebral haemorrhage (ICH), only very few transplanted

NPCs migrated into the brain, with the majority of them accumulating predominantly at the

level of the spleen. In ICH mice, only the hyperacute (e.g. 2-h) NPC injection resulted in

decreased brain oedema, inflammatory infiltration and neurological deterioration.

Consistently, splenectomy prior to ICH induction eliminated the positive effect on oedema

and the inflammation of transplanted NPCs (Lee et al., 2008).

Thus, preclinical research in animal models of stroke shows remarkable behavioural and

pathological recovery through a number of bystander mechanisms that grafted NPCs employ

to neutralize free radicals, inflammatory cytokines, excitotoxins, lipases peroxidases and

other toxic metabolites released following an ischaemic event (Bacigaluppi et al., 2009;

Ourednik et al., 2002). Once again, NPC transplants exert different therapeutic effects (e.g.

cell replacement, neurotrophic support, central vs. peripheral immunomodulation, etc.) in

response to the (inflammatory) signature of the tissue in which they are transplanted, or

migrate to after systemic cell injection (Kokaia et al., 2012; Martino et al., 2011). Evidence

of the main outcomes following syngeneic NPC transplantation in experimental stroke is

shown in Table 1 and summarized in Fig. 1.

Towards clinical trials

Based on the encouraging results collected pre-clinically during the last 5–7 years (Table 1),

phase I clinical trials have started to be conducted, both in fatal and non-fatal incurable

neurological diseases where the risk/benefit ratio is in theory favourable (Aboody et al.,

2011). Besides the unquestionable care regarding the characterisation and manufacture of

the medicinal product (Rayment and Williams, 2010), one of the other important hurdles in

Giusto et al. Page 11

Exp Neurol. Author manuscript; available in PMC 2014 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the design of clinical study for (stem) cell therapy trials is defining end-points, as these will

be the measure of the trial’s failure or success. This is particularly challenging given the

inflammatory and degenerative nature of some of the target neurological disorders under

consideration and the complexity posed by the rate of progression and lack of validated

surrogate disease markers. The overall goal of these phase I NPC human studies is therefore

to determine whether the transplantation of NPCs is feasible and safe – before checking for

efficacy – with the primary aim of determining the maximum tolerated dose and potential

dose-limiting toxicities. Secondary end-points are usually correlative studies (e.g. imaging

the biodistribution of transplanted cells, assessing their immunogenicity, tracking their

survival and fate in vivo) that would expand the knowledge gained from conducting these

pilot studies. Long-term follow-up for the assessment of late toxicity is also important,

particularly in patients with non-fatal conditions, who might live for many years after

transplant.

Following the experimental evidence that human NPCs engraft robustly, migrate extensively

and produce sufficient levels of palmitoyl protein thioesterase-1 (PPT1) to alter the

behaviour and neuropathology of immunodeficient Ppt1−/− mice, as a model of infantile

neuronal ceroid lipofuscinosis (NCL) (Tamaki et al., 2009), the first open-label dose-

escalating phase I human study involving the transplantation of allogeneic NPCs was started

in May 2006 at the Oregon Health and Science University (OHSU, Portland, OR, USA),

investigating infantile and late-infantile NCL Batten disease. The rationale was that early

intervention with stem cell transplants would supply an exogenous source of the missing

enzyme sufficient for the uptake and cross-correction of host cells. A total of 6 subjects

underwent transplantation in a single-stage procedure with direct delivery of StemCell, Inc.

proprietary single-donor allogeneic free-floating cultured, foetally derived brain human

NPCs (HuCNS-SC®) to the cerebral hemispheres and lateral ventricles. Immune

suppression was administered for 12 months after transplantation. This study has now been

completed and only 1 out of 6 patients has been reported to die from disease progression 11

months after treatment. The cell transplantation and combination with prolonged immune

suppression were both well tolerated (Steiner et al., 2010).

Neural stem/precursor cell transplants also have the potential to replace lost or injured cell

types, including neurons, astrocytes and oligodendrocytes (Lepore and Maragakis, 2007).

While NPC-derived neurons may reconstruct circuits or create novel connections; graft-

derived glial cells may be able to replace dysfunctional endogenous dead cells, thus

restoring some level of normal (synaptic) communication and preventing further excitotoxic

motor neuron cell death, as described for neurodegenerative diseases such as amyotrophic

lateral sclerosis (ALS) and leukodystrophies (Allaman et al., 2011; Lobsiger and Cleveland,

2007).

In September 2009, NeuralStem, Inc. initiated a phase I trial in amyotrophic lateral sclerosis

(ALS) at the Emory University School of Medicine (Atlanta, GA, USA), using proprietary

single-donor allogeneic adherent cultured, foetally derived spinal NPCs (NSI-566RSC).

NSI-566 cells were surgically implanted in a total of 12 patients via multiple injections

directly into the thoracic spinal cord (either unilateral or bilateral). Combined immune

suppression with early methylprednisolone and prednisone, and late maintenance tacrolimus
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and mycophenolate mofetil was administered until the end of the study. The clinical

assessments demonstrated no evidence of acceleration of disease progression with the

planned 18 month post-transplantation follow-up (Glass et al., 2012; Riley et al., 2012). In

June 2012, the Azienda Ospedaliera Santa Maria (Terni, Italy) enrolled the first of a total of

18 ALS patients (subdivided into three independent groups, according to the disability at

enrolment) and treated them with intraspinally implanted allogeneic, free-floating, cultured,

foetally derived brain NPCs. This study has to date completed the enrolment of the fourth

and final patient of treatment group A [main inclusion criteria: inability to walk and forced

vital capacity (FVC) < 60%], who underwent transplantation in November 2012 [source:

http://www.neurothon.com/trial.htm]. The patients in this study will be followed for 36

months post-transplantation (clinicaltrials.gov identifier no. NCT01640067).

StemCell, Inc. has also sponsored another two phase I trials with HuCNS-SC® in the X

chromosome-linked co-natal leukodystrophy Pelizaeus–Merzbacher disease (PMD) and age-

related macular degeneration (AMD). With the PMD trial at the University of California,

San Francisco (UCSF, San Francisco, CA, USA; clinicaltrials.gov identifier no.

NCT01005004), HuCNS-SC® was directly delivered through multiple injections into the

brain of a total of 4 male patients, and immune suppression was administered for 9 months

after transplantation. Multiple assessments were conducted to evaluate safety and to detect

evidence of myelin formation after HuCNS-SC® transplantation, as suggested by the

transplantation of xenogeneic human NPCs into the brains of neonatal or juvenile

immunodeficient shiverer × RAG2−/− (Shi-id) mice, a model of PMD (Uchida et al., 2012).

After a 1-year follow-up no clinical or radiological adverse effects were directly attributed to

the donor cells. Furthermore, serial neurological evaluations, developmental assessments, as

well as MRI and MR spectroscopy, including high-angular resolution diffusion tensor

imaging (DTI), suggest durable cell engraftment and donor-derived myelin (starting at 9

months post-transplant) in the white matter of at least 3 of the 4 transplanted patients (Gupta

et al., 2012).

The direct endogenous oligodendrocyte cell replacement operated by human NPC

transplants in early chronic SCI in immunodeficient NonObese Diabetic/severe combined

immunodeficiency (NOD-scid) mice (Salazar et al., 2010) inspired a further StemCell, Inc.-

sponsored phase I/II clinical trial started in March 2011 at the University Hospital Balgrist

(Zurich, Switzerland). A single dose (20 × 106 cells) of HuCNS-SC® was directly implanted

through multiple injections into the thoracic spinal cord of the first patient (of a total of 12)

with chronic thoracic (T2–T11) SCI, and immune suppression administered for 9 months

after transplantation. This trial is enrolling patients 3–12 months after complete and

incomplete cord injuries. The estimated completion date of this study is March 2016

(clinicaltrials.gov identifier no. NCT01321333).

A rescue effect on endogenous retinal ganglion cells (RGCs) (McGill et al., 2012) is the idea

behind the StemCell, Inc.-sponsored AMD trial at the Retina Foundation of the Southwest

(Dallas, TX, USA), where HuCNS-SC® is being delivered directly into the subretinal space

of one eye in a single transplant procedure in a total of 16 patients. Immune suppression is

not administered. The patient enrolment started in June 2012, and the estimated completion

date is March 2014 (clinicaltrials.gov identifier no. NCT01632527).
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In June 2012, the Glasgow Southern General Hospital (Scotland) enrolled the first patient

(of a total of 12) into the dose-escalating Pilot Investigation of Stem Cells in Stroke

(PISCES) phase I trial to be transplanted in a single-stage procedure with direct cerebral

(intraparenchymal) delivery of Reneuron, Ltd. proprietary single-donor allogeneic adherent

cultured, c-myc immortalised foetally derived brain human NPCs (CTX0E03). Immune

suppression is not administered (clinicaltrials.gov identifier no. NCT01151124). Two recent

studies in rats have provided some evidence in support of the multiple ways in which the

CTX NPCs promote repair in the stroke-damaged brain, both through the up-regulation of

(neo)angiogenesis (Hicks et al., in press), and through the recruitment of pro-neurogenic

CD11b+ macrophages/microglial cells in the ischaemic brain (Hassani et al., 2012).

Finally, there are not as yet any clinical trials using NPCs in MS, despite the solid pre-

clinical data with somatic NPC transplants in EAE (Payne et al., 2011). However, there is

general sense that they will start soon; and that the approach to MS with non-hematopoietic

(neuroprotective) stem cell strategies will significantly benefit from the collection and

interpretation of the data from those phase I trials that are now being done on diseases that

are only apparently not strictly linked to MS (Martino et al., 2010). A consensus paper has

been produced by a group of experts to define the uniform guidelines on the development of

hematopoietic and non-hematopoietic stem cell therapies for MS. The main topics of this

document include the identification of the ideal route of stem cell injection, the adequate

dosage and type of cells, the appropriate protocols of in vitro expansion, the disease level of

patients and the statistical power of trials (Martino et al., 2010). Furthermore, new

expectations are arising from the use of induced pluripotent stem (iPS) cell-derived NPCs,

which would eventually be available as autologous (e.g., if derived from the somatic cells of

the same patient) cell sources.

These explorative trials play a key role in stem cell medicine for inflammatory CNS

disorders, as they hold a great potential that goes far beyond the straightforward

interpretation of disease-specific outcomes.

Both phase II dose-escalation studies and the inclusion of non-fatal diseases with larger

population bases will finally be facilitated once human safety is established. The focus of

phase II studies will also include certain clinical outcomes (e.g., transition to a different

grade of disability) that can be measured and result in a benefit for the patient. The active

clinical trials with NPCs are shown in Table 2.

Conclusions and future directions

Stem cell-based therapies hold great promise in regenerative neuroscience (Park et al.,

2010). The huge advances made over the last few years have enormously deepened our

knowledge about the biology of stem cells, leading to global reconsideration of their

therapeutic potential and mechanisms of action, as well as their intrinsic limitations (Martino

et al., 2011). Importantly, the use of animal models that closely mimic different aspects of

human pathologies has also contributed to increasing our perception of the technical and

biological challenges that still need to be faced before translating into clinical practise.
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Neural stem/precursor cells not only give rise to neural cells for functional replacement, but

also exert immune modulatory and tissue trophic effects, both in vitro and in vivo, after

transplantation (Martino et al., 2011). As such, stem cells can be thought of as dynamic

microsystems able to engage in active communications with surrounding neighbours and

adapt accordingly. We also know that transplanted cells present the peculiar ability to sense

the environment, specifically homing to the sites of damage (Martino et al., 2011). This is of

extreme importance when considering multifocal diseases, where the in situ injection of

stem cells is far from being achievable.

These new stem cell therapies may indeed help to explain the evidence that somatic stem

cell sources of diverse embryonic origin, even with low capabilities of neural differentiation,

efficiently promote CNS repair (Martino and Pluchino, 2006; Uccelli et al., 2008).

Accordingly, stem cell therapeutic plasticity (or functional multipotency) should be viewed

as the intrinsic capacity of stem cells to adapt their fate and function(s) to specific

environmental needs occurring as a result of different pathological conditions (Martino and

Pluchino, 2006; Teng et al., 2011).

Nevertheless, before introducing stem cell treatment wholesale into clinics, it is crucial to

confront several inevitable issues. First, the biological and functional differences occurring

between the rodent and the human host, which may in part explain the numerous failures

encountered so far, where exciting pre-clinical data did not necessarily translate into

promising clinical outcomes. Thus, an accurate choice of the model and the transition to

non-human primates is still of vital importance. Further, the establishment of common

guidance to precisely define the treatment strategies, the maximum tolerated cell dose, the

standard conditions for scale-up and manipulation (prior to injection), the window of

opportunity to treat and the most appropriate route for cell delivery are all high priority tasks

to guarantee the uniformity of measures (Martino et al., 2010).

The next big challenge will be to understand the dynamics and the layers of host-to-graft-to-

host interactions and to develop reliable surrogate markers that may enable us to assess

some of the key outcome measures of stem cell therapies, including (but not only) stem cell

survival, distribution and differentiation/integration. We also envisage that the in-depth

understanding of stem cell-mediated immune modulatory actions has a real chance of

resulting in (or contributing to) the development of more efficacious therapies for

neurological disorders.

Unfortunately though, many of these efforts risk being corrupted by so-called stem cell

tourism. Patients are attracted by false promises made by dubious scientists all over the

world. In most cases, what is being sold as a miracle is in fact a fallacy that may be seriously

harmful to patients’ safety. An example of this is a young patient suffering from ataxia

telangiectasia who developed a donor-derived brain tumour following neural stem cell

transplantation (Amariglio et al., 2009).

Such experiences should once more encourage scientists, clinicians and regulators to work

together to ensure that the huge efforts made so far and the credibility of the scientific

community are not obfuscated by the development of deregulated cell-based therapies.
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Fig. 1.
Overview diagram of the novel evidence of stem cell mediated effects – including neuro-

immune interactions – that have inspired the present pipeline of neural stem cell therapeutic

product development in multiple sclerosis, spinal cord injuries and brain stroke. In

neurospheres, magenta is for Vimentin and green is for Phospho-Histone; in differentiated

NPCs, red is for glial fibrillary acidic protein (GFAP) and green is for microtubule-

associated protein 2 (MAP-2). Nuclei are stained with 4′,6-diamidino-2-phenylindole

(DAPI). The magnetic resonance image (MRI) is a representative diffusion weighted image

(DWI) coronal scan from the brain of a mouse 24 h after transient (45′) middle cerebral

artery occlusion (MCAo).
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