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Abstract

Division of labor is commonly observed in nature. There are several theories that suggest

diversification in a microbial community may enhance stability and robustness, decrease

concentration of inhibitory intermediates, and increase efficiency. Theoretical studies to date have

focused on proving when the stable co-existence of multiple strains occurs, but have not

investigated the productivity or biomass production of these systems when compared to a single

‘super microbe’ which has the same metabolic capacity. In this work we prove that if there is no

change in the growth kinetics or yield of the metabolic pathways when the metabolism is

specialized into two separate microbes, the biomass (and productivity) of a binary consortia

system is always less than that of the equivalent monoculture. Using a specific example of

Escherichia coli growing on a glucose substrate, we find that increasing the growth rates or

substrate affinities of the pathways is not sufficient to explain the experimentally observed

productivity increase in a community. An increase in pathway efficiency (yield) in specialized

organisms provides the best explanation of the observed increase in productivity.
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1. Introduction

From the earliest observations of microbial organisms, it has been apparent that microbial

consortia are ubiquitous in nature. In fact, naturally occurring ecosystems are almost

exclusively organized as consortia. Recent metagenomic studies from the soil (Fierer and

Jackson, 2006), to the ocean (Venter et al., 2004), to the human gut (Gill et al., 2006), have

found that microbial communities are incredibly diverse, often consisting of thousands of
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interacting species. Subsets of these communities form consortia that act together to

enhance their capabilities and survival (Eiteman et al., 2008).

Early theoretical ecology studies led to the development of the competitive exclusion

principle (CEP), which states that the maximum number of species that can coexist in a

system is equal to the total number of limiting (essential) resources (Hardin, 1960;

MacArthur and Levins, 1964; Rescigno and Richardson, 1965). However, in nature we see

many examples of multiple microbial species stably coexisting. Frequent explanations for

coexistence in a natural population can be categorized into three main types: the

development of multiple niches due to spatial heterogeneity or self-organized segregation,

the system not being in equilibrium due to environmental fluctuations or external forcing,

and the presence of inter- and intra-species interactions. Despite the limited direct

applicability of CEP to natural systems, the clear mathematical formulation of CEP allows

for significant insight by identifying which conditions of the CEP have been violated to lead

to the observed coexistence of species. For example, by applying the CEP to the dynamics in

a chemostat, we see that due to the consistent flow of nutrients and continuous mixing, the

environment is kept constant and the development of different niches due to spatial

heterogeneity is not possible; therefore, it must be some form of inter- or intra-species

interactions such as crowding, chemical signaling, cooperativity, or mutual inhibition that

lead to any observed coexistence. Studying these interactions in simple chemostat systems

gives us a better understanding of the factors that maintain the diversity in naturally

occurring microbial consortia.

Natural consortia are often found to form syntrophic systems, where the microbes depend on

each other for survival, either by the production of required metabolic substrates or by the

maintenance of chemically advantageous conditions (Schink, 2002). It is often observed that

this syntrophic cooperation within microbial consortia increases their productivity and can

allow the consortia to perform advanced functions that the microbial species are not capable

of individually. These microbial interactions are known to be important in diverse areas

including chronic medical infections (e.g. diabetic ulcers, Gardner et al., 2013; James et al.,

2008), biofuel synthesis (e.g. biodiesel production, Peralta-Yahya et al., 2012; Zuroff and

Curtis, 2012), environmental nutrient cycling (e.g. CO2 sequestering, nitrification, Costa et

al., 2006), bioprocessing (Shong et al., 2012), and wastewater treatment (Schink, 1997; Seitz

et al., 1990a, 1990).

A frequently observed syntrophic system is a cross-feeding chain where microbes work

together to perform the sequential degradation of complex compounds like lingocellulosic

material (Schink, 2002). In these syntrophic cross-feeding systems a single substrate must be

broken down in many steps, with one species catabolizing the available substrate and

oxidizing it to produce a byproduct that the next species in the chain can consume. The

intermediate byproducts in these systems are often found to be inhibitory. In this work we

will consider the case where the intermediate byproduct inhibits growth. However, this more

complicated system can be reduced to the case where there is no inhibition by taking the

appropriate limit.
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It has been observed experimentally that these syntrophic chain systems where the metabolic

pathways are split among separate organisms (known as ‘microbial specialization’ or a

‘division of labor’) are more productive than a single organism with the equivalent

metabolic capabilities (Bernstein et al., 2012; Wintermute and Silver, 2010). For example, if

we compare a single organism that metabolizes A → B → C to a pair of organisms that

metabolize A → B (organism 1) and B → C (organism 2), experimental observation has

found the pair of organisms to be more productive than the single organism. Productivity is

defined here as total biomass production per unit of input A.

An example of this division of labor that has been found to evolve repeatedly in different

experiments occurs when E. coli is grown on a glucose substrate. The original population of

E. coli can fully metabolize glucose (glucose → acetate → CO2 (TCA cycle)), but when

grown on glucose for many generations the population splits into two main subpopulations:

microbes that preferentially consume glucose and produce acetate (glucose → acetate) and

microbes that preferentially consume acetate (acetate → CO2) (Rosenzweig et al., 1994;

Rozen and Lenski, 2000; Treves et al., 1998).

In this paper we use standard chemostat modeling techniques to investigate whether the

division of labor (splitting the pathways into two separate organisms) alone is sufficient to

explain the observed increase in biomass, and if not, what other changes may be required. It

is important to note that in contrast to the past work which has investigated the evolution of

such cross-feeding systems, we will not consider the two systems in direct competition,

instead comparing the maximum biomass (productivity) of the systems in isolation. This is

motivated by industrial applications where the total productivity of the consortia, which is

usually proportional to the biomass, is of primary interest.

This type of system has been studied mathematically, and it can be shown that for n species

in a simple syntrophic cross-feeding chain, there is a stable coexistence steady state

(Kreikenbohm and Bohl, 1986; Powell, 1985, 1986; Reilly, 1974). This simple system has

been modified to include other forms of inhibition, external toxins, multiple substrates, and

other forms of mutualism; in all cases, a stable, stationary, coexistence steady state is found

(Aota and Nakajima, 2001; Burchard, 1994; Elkhader, 1991; Katsuyama et al., 2009; Sari et

al., 2012). Previous research has focused on proving the existence and stability of

coexistence steady-states. There has been no investigation of the productivity of these

syntrophic chain systems. Some recent work (Doebeli, 2002; Estrela and Gudejl, 2010;

Pfeiffer and Bonhoeffer, 2004) investigated the evolution of cross-feeding in microbial

populations and found that there are a wide range of parameter values for which cross-

feeding is seen to evolve. The aim of these evolution studies was to identify conditions for

stable coexisting syntrophic chain systems to evolve and outcompete equivalent

monocultures. They did not explicitly investigate the productivity of the systems that are

found to evolve.

In our initial model, we assume that the metabolic dynamics of the pathways do not change

when being split into separate microbes. In addition, we initially assume that the growth rate

for the monoculture is a linear combination of the growth rates of the two pathways. This

formulation allows us to obtain theoretical results and is effectively an upper bound on the
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growth rate of the monoculture microbe. Realistically, there are costs to utilizing both

pathways at once for the monoculture, and there are changes that are known to occur to the

metabolic pathway dynamics when the microbes specialize to a single substrate. For

example, Pfeiffer and Bonhoeffer (2004) theorize that the evolution of cross-feeding could

be due to the system minimizing the concentration of inhibitory intermediates and

minimizing the concentration of enzymes it must produce, while maximizing the rate of

ATP-production. Another explanation comes from Johnson et al. (2012) who find, by

considering the biochemical conflicts which constrain the relationships between two

metabolic processes that the division of metabolic pathways could be advantageous as it

allows microbes to focus on producing a smaller number of enzymes and optimizing a

smaller subset of pathways.

By starting with the assumption of no adaptation for the specialists and the maximal growth

rate for the monoculture, we get a strong theoretical result. Then, by varying the growth

kinetics (growth rates and substrate affinities) and yields between the monoculture and the

binary culture systems, we are able to use our model to test possible explanations for the

observed increase in productivity and to quantitatively investigate what changes are required

for the division of labor to be advantageous (increased biomass). Considering the specific

example of E. coli grown on a glucose substrate (Rosenzweig et al., 1994; Rozen and

Lenski, 2000; Treves et al., 1998), we use standard Monod kinetics and measured

experimental parameters to determine the conditions under which the model results match

the experimentally observed increase in biomass.

The main result of this work is a comparison of the biomass production of a single microbe

with full metabolic capacity to a syntrophic consortium of two specialized microbes each

with a unique subset of the full metabolic chain, where the intermediate byproduct may be

inhibitory. We prove that the monoculture system will always have higher biomass

production (i.e., higher productivity) if there are no changes to the growth kinetics or yield

of the pathways between the two systems. In a specific example, we show that increasing the

growth rates or substrate affinities of the consortial pathways, a change that might be

expected due to specialization, is not sufficient to generate the observed higher biomass

production in the binary consortia. However, by varying the yields for the consortial

pathways, higher biomass production can be achieved for the binary consortia relative to the

monoculture. Yield changes are an expected result of microbial specialization because

utilizing a smaller number of specialized pathways leads to reduced energy requirements.

This result provides evidence for the argument that an increase in efficiency (yields) is a key

factor underlying the observed productivity benefit of microbial consortia. Additionally, the

finding that changing yields can lead to higher biomass production through specialization

has important implications for industrial settings where higher biomass production is often

highly desirable.

2. Model construction

To investigate the effects of separating metabolic pathways, we will analyze the simplest

case of a syntrophic chain where there are only two microbial species. For clarity we will

use a specific example in developing our notation, in this case the metabolism of glucose by
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E. coli. To construct the model we assume that the metabolism of a single provided substrate

(glucose, G) can be split into two pathways. The first step (pathway) takes substrate G and

produces an intermediate by-product A (acetate), creating new biomass at a growth rate

μ1(G, A). The intermediate by-product acetate A serves as a substrate for the second step

(pathway), which has a growth rate μ2(A). As well as being a substrate, acetate lowers the

pH and is detrimental to both metabolism pathways in the cell, which slows the growth rates

μi and thus slows the uptake of substrate. The lower pH caused by acetate production could

also increase the energy required for cell homeostasis, which would affect the yield

parameters. We do not consider this effect here, as if yield did decrease at higher A values,

this would further disadvantage the binary consortia, and thus would not qualitatively affect

our results but would greatly complicate the analysis.

We will consider the situation where the microbes are grown in continuous culture

(chemostat). We compare the total biomass produced in two different systems: a binary

culture system where the two pathways are in two separate microbes, and a monoculture

system where the pathways are combined into a single microbe. These two systems are

shown in Fig. 1. For the monoculture system, acetate that is produced through the first

pathway is then available to be consumed through the second pathway. If the acetate

consumption rate is lower than the acetate production rate, acetate will accumulate in the

system, see Eqs. (4) and (7). In our model of the monoculture, we consider the case where

acetate is consumed (metabolized) by the individual microbial cell that produced it, and the

case where acetate is released from that microbe into the environment and then consumed by

distinct microbes, to be equivalent. This is possible because this model does not include any

cost involved in transporting acetate into or out of the cell. Including a cost for transporting

acetate would disadvantage the binary consortia compared to the monoculture, and thus it

would not qualitatively affect our results.

2.1. Model formulation

To model the dynamics in a chemostat we construct a system of ordinary differential

equations (ODEs), following standard techniques (Smith and Waltman, 1995), that describe

the evolution over time of the microbial biomass and substrate concentrations. In both

systems we will track the concentration of primary substrate, G and the concentration of the

intermediate by-product, A.

In binary culture, the biomass of a microbe that consumes G and produces A to grow at rate

μ1(G, A) will be denoted by x1, and the biomass of the second microbe that consumes A and

grows at rate μ2(A) will be x2. For the binary chemostat this situation can be described by the

following system of ordinary differential equations:

(1)

(2)
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(3)

(4)

where D > 0 is the dilution rate (with units 1/h, and D = V/Q where V is the volume and Q is

the volumetric flow rate) and Gin > 0 is the input concentration of primary substrate. The

parameters D and Gin are set by experimental conditions. The yields, constants Yij, are

determined by the stoichiometry of the metabolic pathways involved, which dictates the

energy produced per unit of substrate consumed, and the proportion of energy produced that

goes towards biomass production, which depends on additional factors including the energy

required for cell homeostasis and for the production of enzymes. In this work we have

chosen to define the yield terms Y11 and Y22 as the amount of biomass made by one unit of

substrate, G and A respectively, and Y21 is the amount of biomass produced when one unit of

intermediate substrate A is produced through the G-metabolism pathway. The parameter, r =

Y11/Y21 defines the grams of the inhibitory intermediate substrate A produced per gram of

primary substrate A consumed, and is fixed for a specific metabolic pathway.

To model the monoculture system, we assume that the two pathways are combined in a

single microbe, whose biomass is represented by the variable x. The growth rate is assumed

to be the sum of the metabolic pathways of the two microbes (μWT = μ1(G, A) + μ2(A)). This

provides the maximal possible growth rate for the monoculture, without making further

assumptions on whether monoculture can actually use this potential. In reality, using both

pathways concurrently comes at a cost, as microbes have finite resources for the transport of

nutrients into the cell, and the production of enzymes. We will later (Section 4.3) consider

modeling the monoculture growth rate as a convex combination of the pathways (μ̄
WT =

βf(G)I(A) + (1 − β)m(A)). However, we start the linear combination (μWT = μ1(G, A) +

μ2(A)), which is the upper bound for the wildtype growth rate, in order to be able to obtain

theoretical results. This gives the system of rate equations for the monoculture system:

(5)

(6)

(7)

In this formulation we assume that there is no change in pathway efficiency (yield), growth

rate, substrate affinity, or inhibition when the pathways are split into two separate microbes,

thus the functions and parameters for the monoculture system (5)–(7) are identical to those

in the binary culture system (1)–(4).
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In this work we will assume that the inhibition by A on the first pathway is non-competitive,

so that the growth rate of pathway 1 can be described by μ1(G, A) = f(G)I(A), where the

function f(G) describes the growth of x1 on G and the function I(A) describes the inhibition

of x1 by A. The growth of x2 due to the consumption of A we describe by the function μ2(A)

= m(A), where m(A) increases at low A values but decreases when A gets too high.

2.2. Model non-dimensionalization

In order to simplify the calculations, we non-dimensionalize the original system using the

scalings:

(8)

This gives us the dimensionless variables ( , Ĝ, Â) for the binary culture and (x̂, Ĝ, Â)

for the monoculture. Both systems of equations depend upon the new dimensionless time

variable t̂, and the only remaining parameter in the system is the dimensionless parameter γ.

Removing the hats for convenience and making the substitution μ1(G, A) = f(G)I(A), μ2(A) =

m(A), gives us a dimensionless version of the binary culture system (Eqs. (1)–(4))

(9)

and a dimensionless version monoculture system (Eqs. (5)–(7))

(10)

2.3. Model assumptions

Before we describe our main result, it is important to specify our assumptions on the

functions and parameters in the model (in the dimensionless setting).

A1 The functions f(G), I(A) and m(A) are the same in both models, i.e. that the

separation of the pathways does not modify the metabolic dynamics.

A2 The function f(G) is a monotonically increasing function of substrate

concentration, G, with limiting rate, μ1,max (see Fig. 2(a)). The properties of f(G)

are
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(11)

These conditions on f(G) are readily satisfied by an increasing Hill function

μ1,maxGn/(kn + Gn) for any n.

A3 The function I describes the inhibition of the G-metabolism pathway by the

intermediate substrate A (see Fig. 2(b)). The properties of I(A) are:

(12)

These conditions on I(A) are satisfied by a decreasing Hill function kn/(kn + An)

for any n.

A4 The function m(A) describes the growth rate on the inhibitory substrate (A) (see

Fig. 2(c)). m(A) has the following properties:

(13)

These conditions on m(A) are satisfied by commonly used substrate-inhibition

functions (Han and Levenspiel, 1988).

A5 We consider the case where the growth rates of each microbe are sufficiently

large that they can survive at the chosen dilution rate; i.e.,

For μ2,max > 1 the equation m(A) = 1 has two solutions, which we define as 

and , where .

A6 We consider the case where the substrate inflow is in excess, by which we mean

f(Gin) ≈ μ1,max and consequently, f(Gin) > D (in the original variables). These

conditions correspond to f(1) ≈ μ1,max and f(1) > 1 in the dimensionless setting.
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We use the product form of the function μ1(G, A) = f(G)I(A) since it captures the growth and

non-competitive inhibition of pathway 1 and simplifies the analysis. However, a more

general function μ1(G, A) with the properties (∂μ1(G, A)/∂G > 0) for all G > 0 and (∂μ1(G,

A)/∂A) < 0 for all A > 0 may be used if inhibition is known to be competitive.

3. Main results

In this section we present our main result, the proof of which can be found in the Appendix.

The implications of this technical result are then demonstrated with an example from a

realistic situation in the following sections.

3.1. Binary culture system equilibria and stability

For the binary culture (9) we differentiate between three different types of equilibrium

points: trivial equilibria where x1 = 0, x2 = 0, boundary equilibria where x1 ≠ 0, x2 = 0 (note

there are no x1 = 0, x2 ≠ 0 equilibria, as G is the only substrate provided to the chemostat

system), and co-existence equilibria where x1 ≠ 0, x2 ≠ 0. We consider only equilibria in the

positive cone .

Theorem 1: Given Assumptions [A 1]–[A 6] in Section 2.3, the binary culture system (9)

has the following equilibria:

a. There exists a trivial equilibrium when there are no microbes in the system at (x1,

x2, G, A) = (0, 0, 1, 0), for all functions satisfying [A 2]–[A 4]. This trivial

equilibrium point is an unstable saddle for all parameter values satisfying [A 5]–[A

6].

b. There exists a boundary equilibrium point, where only x1 survives, at

, where G1 is implicitly defined by f(G1)I(1

− G1) = 1. The stability depends on the specific functions and parameters.

c. We define a value , where  is implicitly defined by .

i. If , or if  but , there are no co-existence

equilibria. The boundary equilibrium point is a stable node.

ii. If , and , or if , and , but

, there is a single, stable, co-existence equilibrium point

. The boundary equilibrium point is an unstable

saddle.

iii. If , and , there are two co-existence (x1 ≠ 0, x2 ≠ 0)

equilibria,  and . The point

U is an unstable saddle, and the point S is a stable node. The boundary

equilibrium point is a stable node.

Proof: Appendix A
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Remark 1: The conditions related to  ensure that the equation f(G)I(A) = 1 has a

solution for the given Ab value. The conditions Gb + Ab < 1 ensure that the equilibrium

biomass values (x1 and x2) are strictly positive; if Gb + Ab > 1 then  and the

equilibrium point is non-physical.

Remark 2: Note that in case (iii) of Theorem 1c the system is bistable, with the stable

manifold of the saddle point U forming a separatrix that separates the basins of attraction of

the two stable equilibria, S and the boundary equilibrium point.

3.2. Monoculture system equilibria and stability

For the monoculture system (10), there are two types of equilibria: trivial equilibria where x

= 0 and non-trivial equilibria where x ≠ 0.

Theorem 2: Given Assumptions [A 1]–[A 6] in Section 2.3, the monoculture system (10)

has the following equilibria:

a. There exists a trivial equilibrium point at (x, G, A) = (0, 1, 0), which is an unstable

saddle.

b. There are 2n + 1 non-trivial (x ≠ 0) equilibria  in the region

, where n ≥ 0, ordered by increasing . If there is a unique internal

equilibrium (n = 0) this equilibrium point is a stable node. If there are multiple

internal equilibria, the odd equilibria (i = 1, 3, …, 2n + 1) are stable nodes, and the

even equilibria (i = 2, 4, …, 2n) are unstable saddles.

c. If the curve G = 1 − A/(1 + γ − γ/(1 − m(A))) intersects the curve f(G)I(A) + m(A) =

1, in the region , then there is an even number of equilibria Kj, j = 1, …, 2m.

If we order these equilibria by increasing value of A, then the odd equilibria are

saddles and even equilibria are nodes.

These curves can only intersect if m(A) = 1 − γ/(1 + γ − A) has more than one

solution. This condition is illustrated in Fig. B3. If

(14)

these equilibria do not exist, where  is the upper solution of m(A) = 1/(1 + γ).

This condition is illustrated in Fig. 3.

Proof: Appendix B

Remark 3: The equilibria Kj only exist in specific circumstances when the monoculture

growth is less inhibited by acetate than the acetate consuming specialist (see (14) for exact

statement), while at least one lower equilibrium Ei exists for all parameter values satisfying

[A1]–[A6]. The high A (low biomass) stable equilibria, when they exist, have a small basin

of attraction, which is characterized by high levels of acetate and low levels of glucose. Only
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initial conditions with high initial acetate and low glucose can lead to a monoculture that

evolves to such stable equilibrium. For this reason, we do not consider these equilibria in the

results below.

3.3. Biomass comparison

We wish to compare the productivity of the binary culture and monoculture systems, using

their total biomass as a measure of productivity.

The biomass for the binary system is largest at the stable coexistence equilibrium point S,

since it can be easily shown that  (see Appendix C). The monoculture system

has (at least) one stable non-trivial equilibrium point Ei, with high biomass. Since we do not

consider the possible upper equilibria Kj with low biomass to be physical, we will compare

the biomass at the binary system equilibrium S with an arbitrary monoculture equilibrium Ei.

Theorem 3: Given Assumptions [A 1]–[A 6] in Section 2.3, and the existence of at least one

(stable) co-existence equilibrium point, S, in the binary system (conditions in Theorem 1c).

Then the biomass of the monoculture, , at any of the stable non-trivial equilibrium points

Ei for i = 1, 3, …2n + 1 is always higher than the total biomass of the binary culture system

 at its stable co-existence equilibrium point S:

Proof: Appendix C

Outline of the proof: We show in Appendix C that the monoculture biomass is given by

(15)

and the combined biomass of the binary culture is

(16)

We can also show that for all Ei monoculture equilibria:

(17)

Thus,
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and the biomass of the binary culture is always less than the biomass of the monoculture:

Remark 4: If there are no upper equilibria in the monoculture, Ei for i = 1, 3, …2n + 1 are

the only stable equilibrium points of the system, and the monoculture biomass will always

be higher than the total biomass of the binary culture, for all initial conditions .

4. Effect of modifications to the model on relative biomass

In chemostat experiments, a binary culture of the type analyzed here shows a biomass

increase of around 20% over a wild-type monoculture system (Bernstein et al., 2012). As we

have shown in Theorem 3, under our assumptions the monoculture system always has a

higher biomass. Clearly this means that one or more of the assumptions that we make in

Section 2 are incorrect. This is useful, as by examining the assumptions we made, we can

investigate which of the effects that we did not include are most relevant.

One of the assumptions we made in formulating the initial model is that there is no change

in the growth dynamics or yields of the metabolic pathways when the microbes specialize to

a single substrate. However, as discussed already, there is evidence that the growth

dynamics and pathway efficiencies will change, and we will investigate the effects of

incorporating these changes in this section.

4.1. Increasing the growth rates in the binary culture system

Experiments have observed that growing E. coli on a single nutrient source can increase its

growth rate ~15–20% (Edwards et al., 2001; Ibarra et al., 2002; Bernstein et al., 2012), as

the microbe adapts to the single nutrient and can up regulate the transport for that substrate

(Oh et al., 2002) and down regulate the transport for the pathways it is not using (catabolite

repression, Egli et al., 1993; Lendenmann and Egli, 1922). We can incorporate the effect of

increasing the growth rate of the species in the binary culture system by introducing

multiplicative parameters α1 and α2 in front of growth rates f(G) and m(A), thus making the

replacements:

(18)

Note that this increases the growth rates at all concentrations of G and A, not just for high

growth regions of G or A. For the original systems (with no change in growth rate) we have

α1 = 1, α2 = 1. To simulate an increase in growth rate when the metabolic pathways are split

up we simply choose α1, α2 > 1 in the binary culture system.
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Increasing α1 decreases , while increasing α2 in the binary culture moves ,

which in turn decreases  (bounded below by G0). We find that it is always possible to get

higher biomass for the binary culture than the monoculture ( ) if there are

no bounds on the increases for both α1 and α2. If we can only vary one pathway’s growth

rate, i.e., keeping α1 = 1 or α2 = 1, then it is not always possible to get higher biomass in the

binary culture. Whether or not it is possible to surpass the monoculture biomass, and the

increases in growth rate required, will depend on the specific functions and parameters for

the system of interest.

4.2. Increasing the substrate affinity in the binary culture system

When growing on a single carbon source, it has been found that some microbes, including E.

coli, can increase their affinity when the concentration of the substrate remains low for an

extended period of time (Helling et al., 1987; Senn et al., 1994). This is thought to be

achieved through up-regulating higher affinity transporters (Ferenci, 1996). Decreasing KG,

moves , while decreasing KA moves , which in turn decreases  (bounded

below by G0). This matches the effects of increasing the growth rates by a factor α1 or α2 in

Section 4.1. We can explain this mathematically as follows: in the region where G (or A) is

low, increasing the substrate affinity acts to increase the growth rate for that G (or A) value.

By considering f(G) at low G, we find that f(G) ≈ (μ1,max/KG)G for small G, so increasing

μ1,max or decreasing KG by the same factor should have the same effect.

4.3. Varying the form of the monoculture growth rate

It could be argued that the monoculture out-performs the binary culture in our formulation

due to the way we have described the monoculture growth rate (μWT(G, A) = f(G)I(A) +

m(A)). In this formulation we are assuming that the microbe can use both pathways

concurrently, with both functioning at their maximal rates for the specific G and A. This acts

as an upper bound on the maximal possible growth rate for the monoculture. In reality, there

are limitations due to the transport of nutrients into the cell and the energy required for the

synthesis and maintenance of metabolic enzymes. It has been observed experimentally that

often a microbe preferentially consumes the substrate sustaining the higher growth rate

(catabolite repression). In this process, the synthesis of enzymes required for alternate

pathway is down-regulated, which would decrease the maximal growth rate of these other

pathways. If we assume that the cell must choose to allocate resources between the two

pathways, we can incorporate this into our model by making the monoculture’s growth rate

a convex combination of the two pathways’ growth rates:

(19)

where β could be some function of the relative growth rates of the two pathways at the given

G and A concentrations, following (Abrams, 1987; Egli et al., 1993; Lendenmann and Egli,

1922).

According to catabolite repression the microbe will only consume the preferred substrate.

However, if the intermediate substrate is inhibitory there is often a ‘switch’ that overrides
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this effect at high A to consume the excess intermediate substrate and decrease the inhibitory

effects (Wolfe, 2005). In our model, we could incorporate this by using (19), with β being a

function of A, switching to low β (increased A consumption) when A reached a critical value,

even in the presence of high G.

Using μ̄WT, we cannot get theoretical results for the relative productivity of the monoculture

and binary culture systems in general, as the biomass will depend on the specific situation

and the β values (or functions) chosen. However, we can easily show that for sufficiently

high or low β the binary culture system would now out-perform the monoculture system:

• At β = 1, the monoculture growth rate is given solely by f(G)I(A), which is the

equivalent of the binary culture system with x2 = 0. In Appendix C we showed that

this x1-only equilibrium point has a lower biomass than the binary culture system

coexistence equilibrium point, thus the binary culture outperforms the monoculture.

• As β → 0, the monoculture growth rate is increasingly dependent on the second

pathway, m(A), which consumes exclusively acetate A. Since glucose G is the only

substrate provided to the chemostat, we expect that the monoculture will not

survive.

Based on optimal foraging theory and experiments, it is reasonable to assume that E. coli

feeding on multiple substrates would allocate resources to pathways such that the growth

rate is maximized (Abrams, 1987; Egli et al., 1993; Lendenmann and Egli, 1922), and this is

indeed what is found with catabolite repression. In a chemostat at equilibrium, the growth

rate is always fixed to the dilution rate D, so we cannot determine the optimum β value at

equilibrium. One option could be to first find the β values required for the monoculture

system to have lower biomass (for a given system), then to use the optimal foraging

arguments to determine whether these β values are realistic by looking at the ratio of μ1–μ2

for the given G and A values. Another option would be to look at what β value maximizes

biomass, and consider whether this leads to higher biomass in the monoculture than the

binary culture, and whether this is a reasonable β value. We will consider both in Section

5.2.3 for the specific example of E. coli growing on glucose.

4.4. Increasing the efficiencies (yields) in the binary culture system

The yield terms Y11 and Y22 describe the amount of biomass produced per unit of substrate

consumed, and are a measure of the microbe’s efficiency. The yields are determined by only

two factors: how much energy the pathway can produce (given by the stoichiometry of the

pathway), and how much of the energy produced is allocated to biomass production.

There are many ways that microbes can adapt to optimize their productivity, but only some

of these will increase the yield terms in our formulation. For example, it is observed that

when provided with multiple substrates, cells will consume the most productive substrate

preferentially (also known as catabolite repression). In this way, the microbes are utilizing

the most efficient pathways and thus increasing their efficiency. In our model the binary

culture microbes only have one substrate, and thus catabolite repression will not affect their

dynamics. In the monoculture, catabolite repression would lead to the most efficient

pathways being prioritized. This increase in resources would increase the substrate uptake
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and growth rate of the preferred pathway, and could be incorporated into our model through

changing the parameter β as described above, where β = 1 describes consumption of the

primary substrate only. However, as the stoichiometry of the pathways does not change, this

effect would not directly change Y11 or Y22 in our model.

In order to increase the yield, a microbe must reduce the energy that is required for functions

other than biomass production, such as cell homeostasis and enzyme production. Microbes

growing on a single source are thought to down-regulate the production of enzymes for the

metabolism of other substrates (Johnson et al., 2012). Since the synthesis and maintenance

of metabolic enzymes requires energy, if a microbe can reduce its net enzyme production in

this way, this would reduce the energy required and its yield would increase. Thus it is

possible that by specializing to a single substrate, the yields Y11 and Y22 would increase.

Another factor that could affect the energy requirements, is the cost of transporting

substrates into the cell. So far we have not included this cost. If we were to include the cost

of transporting the primary substrate G into the cell, this would decrease the term Y11 in both

binary and monoculture systems equally. Including the cost of transporting the inhibitory

intermediate substrate A into the cell, would decrease Y22. The binary culture needs to

transport all of the consumed A into the scavenger specialist x2, whereas the monoculture

can metabolize intracellular A as it is produced, as well as transporting A into the cell, thus

deflecting some of this cost. Therefore, Y22 would decrease more in the binary culture than

in the monoculture system.

Examining the equations for steady-state biomass we find that changing Y11 does not affect

the nondimensionalized binary biomass, but from Eq. (8) it will affect the actual

(dimensional) biomass. The total biomass of the binary culture increases when Y11 increases

(the G-metabolism pathway becomes more efficient). When Y22 increases (the A-

metabolism pathway becomes more efficient), or when Y21 decreases (the amount of

inhibitory metabolite produced increases), γ decreases, which will increase the total biomass

of the binary culture. As discussed in Section 2.1, the ratio r = Y11/Y21, which describes the

grams of the inhibitory intermediate substrate produced per gram of primary substrate

consumed, is fixed for a specific metabolic pathway. Therefore, varying Y21 or Y11

independently is not realistic, and in the latter analysis we will vary Y11 and Y21 together,

keeping r constant. When making increases to Y11 or Y22 we must keep in mind that there is

an upper bound on the yield terms that given by the stoichiometry of the utilized metabolic

pathway. Whether the yield increase required to match the observed increase in biomass for

the binary culture is above that bound will depend on the system of interest.

4.5. Varying Gin and D

Some earlier work has found that the binary culture is favored over a monoculture for

certain substrate inflow concentrations Gin or dilution rates D (Doebeli, 2002; Pfeiffer and

Bonhoeffer, 2004). However, we find that for all Gin and D, satisfying assumptions [A5] and

[A6], the monoculture has higher biomass than the binary culture. That being said, the

difference in total biomass between the two systems will vary as Gin and D change, so there

may be some experimental conditions where the binary culture is less disadvantaged, and

where the aforementioned modifications would be more effective.
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5. Specific example using Monod kinetics and typical values for E. coli

In this section, the results of this paper will be applied to the specific example of E. coli

growing on glucose as the sole carbon source. Experimentally observed parameters for E.

coli growth on glucose or acetate are summarized in Table 1. In the majority of the

literature, E. coli were grown in aerobic conditions in which both pathways would be

utilized. This will lead to overestimation of the parameters: μ1,max, Y11, Y21, KIP, and

underestimation of the parameter r.

We can quantify the discrepancy between the actual yield of each pathway and the reported

yield in wild-type aerobic conditions. If we assume that the growth rate from the first

(anaerobic) pathway is given by μ1 and the growth from the aerobic metabolism of acetate

(acetyl CoA) is given by μ2, then the discrepancy between the actual yield of each pathway

and the reported yield in wild-type aerobic conditions will be

• The reported yield  (gBiomass/gGlucose consumed) will be overestimated by

.

• The reported acetate production yield  (gBiomass/gAcetate produced) will be

overestimated by .

• The observed ratio rWT (gAcetate produced/gGlucose consumed) will be

underestimated by rWT = r(1 − γμ2/μ1).

From the equation for  it can be seen that if μ2 = 0 (i.e. there is no metabolism of

acetate, which occurs in anaerobic conditions), then . Thus, in order to estimate

the parameters of just the first pathway (max f(G) and Y11), we use the yield and growth

parameters from anaerobic experiments (Chen et al., 1997; Varma and Palsson, 1994; Xu et

al., 1999). To estimate Y21 we use the ratio r = 0.667 determined by the reaction

stoichiometry and calculate Y21 = Y11/r. Substituting reasonable values for growth rates, we

find that our choice of parameters leads to observed  that match experimental data

(Table 1). The observed growth and yield parameters for E. coli grown on acetate as the sole

carbon source provide good estimates for max (m(A)) and Y22. The chosen yields are given

in Table 2.

It is important to note that for the yield terms Y11 and Y22, which are the grams of biomass

produced when one gram of substrate is consumed, only some of the energy from the

substrate metabolism will go towards biomass synthesis. Depending on the efficiency of the

pathway, the energy produced per gram of substrate will vary, and the energy required for

cell homeostasis (i.e. not available for biomass production) also varies. Estimates for the

ratio of energy produced that goes towards biomass production and the efficiencies of the

pathways used vary depending on the E. coli strain and the environmental conditions

(Carlson and Srienc, 2004; Han et al., 1992). We choose to use measured values for the total

yield from the literature. These yields could vary with strain and condition, and we will

consider this in Section 5.2.3. In all cases the yields are bounded above by the stoichiometry

of the most efficient biomass production pathways assuming zero energy required for cell
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homeostasis, and our choices for yield parameters are below this bound and consistent with

experimental findings.

To fit growth parameters, we must choose specific functions for f(G), I(A), and m(A). Here

we select Monod type kinetics for the growth and inhibition functions:

(20)

(21)

(22)

which satisfy assumptions [A2]–[A4] and are found to be appropriate for describing growth

and inhibition rates of E. coli in chemostats or batch growth. With the exception of the half-

saturation of glucose, KG, experimental findings (Table 1) are reasonably consistent and the

chosen parameters for these functions are given in Table 3.

At low glucose concentrations it is known that glucose affinity increases (Ferenci, 1996;

Helling et al., 1987), and the parameter KG varies from O(0.01) to O(100) mg/L (Table D1)

through the upregulation of higher affinity (and often slower or more energy intensive)

pathways. In our model, KG is a fixed parameter, and to demonstrate the results of this paper

we choose an intermediate KG value (see Table 3). This choice does not affect our result, as

for equal substrate affinities the monoculture will outperform the binary culture for any

choice of KG (Theorem 3). We will investigate the effect of varying the glucose affinities

between the monoculture and the binary culture in Section 5.2.2. However, as increases in

glucose affinity are found to depend mostly on the growth conditions, we would expect any

increase in glucose affinity (KG) to affect both the monoculture and the binary culture

similarly.

In E. coli there are two pathways for acetate assimilation: the phosphotransacetylase-acetate

kinase (PTA-ACKA) pathway and the acetyl-CoA synthetase (acs) pathway. The PTA-ACKA

pathway has lower substrate affinity, with Km ≈ 0.4 – −0.6 g/L (Brown et al., 1977; Wolfe,

2005), but is more efficient requiring only one ATP for acetate assimilation. The PTA-ACKA

pathway is found to be active until acetate gets to low concentrations (A « 0.15 g/L) (Kumari

et al., 1995). In contrast, the acs pathway has higher substrate affinity, with Km ≈ 0.01 g/L

(Brown et al., 1977; Wolfe, 2005), but is more energy intensive, requiring two ATP for

acetate assimilation. Kumari et al. (1995) find that both pathways are required for optimal

growth on acetate across a range of concentrations, with the acs pathway being required for

A < 0.6 g/L and the PTA-ACKA pathway being required for A > 1.5 g/L.

In our model, we use a single function m(A) and single yield term Y22 to describe the growth

kinetics and efficiency of growth on acetate; we do not include the two pathways separately.
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We choose growth parameters μ2,max, KA, and KIS that match the experimentally observed

growth in chemostat cultures which are utilizing both pathways. For example, the combined

growth kinetics has a substrate affinity of Km = 0.23 g/L which is midway between the Km

values of each pathway. We will investigate the effect of varying the acetate affinities

between the monoculture and the binary culture in Section 5.2.2.

The yield parameter Y22 is fixed, so we have chosen Y22 = 0.4 which is at the lower end of

the yields observed across a range of growth conditions (Kleman and Strohl, 1994). This is

because we find that in our model acetate concentrations stay low and the yield will be

determined predominantly by the lower efficiency, higher affinity acs pathway.

The dilution rate D and the glucose inflow concentration Gin are set by experimental

conditions. We must select a dilution rate that satisfies non-wash-out conditions (from

assumption [A6]: max(m(A)) > D, μ1,max > D). This leads to a low dilution rate (D = 0.1)

due to the low value of max(m(A)) > D seen experimentally. We also choose a high substrate

inflow Gin » G0, so that the system is in glucose-excess conditions (assumption [A5]).

For the selected functions and parameter values, the growth and inhibition curves are

depicted in Fig. 4. We graph them in terms of the original variables, glucose concentration,

G (g/L), and acetate concentration, A (g/L), for ease of comparison to the experimental

literature (Table 1). However, for the remainder of the analysis we will use the

dimensionless variables and parameter values unless otherwise stated. We use the

nondimensionalization in Eqs. (8) and the parameter scalings:

(23)

where r = Y11/Y21.

5.1. Monoculture and binary culture with no changes

In the monoculture system (10), for growth and inhibition functions (20)–(22) and parameter

values in Tables 2 and 3, we find a unique non-trivial equilibrium at

In the binary culture system (9), there is one stable coexistence equilibrium point

with x̄S = 2.70. There is also a stable equilibrium point where only x1 survives at
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The biomass of the monoculture, x = 2.72, is greater than the total biomass in the binary

culture at the stable co-existence equilibrium, x̄ = x1 + x2 = 2.70, as given by Theorem 3.

5.2. Quantitative investigation of how to increase the binary culture’s relative productivity

In chemostat experiments, a binary culture of this type shows a biomass increase of around

20% over the wild-type monoculture system (Bernstein et al., 2012). In Fig. 5 we plot the

curves that determine the equilibrium points of the systems. The biomass is determined by

the values of G and A, given in Eqs. (15) and (16), thus in the (A,G)-plane, the curves G = c

− A/(1 + γ), for a constant c = 1 − γxc/(γ + 1), are the lines of constant biomass, xc. In order

for the binary culture biomass to exceed that of the monoculture, the binary culture system

must be modified such that the point (Ab, Gb) crosses the dashed line in Fig. 5, or,

alternatively, the monoculture system must be modified such that the point (Am, Gm) crossed

the dotted line in Fig. 5. (The only exception to this is if Y11 or Gin are varied between the

two systems, as these parameters appear in the non-dimensionalization of the biomass

variables.)

5.2.1. Varying growth rates independently—When microbes specialize to grow on a

single substrate they are found to increase their growth rate. One explanation for this is that

they are able to allocate more resources to synthesizing transporters that increase the

substrate uptake rate. By making the substitutions in Eq. (18), we can use parameters, α1 and

α2 to modify the growth rates independently and perform a more general investigation.

To increase the growth rate of the microbes in the binary culture compared to monoculture

we set α1 > 1, or α2 > 1, or both. It is important to note that increasing αi will increase the

growth rate of the pathway i by the factor αi across all substrate concentrations.

• If we only increase the maximal growth rate of the glucose metabolism, α1, we

cannot increase the total biomass of the binary culture to match that of the

monoculture, even if α1 → ∞.

• If we only increase the maximal growth rate of the acetate metabolism, α2, the

binary culture has the same biomass of the monoculture at α2 = 1.69, i.e., the

growth rate has to increase 69%.

• Finally, we allow both α1 and α2 to increase then we find multiple combinations of

α1, α2 where the biomass has the same or larger mass than the monoculture. The

combination of multipliers with minimal value of the sum α1 + α2 for which the

total biomass of the binary culture matches that of monoculture is when we only

increase the second pathway, so α1 = 1 and α2 = 1.69.

Increases of around 15–20% have been seen experimentally when microbes have been

grown on a single substrate. The increases of 70% that are required here are not realistic.

Moreover, Bernstein et al. (2012) observed a biomass increase of 20% in chemostat

experiments. Even increasing α2 → ∞ the binary culture biomass never reaches 20% more

than the monoculture
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5.2.2. Increasing the substrate affinity in the binary culture—In E. coli the

experimentally observed glucose affinity varies by orders of magnitude in different

experimental conditions (Km = 0.0053–99 g/L Senn et al., 1994). This is because the bacteria

have many different systems to transport and metabolize glucose as a substrate, that all have

differing speeds and affinities. If we predict that the glucose specialist (x1) in the binary

system has an increasing substrate (glucose) affinity, we can investigate the effect this

would have on biomass production by decreasing KG in our model.

• Varying KG we find that there is no decrease in KG that will lead to the binary

system having a higher biomass than the monoculture system. This is expected

from our results in Section 5.2.1, since f(G) ≈ μ1,maxG/KG at low G, and there is no

α1 that leads to the binary system biomass exceeding that of the monoculture.

Additionally, the phenomenon whereby E. coli in low glucose conditions uses higher

affinity transporters would be predicted to occur in both the monoculture and primary

microbe in the binary culture, as this depends mostly on growth conditions. If glucose

affinities increase but remain equal, the monoculture will still outperform the binary culture

by Theorem 3.

If the acetate scavenger specialist (x2) in the binary culture has an increased acetate substrate

affinity, relative to the monoculture, we can investigate the effect this would have on

biomass production by decreasing KA and KIS in our model.

• Varying KA (and KIS) we find that the binary culture has higher biomass when KA

and KIS decrease to 54% of the monoculture values i.e. an increase in substrate

affinity of 85%. This is to be expected from our results in Section 5.2.1, as

increasing m(A) by 69% gave a higher biomass for the binary culture, and thus

decreasing KA (which increases the growth rate at low A values) should have a

similar effect.

Note: we decrease KIS concurrently with KA in order to keep max (m(A)) constant, however,

if we only decrease KA and allow max(m(A)) to increase we see similar results (55%

decrease cf. 54% decrease).

A twofold increase in the acetate affinity (halving the Km value) is within realistic realms,

and brings the Km value of acetate metabolism to 0.12 g/L. However, the higher-affinity acs

pathway, that would be required for an increased acetate affinity, is more energy intensive

(lower yield); this means that although the increased substrate affinity would act to increase

the biomass, the consequent decrease in yield would counteract this increase. In our model

formulation, we cannot directly account for the use of different acetate assimilation

pathways between the binary culture system and the monoculture in the comparison, as we

do not include the two pathways separately. Furthermore, up-regulation of the higher

affinity acs pathway has been observed in vivo in wild-type E. coli (Wolfe, 2005) growing

on acetate as well, so we consider it difficult to justify a change that increases the binary

culture acetate affinity by 85% more than that of the monoculture.
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If we take our analysis one step further and attempt to match the observed biomass increase

of 20% in the binary culture (Bernstein et al., 2012), we find that there is no increase in

substrate affinity (Km → 0) which can produce the required increase in biomass.

5.2.3. Varying form of the monoculture growth rate—When there is glucose

available, E. coli will preferentially consume glucose due to catabolite repression until the

acetate concentration gets too high, at which point the E. coli will switch to consuming

acetate (Nicolaou et al., 2010; Wolfe, 2005). This effect is incorporated implicitly into our

model, as for high G, low A, f(G)I(A) > m(A) and μWT ≈ μ1. Whereas, for high A we find

m(A) > f(G)I(A), and μWT → μ2. However, there may be some additional trade-off in the

ability of the cell to produce the enzymes required for each pathway, so the increased

utilization of one pathway may decrease the growth rate of the other (Oh et al., 2002). We

can incorporate this into the model by using the modified growth function for the

monoculture system in Eq. (19).

In experiments it is observed that the utilization of the two pathways, and thus the value of

the parameter β, depends on the concentration of acetate A (Wolfe, 2005). We will not

assume a form for the dependence of β on A, however, by considering the existing

experimental evidence we can determine whether the equilibrium acetate concentration and

pathway utilization for a given β value is a realistic scenario.

The position in the (A,G)-plane of the equilibrium point for the modified monoculture

system as β varies is shown in Fig. 6(a). For β values (0.127 < β < 0.371) the monoculture

equilibrium point is to the left of the dotted line (binary culture biomass equivalence), and

thus has a higher biomass. As β decreases below β = 0.127 the monoculture equilibrium G

value increases, until the monoculture does metabolize enough glucose to survive and the

equilibrium point disappears in a saddle-node bifurcation at β = 0.0805 (SN1). As β increases

from β = 0.371, the monoculture equilibrium point disappears in a saddle-node bifurcation at

β = 0.708 (SN2). The system becomes bi-stable at β = 0.653 (SN3), shown in Fig. 6(b). The

lower biomass equilibrium point persists and reaches the x1-only equilibrium point of the

binary culture (A1, G1) at β = 1.

At β = 1 the monoculture is the equivalent of the binary culture system with x2 = 0, which

means it has a lower biomass than the binary culture system coexistence equilibrium point

(not shown in Fig. 6). As β decreases from 1, the advantage of being able to consume the

acetate increases the monoculture’s biomass. We find that the binary culture only has higher

biomass than the monoculture for β > 0.371. However, for β > 0.371 the monoculture

reaches an equilibrium point with high acetate concentration, but E. coli are observed to

switch to consuming more acetate when the acetate concentration increases (Wolfe, 2005),

which means that these high β values (a higher utilization of the glucose consumption

pathway f(G)I(A) over the acetate consumption pathway m(A)) are unrealistic.

As β→ 0, the monoculture growth rate is increasingly dependent on the second pathway,

m(A), which consumes exclusively acetate A. Since glucose G is the only substrate provided

to the chemostat, we expect that the monoculture will not survive. Indeed, for β<0.0805 the

Harvey et al. Page 21

J Theor Biol. Author manuscript; available in PMC 2015 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



monoculture washes out and the biomass of monoculture (x=0) will be less than the biomass

of the binary culture.

The optimal β value (to maximize growth rate Abrams, 1987; Egli et al., 1993; Lendenmann

and Egli, 1922) will depend on the concentration of G and A. However, for monoculture

equilibrium values as β varies the growth rate is set to D by the chemostat dynamics. If we

instead predict that the optimal β value would lead to a higher biomass, we find peak

monoculture biomass at β = 0.208 (xm=2.71), and we reach the conclusion that the

monoculture would be expected to have a higher biomass than the binary culture.

5.2.4. Varying yields—In this section we examine the effect of varying yields in our

model of E. coli growing on glucose. If the microbes in the binary culture are able to reduce

their energy requirements when they specialize to a single substrate, the yields Y11 and Y22

would increase. If we include the effect of the cost of transporting acetate into the cell, this

would decrease Y22. Here we will assume that the metabolic pathway stoichiometry is fixed,

i.e., the ratio r = Y 11/Y21 (grams of acetate produced per gram of glucose consumed) is

fixed. The effects of varying the yields are as follows:

• By increasing Y11 (and Y21 as r is fixed) in the binary culture system, that is,

reducing the amount of glucose G the primary consumer microbe requires to make

one g of biomass x1, the total biomass of the binary culture can exceed the

monoculture biomass. In this example we find that the two systems have equal

biomass when Ȳ11 = 1.03 Y11 (and Ȳ21 = 1.03 Y21), which represents an increase in

glucose pathway efficiency of 3%.

• By increasing Y22 in the binary culture system, which corresponds to a reduction in

the amount of acetate A the secondary scavenger microbe requires to make one

gram of biomass x2, the total biomass of the binary culture can exceed the

monoculture biomass. In this example we find that the two systems have equal

biomass with Ȳ22 = 1.02 Y22. This represents an increase in acetate pathway

efficiency of 2%.

If the ratio r = Y21/Y11 is not fixed, we find that increasing Y11 independently of Y21, we can

get the same total biomass with Ȳ11 = 1.01 Y11, and decreasing Y21 independently of Y11 we

find that Ȳ21 = 0.98 Y21 gives the same total biomass in both systems. However, in order for

Y21 to decrease without Y11 decreasing (or Y11 to increase without Y21 increasing), the

glucose consuming microbe would have to utilize different metabolic pathways, with

different stoichiometry, that produce more A per G consumed. In experiments, it is observed

that wild-type E. coli can modify their metabolic strategies depending on the environmental

conditions, specifically, in excess acetate the monoculture is seen to increase the flux

through the acetate-metabolism pathway m(A) (Wolfe, 2005). This would be equivalent to

varying β in our modified monoculture system (Eq. (19)); the stoichiometry of the pathways

would not change. In this application, we argue that it is unrealistic to modify Y21

independently of Y11.

Harvey et al. Page 22

J Theor Biol. Author manuscript; available in PMC 2015 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Finally, we can generate the 20% increase in biomass observed in Bernstein et al. (2012) if

we increase by the efficiency of the glucose-metabolism pathway (Y11 and Y21) by 57%, or

increase the efficiency of acetate-metabolism pathway, Y22, by 34%.

6. Discussion

In this paper we describe a minimal model of a syntrophic chain system in which the

metabolism of a substrate is divided into two distinct organisms. We compare this to a

monoculture, which is able to completely metabolize the substrate. Under very general

assumptions we show that the monoculture will always produce larger biomass than the

equivalent binary syntrophic chain system. This finding does not agree with experimental

findings from microbial consortial systems, which show higher biomass for consortial

systems (Bernstein et al., 2012). Two key assumptions in the creation of our minimal model

are that there are no metabolic advantages to dividing the metabolic steps into separate

organisms, and that there is no cost to the monoculture for using multiple substrates

concurrently. Since the model under these assumptions does not reproduce the increased

biomass in the consortium that is observed experimentally, this leads us to conclude that one

(or both) of these assumptions is incorrect and allows us to investigate the effect of making

these assumptions more realistic. By modifying the minimal model we are able to test

hypotheses and investigate the effects of adaptations that can develop in a syntrophic chain

system, clarifying the mechanisms that contribute to the experimentally observed advantage.

We find that the division of metabolic pathways must have an effect on both the growth and

yield of the system.

If we assume that in the binary culture the pathways are able to metabolize the substrate

faster (increasing the growth rate), we find that it is sometimes possible to have a higher

biomass in the binary culture system. However, considering a specific example from E. coli

using typical parameters, the growth rate increases required are much larger than those

observed experimentally when an organism adapts to a single food source. Considering

instead the possibility of increases in substrate affinity, we find that, for the specific example

of E. coli, a twofold decrease in the acetate Km value for the binary culture relative to the

monoculture would lead to higher biomass. However, in similar low substrate conditions

acetate affinity increases would be seen in both the monoculture and binary culture, and

even if the acetate specialist in the binary culture could increase its substrate affinity, this

would not necessarily increase the productivity, as the higher affinity acetate assimilation

pathway has a lower yield.

We also test a hypothesis that the efficiencies of the metabolic pathways in the binary

culture are increased, as the specialists do not have to produce the enzymes related to the

other pathways, reducing the amount of energy required for enzyme synthesis and

maintenance, and thereby increasing the proportion of energy that can go towards biomass

production (Oh et al., 2002). By varying the yield, it is possible to increase the binary

culture’s biomass to match that of the monoculture with an increase of only 2–3% in the

parameters Y11 or Y22. This magnitude of yield change is within the range of what is

observed experimentally, and we consider this to be the most likely cause of the observed

productivity increase in the binary culture.
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Comparing our results to past work on the question of whether organisms maximize growth

rates or efficiency, we find that two main theories are the Maximum Power Principle (MPP)

(DeLong, 2008; Lotka, 1922; Sciubba, 2011) and the Resource Ratio Theory (RRT) (de

Mazancourt and Schwartz, 2010; Miller et al., 2005; Tilman, 1982, 1988). The MPP states

that systems strive to increase ‘power’ within the system constraints. This has been used to

successfully predict the outcome of two species competition experiments (DeLong, 2008).

The RRT states that the system/species that can use as much as possible of the resources

available (have the lowest amount of ‘wasted’ substrate) will win in a competition

experiment (or will evolve) (de Mazancourt and Schwartz, 2010). In summary, MPP argues

for maximizing substrate uptake rate, whereas RRT argues for optimizing the growth at low

substrate concentrations. In a chemostat with fixed yield, the highest substrate uptake will

correspond to the highest growth rate, and these two will be consistent. Thus, in evolution

(or competition) in a chemostat, maximizing growth rate or maximizing substrate uptake

rate may be advantageous strategies in order to survive.

In this work we are motivated by the observation of increased biomass in a division of labor

system (Bernstein et al., 2012), which has important implications for industrial settings. We

find that yield maximization should be the advantageous strategy for increasing the biomass

production of a chemostat system. In all our work we consider the binary and monoculture

systems in isolation, and investigate and compare the optimal productivity (biomass

production) of these systems. We are not considering the evolution of these division of labor

systems, as there is much work already investigating this and it is not the focus of our work.

We are also not considering competition of these two systems, thus the arguments from RRT

and MPP are not directly applicable to this situation. Some work has found that evolutionary

advantage depends on the stress conditions, with some papers even finding that the ‘optimal’

robust state has lower biomass (Pfeiffer and Bonhoeffer, 2004). This is not unexpected as

up-regulating pathways with higher substrate affinities is often more costly (decreased

yield), but this enables survival at lower substrate concentrations and thus resistance to

invasion.

For E. coli communities, the cross-feeding syntrophic chain system studied in Section 5 has

been seen to evolve repeatedly (Rosenzweig et al., 1994; Rozen and Lenski, 2000; Treves et

al., 1998). This suggests that there must be some increase in growth rate or substrate affinity

following specialization in order for the system to out-compete the original monoculture.

When synthetically engineered, this cross-feeding system has been found to have higher

productivity (Bernstein et al., 2012). Our model shows that increases in growth rate or

substrate affinity are not sufficient to explain this observed increase in productivity, and that

an increase in the efficiency (yield) of the syntrophic system must have occurred.

An interesting contradiction that remains is that in the unmodified model  for all

parameters and growth functions, but in experiments the concentration of the inhibitory

intermediate A is observed to be lower in a syntrophic chain system than in a monoculture. If

we assume that an increase in efficiency when organisms specialize to a single substrate is

sufficient to explain the observed increase in biomass, we find that there is no decrease in 

in the binary culture when we increase the yield Y22 and only a small decrease when we
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increase the yield Y11. However, increasing the growth rates in the binary system does

decrease . This suggests that increases in both yield (increased efficiency) and growth

kinetics play a role in metabolic specialization. By applying our model to experimental data,

we will be able to investigate these factors in future work.
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Appendix A. Binary culture equilibrium points existence and stability

In this appendix we prove Theorem 1.

A.1. Existence of equilibrium points

Equilibrium points in the binary system (9) must satisfy

(24)

(25)

(26)

(27)

a. A trivial equilibrium point, where x1 = 0, x2 = 0, must satisfy 1− G = 0 from Eq.

(26) and − A = 0 from equation (27). This exists for all functions and parameter

values at (x1, x2, G, A) = (0, 0, 1, 0).

b. A boundary equilibrium point where only x1 survives (x1 ≠ 0) must satisfy:

A single boundary equilibrium point exists at

where G1 is the solution to f (G1)I(1− G1) = 1.

c. Co-existence equilibrium points, where both x1 and x2 survive, are positive

solutions  that satisfy

(28)

(29)
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and Eqs. (26) and (27). The co-existence equilibria take the form

 for i = S, U, where  are the solutions of m(A) = 1

(see Fig. A1(a)), and  are the solutions to  (see Fig. A1(b) and (c)).

Given Assumption [A5] in Section 2.3, Eq. (29) has two positive solutions  and ,

where  (Fig. A1(a)).

For each of these Ab values, Eq. (28) has a unique positive solution for Gb, if and only if

1/I(Ab)<μ1,max (as shown in Fig. A1 (b) and (c)). Thus, we define the critical A value by

. For  there is a unique positive Gb.

From Eqs. (26) and (27) the biomass at equilibrium is given by  and

. Thus, the biomass of x2 is only positive if 1− Gb − Ab >0.

The co-existence equilibrium points are the intersections of the curves implicitly defined by

f(G)I(A) = 1 and m(A) = 1. The equation m(A) = 1 defines two vertical lines  and

 in the (A, G) plane. The slope of the curve  is given

by

(30)

From assumptions [A2] and [A3] this gives dh/dA>0 for all (A, G). The curve has a vertical

asymptote at . As , we find that f(G)→ μ1,max, I(A)→1/μ1,max, G→∞, ∂f/

∂G→0, and ∂I/∂A<0. Combining this information, the numerator of dh/dA is positive and

bounded away from zero, while the denominator of dh/dA goes to zero, thus dh/dA→∞ as

 from below. The assumptions [A1]–[A6] give six possible cases for the

intersections of these curves (shown in Fig. A2). Their intersection is the projection of the

co-existence equilibrium points to (A, G) plane.

• There are no co-existence equilibria in the following three cases:

i. If , then  and there are no solutions to Eq. (29)

for  or . Thus, there are no co-existence equilibria.

ii. If  and . Then  and Eq. (29)

with  has solution , but  and there are no

solutions to Eq. (29) with . However, as  and

there are no (positive) co-existence equilibria.

iii. If  and . Then  and Eq. (29) with

 has solution , and  Eq. (29) with  has

solution . However, as  and since 
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and  so , and there are no

(positive) co-existence equilibria.

• There is a single co-existence equilibrium point in the following two cases:

i. If , then  and Eq. (29) with  has

solution , but  and there are no solutions to Eq.

(29) with . If , then  and  and there is

one co-existence equilibrium point .

ii. If , then Eq. (29) with  and  has corresponding

solutions  and , where  (see Fig. A1(d)). If

, then co-existence equilibrium point

 exists, but  so S is the only co-existence

equilibrium point.

• There are two co-existence equilibria in the following case:

i. If , then Eq. (29) with  and  has corresponding

solutions  and , where  (see Fig. A1(d)). If

, then  and , and

. Therefore there are two co-existence equilibrium point

 and .

A.2. Stability of equilibrium points

We introduce the following variables:

(31)

(32)

Note that the system obeys a conservation law of material consumed to biomass produced.

The rate equations for these new variables are

(33)

(34)

which means that the set  is an

exponentially attracting two-dimensional invariant subspace of the full ℝ4 phase space. The

asymptotic behavior of the system is determined by the dynamics on Ωb, given by
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(35)

(36)

with x1(G) = 1 −G, x2(A, G) = (1 −G −A)/γ. In this reduced system, we consider the region

where x1 ≥0, x2 ≥0, given by G ≤1 − A in the positive quadrant. The Jacobian of this reduced

system is

(37)

where x1 = 1−G, x2 = (1−G−A)/γ. The trivial equilibrium point (x1, x2, G, A) = (0, 0, 1, 0),

I(0) = 1 and m(0) = 0 (from Assumptions [A3] and [A4]) and the Jacobian becomes

(38)

which has eigenvalues λ = , −1, f (1) −1. From Assumption [A2] in Section 2.3 we know that

0<f (1)< μ1,max. When f (1)>1 the trivial equilibrium will have three negative eigenvalues

(two from the components normal to Ωb and one from the 2D reduced subsystem) and one

positive eigenvalue, thus it is an unstable saddle. The condition f (1)>1, which corresponds

to f (Gin) >D in the original dimensions, is ensured by assumption [A6]: the trivial

equilibrium point will be unstable as long as the substrate inflow is in excess.

The boundary equilibrium point (fI=1, x2 = 0) has the Jacobian

(39)

From this we find

and

The boundary equilibrium point undergoes transcritical bifurcations when m(A) = 1, i.e.,

when  and . For , m(A1)<1, Det (J)>0, Tr (J)<0, and (Tr2 −4 · Det)>0
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and the equilibrium point is a stable node. For , m(A1)>1, Det (J)<0 and the

equilibrium point is an unstable saddle. For , m(A1)<1, Det (J)>0, Tr (J)<0, and (Tr2

−4 · Det)>0 and the equilibrium point is a stable node again. The vector (A, G) = (1, −1) is a

stable eigenvector which lies on the x2 = 0 invariant line: G = 1−A.

For the co-existence equilibria (fI=1, m=1) the Jacobian becomes

(40)

with

and

For ( ) in the region x2 >0, Tr (J)<0 and Det (J)>0, and (Tr2 −4 · Det)>0 so the

equilibrium point is a stable node. For ( ) in the region x2 >0, Det (J)<0 and the

equilibrium point is an unstable saddle. These equilibrium points go through transcritical

bifurcations at x2 = 0 when they pass through the boundary equilibrium point. Details are

shown in Fig. A2.

Fig. A1.
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Qualitative sketches of the growth and inhibition curves and positions of equilibria for the

case where there are two co-existence equilibrium points. Panel (a) shows the function m(A)

showing Amax and the relative positions of  and . Panel (b) shows the function I(A)

with the relative positions of  and . Panel (c) shows function f(G) and the relative

positions of  and . The position of G0 defined by f(G) = 1 is shown as well. Panel (d)

shows the curves f(G)I(A) = 1 (solid black curve) and m(A) = 1 (dashed black lines). The co-

existence equilibrium points projected to (A, G) plane are at the two intersections of these

curves. The dotted black line G = 1−A (together with the solid black curve f (G)I(A) = 1)

determines the position of the boundary (x2 = 0) equilibrium point projected into the (A, G)

plane. The position of G0 defined by f(G) = 1 is shown as well.

Fig. A2.
Qualitative sketches of the six possible cases based on assumptions [A1]–[A4] in Section

2.3. Equilibrium points are marked with a circle for stable equilibria and a triangle for

unstable equilibria. In the shaded gray region (G>1−A) any solutions are physically

unrealistic as x2 <0. The trivial (x1 = 0, x2 = 0) equilibrium point at (0,1) is shown. For all

cases, there is a boundary (x2 = 0) equilibrium point (A1, G1) which, when projected into the

(A, G) plane, lies at the intersection of the dotted black line G = 1−A together with the solid

black curve f (G)I(A) = 1. The curves f (G)I(A) = 1 (solid black curve) and m(A) = 1 (dashed

black lines) are shown, the position of co-existence equilibrium points projected to (A, G)

plane is at the intersections of these curves. The vertical asymptote of the curve f (G)I(A) = 1

is labeled . The position of G0 defined by f (G) = 1 is shown as well.

Appendix B. Monoculture equilibrium points

In this appendix we prove Theorem 2.

B.1. Existence

Given assumptions [A1]–[A6]

a. The monoculture system (10) has a trivial equilibrium point with x=0, which must

satisfy 1−G = 0 and −A = 0. This equilibrium point lies at (x, G, A) = (0, 1, 0) for all

functions and parameters.
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b. Any non-trivial, x≠0, equilibrium points must satisfy

(41)

(42)

(43)

Eliminating f(G), I(A), and m(A) from Eqs. (41)–(43) yields the equation for equilibrium

biomass

(44)

where Gm and Am lie in the intersection of the curves

(45)

and

(46)

To determine the number of non-trivial equilibrium points, we must consider the shape and

position of the curves G1 and G2 to find intersection points.

B.1.1. Shape and position of G1

The curve G1 has the following properties:

• The intersection of the curve G1 with G-axis (A = 0) satisfies f (G) = 1. Note that

this equation has a unique solution since f is monotonically increasing and has

μ1,max >1. We label this intersection G0.

• The intersection of the curve G1 with A-axis (G = 0) satisfies m(A) = 1, which has

two solutions,  and . We note for future reference that these values correspond

to the equilibrium acetate concentration solutions for the binary system.

• Since DG(f(G)I(A)+m(A) −1)≠ 0 for all G>0, A>0 by the implicit function theorem,

there is a scalar function h such that

and thus the points on G1 satisfy G = h(A).
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• Implicitly differentiating equation (45) we get an expression for the slope of this

curve in (G,A) space:

which we can rearrange to give the expression for the derivative of the function G =

h(A)

(47)

We now try to determine the sign of this derivative from Assumptions [A2]–[A4] in Section

2.3. First we note that

The discussion that follows is illustrated in Fig. B1 (a).

• For the lower branch of the curve (A<Amax), (∂(fI)/∂A)<0 but (∂m/∂A)>0, so the

sign of dh/dA is not determined by our assumptions. However, since the lower

branch intersects G-axis in a point (0, G0) and the A-axis at ( , 0), the derivative

dh/dA must become negative for some interval (A, ).

• For the upper branch of the curve (A>Amax) we know that dh/dA>0 and that the

curve intersects the A-axis at . As A increases, f (G)I(A)→0 and m(A)→0. At

a critical A value, implicitly defined by μ1,maxI(A)+m(A) = 1, the curve reaches a

vertical asymptote, , and for  there is no solution to f (G)I(A)+m(A) =

1.

B.1.2. Shape and position of G2

We rewrite Eq. (46) as G2 = 1 −H(A), where

We summarize our observations about curve G2 = G2(A).

• When A=0, H(A) = 0 and so the curve G2 intersects the G-axis at G=1.

• The intersection of the curve G2 = 1 −H(A) with A-axis satisfies H(A) = 1. This

solution, which we denote At satisfies 1+γ − γ/(1 −m(At)) = At, or rewritten, m(At) =
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(1 − γ)/(1+γ−At). This equation always has one solution, in the region ,

and in some cases can have two more solutions for high , as shown in

Fig. B3. The intersections with the A-axis will be ordered by increasing A with

subscripts  and  (if applicable).

• The curve G2 = 1 −H(A) has vertical asymptotes when 1+ γ − γ/(1 −m(A)) = 0,

which correspond to the value A satisfying 1+ γ = γ/(1 −m(A)). There is one

asymptote in the region , which follows from the fact that the left

hand side is bounded and the right hand side grows without bound as ,

since  by definition. In the region , there is one

asymptote, as the left hand side is bounded and the right hand side grows without

bound as  from above, since  by definition. We denote the

asymptotic values of A by  and , which satisfy , shown in

Fig. B3.

• For  and , which are both in the region  we wish to determine their

relative positions. Consider equations 1+ γ = γ/(1 −m(Av)) and 1+ γ = At + γ/(1

−m(At)). It follows that

and since 0<At <1 this means that

In the region  the function γ/(1−m(A)) is increasing as A increases, thus

. In the region  the function γ/(1 −m(A)) is now decreasing as A

increases, thus (if  and  exist) .

• The slope of the curve is given by

(48)

For , 1 + γ − γ/(1 −m(A))>0 and dm(A)/dA>0, thus dG2/dA <0.

• The function H(A) has a removable singularity at  and , with the limit value at

these points limA→AS,AUH(A) = 0. Thus, G2 = 1 at  and .
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• For  the slope of G2 is negative, and for  the slope of G2 is

positive. As A approaches  and , 1−m(A)≪1 and the second term in the

numerator of (48) dominates. Near  and 1+ γ − γ/(1−m(A))<0,

therefore dG2/dA <0. Near , 1+γ − γ/(1−m(A))<0, and thus

dG2/dA <0. As A increases from , dG2/dA remains positive, and m(A)

decreases until the curve G2 reaches an asymptote at .

We summarize this information in Fig. B1(b) which shows a qualitative sketch of the curve

G2.

B.1.3. Intersections of G1 and G2

Equilibrium points are at intersections between the curves G1 (45) and G2 (46). The curve

G1 is in the region G >0 for  and . We will call the region  the

lower region and  the upper region.

For  and , curve G2 is above G = 1, thus there can be no intersections

with curve G1 in physically relevant (x>0) regions of phase space.

Intersections between the curves can only occur in the region  and the region

.

B.1.3.1. Intersections in the lower region—The lower branch of G1 (see Eq. 45) is a

continuous curve connecting the point (0, G0) and the point (AS, b, 0), while G2 is a

continuous curve that connects (0, 1) and (At, 0). Since 1>G0 to , thus these curves

must intersect at 2n+1 points, where n≥0. These correspond to equilibria of the system and

we can order them based on their A value by E1, E2, …E2n + 1. In particular, there is at least

one non-trivial equilibrium point between  and .

B.1.3.2. Intersections in the upper region—The upper branch of G1 is a smooth curve

that increases from G=0 at  until it reaches an asymptote at A defined by μ1,maxI(A)+m(A)

= 1. If the curve 1− γ/(1+ γ −A) intersects m(A) in the upper region, the curve G2 will cross

the A-axis to lie in the G>0 region for , where . In this case it

is possible for the upper branch of the curve G2 to intersect G1, thus creating equilibrium

points. If these curves do intersect in the upper region, these new upper equilibria, Kj for j =

1…2m, would appear in pairs at saddle-node bifurcations.

Fig. B2 shows the situation when there is an upper branch of G2, but it does not intersect G1.

For there to be equilibrium points in the upper region the upper branch of the curve G2 must

cross the A-axis, and it also must reach high enough G values to intersect with the curve G1

before G1 reaches its asymptote at .

As was mentioned in the introduction we do not consider these equilibria to represent

biologically plausible state of the monoculture. The high stable equilibria only exist in
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specific circumstances when the acetate growth curve m(A) decreases rapidly for high

acetate levels, while the lower stable equilibrium exists for all parameter values. The high

stable equilibria, when they exist, have a small basin of attraction, which is characterized by

high levels of acetate and low levels of glucose. So only initial conditions with high initial

acetate and low glucose can lead to the monoculture that is positioned at such equilibrium.

Below we provide some sufficient conditions under which the curves G1 and G2 do not

intersect in the upper region and thus there are no equilibria in this region.

1. We expect that the acetate consumer in the binary culture is better adapted to

growth on acetate that the monoculture for large value of A. Our fist condition

states that the maximal growth rate of monoculture is not greater than a multiple of

the growth rate of acetate consumer

(49)

where the inequality is evaluated at  defined implicitly by .

This assumption is summarized in Fig. 3. Monotonicity implies that the curve

μ1,maxI(A) is in the shaded region for . The condition (49) comes from the

observation that if , then  and the curve G1

reaches its asymptote before G2 can enter the region G >0. Therefore there can be

no upper equilibria.

2. The second condition which rules out the upper equilibria asks that the function

m(A) does not decrease too rapidly for large values of A. Note that if the curve G2

does not cross the A-axis into the G>0 region for upper A values, there can be no

upper equilibria. This is equivalent to situation a condition that m(A) = 1 − γ/(1+ γ

− A) has no solutions  and , see Fig. B3. Finally, observe if

(50)

then  which implies that m(1 − γ/(1+γ − A) has only one solution . The

condition (50) is equivalent to

in terms of the original parameters and variables.

B.2. Stability of equilibrium points

We define a new variable in the monoculture system
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It is each to show that

which means that the plane

is an attracting (exponentially at a rate of e−t) invariant subspace of the phase space .

The long term behavior of the system is determined by the dynamics on this attracting plane,

which is given by

(51)

(52)

(53)

This system has the Jacobian

For any 2D system, Tr(J) = λ1 + λ2 and Det(J) = λ1 · λ2. The conditions Det(J)>0 and

Tr(J)<0 are necessary and sufficient conditions to show that an equilibrium point is stable.

The condition Det(J)<0 is necessary and sufficient to show that an equilibrium point is an

unstable saddle.

At the trivial equilibrium point, (A, G) = (0, 1) where x=0, I(0) = 1, and m(0) = 0, the

Jacobian becomes
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The characteristic equation: λ2 + λ (2−f (1))+(1 −f(1)) has roots λ1= −1<0, λ2 = f(1)−1. We

know that f(1)≈μ1,max >1 from assumption [A6], so λ2 >0, which means that (0, 1) is a

saddle, with two negative (stable) eigendirections (one from the reduction to the 2D reduced

system and the other from the dynamics of reduced flow) and one unstable eigendirection.

The corresponding eigenvectors are

An important observation to make here is that the stable manifold of the trivial equilibrium

point in reduced system is an invariant line G = 1 −A/(1+ γ) which corresponds to x=0.

Now we analyze the stability of the non-trivial equilibria Ei and Kj. At these equilibria we

have fI + m = 1, (fI − γm)x = A, and fIx = 1 −G, with x(A, G) = (1+1/γ)(1 −G) −A/γ. The

Jacobian becomes

The determinant of this Jacobian can (after lengthy rearrangement) be reduced to:

And the trace of the Jacobian is

To determine the sign of c0 and thus the stability of any monoculture equilibrium point, we

consider the relative slopes of the curves G1 and G2 and their intersections in the region

. We will show that the stability is determined by the relative slope of the curves G1

and G2. Note that at any odd lower equilibrium point Ei, i = 1, 3, 5, …, 2n+1 and at any even

upper equilibrium point Kj, j = 2, 4, …2m, we have ∂G2/∂A< ∂G1/∂A, whereas at any even

lower equilibrium points Ei, i = 2, 4, 6, …, 2n, and any odd upper equilibrium points Kj, j =

1, 3, …2m−1, we have ∂G2/∂A> ∂G1/∂A.

Taking the expressions for the slopes from Eqs. (47) and (48), with some rearranging we can

show that at non-trivial equilibria
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and

thus

(54)

(55)

• At even lower equilibrium points and odd upper equilibrium points, dG2/dA >

dG1/dA, c0 <0 and the equilibrium point is an unstable saddle.

• At points where the curves G1 and G2 are tangent, c0 = 0 and bifurcations occur.

• At any odd lower equilibrium point and at any even upper equilibrium point

dG1/dA >dG2/dA and c0 >0. The equilibrium point in the 2D system is a stable or

unstable node, depending on the sign of Tr(J(Am, Gm)), which would correspond to

a stable node or an unstable saddle in the full system.

For lower even equilibrium points, Tr(J(Am, Gm))<0 and c0 >0, so the equilibrium point is a

stable node. We can show that these stable equilibria do not undergo Hopf bifurcations

(where Re(λ) = 0) since Tr(J(Am, Gm)) = λ1+ λ2 ≠0.

For upper odd equilibrium points, c0 >0 but ∂m/∂A<, so the stability depends on the sign of

Tr(J(Am, Gm). If Tr(J(Am, Gm))<0, then the equilibrium point in the 2D system is a stable

node, which corresponds to a stable node in the full system, however, if Tr(J(Am, Gm))>0,

then the equilibrium point in the 2D system is an unstable node, which corresponds to an

unstable saddle in the full system.
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Fig. B1.
(a) Qualitative sketch of the curve G1 implicitly defined by (45). (b) Qualitative sketch of

the curve G2 defined by (46).
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Fig. B2.
Qualitative sketch of the curves G1 (dashed black curve) and G2 (solid black curve). The

position of non-trivial equilibrium points projected to (A, G) plane is at the intersections of

these curves. Equilibria are marked with a circle for a stable equilibrium point and a triangle

for an unstable saddle. The trivial (x=0) equilibrium point at (0,1) is shown. In the shaded

gray region (G>1−A/(1+γ)) any solutions are physically unrealistic as x<0. The vertical

asymptote of the curve f(G)I(A)+m(A) = 1 is labeled .
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Fig. B3.
Qualitative sketch of the curves m(A) (solid black curve) and 1 − γ/(1+ γ −A) (dot-dashed

black curve). The case with only one intersection  is shown in panel (a). In panel (b) the

case with three intersections is shown. The  and  values which are solutions to m(A) =

1/(1+ γ) are also shown.

Appendix C. Biomass of monoculture and the binary system

In this section we will prove Theorem 3.

C.1. Comparison of binary culture and monoculture biomass

It can be shown that the biomass  for the boundary equilibrium point in

the binary system (Eqs. (9)) is always less than the total biomass of the stable co-existence

equilibrium point, S: Since x1 = 1 −G at both equilibria for the binary system, and ,

where  is the equilibrium glucose concentration for the co-existence equilibria defined
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below. Thus . In order to compare the maximum biomass in the two systems, we

must compare the stable co-existence equilibrium point (x1 ≠0, x2 ≠0) for the binary system

with the nontrivial equilibria E1, …, E2n+1 with x ≠0 for the monoculture.

The biomass of the monoculture at equilibrium is given by

(C.1)

The total biomass of the binary system at its stable equilibrium point :

(C.2)

As shown in Appendix B,  for all monoculture equilibria in the region (on the

lower  branch).

The slope of curve implicitly defined by f(G)I(A) = 1, on which  lies, is given by Eq. (30).

The curve G1, on which  lies, has slope given by Eq. (47). Both curves intersect the G-

axis at G = G0. The slope for the binary culture curve (Eq. (30)) is always larger than the

slope of the monoculture curve (Eq. (47)) in the region A<Amax, as ∂m/∂A>0. Thus, in the

region A<At, the monoculture curve G1 lies below the binary culture curve implicitly defined

by f(G)I(A) = 1 and .

As  and , from Eqs. (C.1) and (C.2) we know that . In other words,

given these assumptions, the monoculture will always have greater biomass than the binary

culture (division of labor system).

Appendix D. Experimental values for E. coli growth

Table D1 details the experimental conditions and strains used for the parameters listed in

Table 1. When the reported constants were obtained by fitting data to a specific model, we

report the equivalent observable values. The maximum growth rates are the maximum

values of the growth function on that substrate, assuming zero inhibitory products. The half-

saturation values are the substrate concentration at which the growth has reached half its

maximum value. The acetate product inhibition constant we define as the acetate

concentration at which the growth rate has decreased to half its maximum value, in excess

glucose (G » KG). The acetate substrate inhibition constant we define as the acetate

concentration at which the growth rate has decreased to half its maximum value.
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Table D1

Typical parameter values for E. coli growth.

Source Strain Experimental conditions Parameter Value

Bernstein et al.
(2012)

E. coli MG1655
WT

Aerobic batch growth, 37 °C, M9
minimal media, acetate consumption
deletion

Biomass yield
(CDW[g]/g of
glucose)

0.23

mutant 307 Maximum
growth rate on 4
g/L glucose
(h−1)

0.43–0.49a

mutant 403 glucose consumption deletion Maximum
growth rate on
1.5 g/L acetate
(h−1)

0.11–0.15a

Chen et al. (1997) E. coli K-12
MG1655

Aerobic batch growth, complex
medium, 37 °C

Maximum
growth rate on
glucose (h−1)

0.57

Biomass yield
(CDW[g]/g of
glucose)

0.255

Chen et al. (1997) E. coli K-12
MG1655

Anaerobic batch growth, complex
medium, 37 °C

Maximum
growth rate on
glucose (h−1)

0.43

Biomass yield
(CDW[g]/g of
glucose)

0.175

Dykhuizen (1978) E. coli K-12
W3110

Aerobic batch growth, Davis salts, 37
°C

Maximum
growth rate on
glucose (h−1)

0.76

Dykhuizen (1978) E. coli K-12
W3110

Chemostat growth, Davis salts, 37 °C Glucose half-
saturation
constant (mg/L)

7.2

Edwards et al.
(2001)

E. coli K-12
MG1655

Aerobic batch growth, M9 minimal
media 27.5–37 °C, 0.05–4 g/L acetate

Maximum
growth rate on
acetate (h−1)

0.31

Biomass yield
(CDW[g]/g of
acetate)

0.38

Farmer and Liao
(1997)

E coli K-12
VJS632

Aerobic batch growth, 37 °C, M9
minimal media, 0.5% glucose

Maximum
growth rate on
glucose(h−1)

0.52

Biomass yield
(CDW[g]/g of
glucose)

0.30

Acetate yield (g
of acetate/g of
glucose)

0.25

Review paper E. coli various various Glucose half-
saturation
constant (mg/L)

0.04–180

Fuhrer et al. (2005) E. coli K-12
MG1655

Aerobic batch growth, 30 °C, M9
minimal media, 3 g/L glucose

Maximum
growth rate on
glucose (h−1)

0.39

Biomass yield
(CDW[g]/g of
glucose)

0.30

Guardia and Calvo
(2001)

E. coli ATCC
8789

Aerobic batch and chemostat growth,
37 °C, complex medium including 5

Maximum
growth rate on
glucose (h−1)

1.12
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Source Strain Experimental conditions Parameter Value

g/L yeast extract, varying 1–19 g/L
glucose, parameter fits to model Glucose half-

saturation
constant (mg/L)

100

Acetate product
inhibition
constant (g/L)

4

Maximum
growth rate on
acetate (h−1)

0.19

Acetate half-
saturation
constant (g/L)

0.4

Acetate
substrate
inhibition
constant (g/L)

3.8

Acetate yield (g
acetate
produced/
CDW[g])

0.4

Kleman and Strohl
(1994)

E. coli K-12
W3110

Aerobic fed-batch with target 0.5 g/L
glucose, mineral medium, 35 °C

Maximum
growth rate on
glucose (h−1)

0.91

Glucose half-
saturation
constant (mg/L)

4

Biomass yield
(CDW[g]/g of
glucose)

0.43

Acetate yield (g
of acetate/g of
glucose)

0.38

Acetate yield (g
acetate
produced/
CDW[g])

0.3–0.9

Natarajan and Srienc
(2000)

E. coli BL21 Chemostat, 30 °C, dilution rate 0.12–
0.40 h−1 inflow: M9 minimal media,
0.25 g/L glucose

Maximum
growth rate on
glucose (h−1)

0.768

Glucose half-
saturation
constant (mg/L)

0.68

Oh et al. (2002) E. coli MC4100 Aerobic batch growth, M9 minimal
media

Maximum
growth rate on
0.25% acetate
(h−1)

0.33

Paalme et al. (1997) E. coli K-12
W3350

A-stat, 37 °C, mineral medium, 10 g/L
glucose

Maximum
growth rate on
glucose (h−1)

0.57

Biomass yield
(CDW[g]/g of
glucose)

0.50

Paalme et al. (1997) E. coli K-12
W3350

A-stat, 37 °C, mineral medium, 5 g/L
acetate

Maximum
growth rate on
acetate (h−1)

0.22

Biomass yield
(CDW[g]/g of
acetate)
max/min

0.30/0.21
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Source Strain Experimental conditions Parameter Value

Senn et al. (1994) E. coli ML30 Chemostat growth, mineral medium,
37 °C

Maximum
growth rate on
glucose (h−1)

0.92

Glucose half-
saturation
constant (mg/L)

0.0072

Literature review
Senn et al. (1994)

E. coli various various Maximum
growth rate on
glucose (h−1)

0.55–1.23

Glucose half-
saturation
constant (mg/L)

0.0053–99

Varma and Palsson
(1994)

E. coli K-12
W3110

Aerobic batch growth, 38 °C, M9
minimal media, 2 g/L glucose

Maximum
growth rate on
glucose (h−1)

0.68

Biomass yield
(CDW[g]/g of
glucose)

0.36

Varma and Palsson
(1994)

E. coli K-12
W3110

Anaerobic batch growth, 38 °C, M9
minimal media, 2 g/L glucose

Maximum
growth rate on
glucose (h−1)

0.43

Biomass yield
(CDW[g]/g of
glucose)

0.13

Xu et al. (1999) E. coli K-12
W3110

Aerobic batch growth, 35 °C, mineral
medium, 4–14 g/L glucose

Maximum
growth rate on
glucose (h−1)

0.55

Biomass yield
(CDW[g]/g of
glucose)

0.52

Maximum
growth rate on
acetate (h−1)

0.05

Xu et al. (1999) E. coli K-12
W3110

Aerobic batch growth, 35 °C, mineral
medium, 5 g/L glucose, 0–8 g/L
acetate

Acetate product
inhibition
constant (g/L)

9

Biomass yield
(CDW[g]/g of
acetate)

0.4

Xu et al. (1999) E. coli K-12
W3110

Aerobic fed-batch (exponential
feeding rate) with target μ = 0:3 h−1,
mineral medium, 35 °C

Maximum
growth rate on
glucose (h−1)

0.54

Glucose half-
saturation
constant (mg/L)

50

Acetate product
inhibition
constant (g/L)

4, 5

Aerobic biomass
yield
(CDW[g]/g of
glucose)

0.49, 0.51

Anaerobic
biomass yield
(CDW[g]/g of
glucose)

0.15

Maximum
growth rate on
acetate (h−1)

0.06, 0.08
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Source Strain Experimental conditions Parameter Value

Acetate half-
saturation
constant (g/L)

0.05

Biomass yield
(CDW[g]/g of
acetate)

0.4

Note: When parameters were from the fit to a specific inhibition model, the parameters reported in are the ‘effective’
parameters, i.e., the reported ‘inhibition constants’ are the concentration at which growth rate has decreased to half its
maximum. Similarly, the ‘half-saturation constants’ are the concentrations at which growth has increased to half its
maximum, and the ‘maximum growth rates’ are the maximum possible growth rates.
a
(before - after) adaptation to a single carbon source.
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HIGHLIGHTS

• We investigate the division of labor (metabolic function) in microbial systems.

• We compare a syntrophic consortia to a monoculture with equivalent metabolic

capability.

• Consortia biomass is always lower than a monoculture with the same metabolic

dynamics.

• Increasing the growth rate or substrate affinity does not explain the observed

consortial advantage.

• Increased metabolic pathway efficiency (yield) provides the observed increase

in productivity.
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Fig. 1.
Diagram showing the metabolic pathways in (a) the monoculture system with the microbes x

and (b) the binary culture system with the primary (glucose) consumer x1 and the scavenger

(acetate consumer) x2, where G is the primary substrate (glucose) and A is the inhibitory

intermediate substrate (acetate). The yields Y11 and Y22 fix the rates of biomass production

per gram of substrate consumed, the yield Y21 is the ratio of biomass production to

byproduct production, and the growth rates are given by the functions μ1(G, A) and μ2(A).
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Fig. 2.
Qualitative sketch of the growth and inhibition functions: (a) f(G), (b) I(A), and (c) m(A) in

nondimensional variables. The solutions to the equation m(A) = 1,  and , are shown in

panels (b) and (c).
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Fig. 3.
Qualitative sketch of the curves m(A) (solid black curve) and μ1,maxI(A) (dot-dash black

curve) that satisfy the sufficient condition in Theorem 2c ruling out the upper monoculture

equilibria. The curve μ1,maxI(A) lies in the shaded region defined by the value , where

 is the upper solution of m(A) = 1/(1 + γ).
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Fig. 4.
The functions f(G), I(A), and m(A) (20, 21, and (22), respectively), in the original

(dimensional) variables, for the chosen parameter values.
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Fig. 5.
The curves G1 and G2, which determine the position of the monoculture equilibrium point(s)

in the nondimensionalized system are shown in black solid lines, with the intersection

labeled (Am, Gm). The curves f(G)I(A) = 1 and m(A) = 1, which determine the position of the

binary culture equilibrium point(s) are shown in gray dot-dash lines, with the intersection

labeled ( ). The lines of constant biomass for the monoculture and binary culture are

black dashed and dotted lines, respectively.
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Fig. 6.
Panel (a) shows the position of the monoculture equilibrium point in the (A, G)-plane as β

varies as a solid black line. The coexistence equilibrium point of the binary culture ( )

is shown as a filled black circle. The dotted line shows the line of constant biomass for the

binary culture at the coexistence equilibrium point, equilibrium points to the left of the curve

(the shaded area) have a higher biomass than the binary culture. Important β values are

labeled in the figure. Saddle-node bifurcations are labeled SN1,2,3, but only SN2 is within the

range of this figure. Panel (b) shows the biomass (x value) of the monoculture equilibrium

point as β varies which is shown as a solid black line; thick where it is stable, thin where it is

unstable. The dashed line shows the biomass of the comparative binary culture system,

, and the shaded region represents the β values where the monoculture has higher

biomass than the binary culture system.
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Table 1

Typical parameter values for E. coli grown on glucose or acetate as the carbon source. See Table D1 for

further details of the strains used and the specific experimental conditions.

Parameter Experimental values

Maximum growth rate on
glucosea (h−1)

0.43–0.49b (Bernstein et al., 2012), 0.57 (Chen et al., 1997), 0.43 (anaerobic) (Chen et al., 1997), 0.76
(Dykhuizen, 1978), 0.53 (Farmer and Liao, 1997), 0.39 (Fuhrer et al., 2005), 1.12 (Guardia and Calvo,
2001), 0.91 (Kleman and Strohl, 1994), 0.77 (Natarajan and Srienc, 2000), 0.57 (Paalme et al., 1997), 0.92
(Senn et al., 1994), 0.55–1.23 (Senn et al., 1994), 0.68 (Varma and Palsson, 1994), 0.43 (anaerobic) (Varma
and Palsson, 1994), 0.54–0.55 (Xu et al., 1999)

Half-saturation glucose
concentrationa (mg/L)

7.2 (Dykhuizen, 1978), 0.04–180 (Ferenci, 1996), 100 (Guardia and Calvo, 2001), 4 (Kleman and Strohl,
1994), 0.68 (Natarajan and Srienc, 2000), 0.0072 (Senn et al., 1994), 0.0053–99 (Senn et al., 1994), 50 (Xu
et al., 1999)

Acetate product inhibition
constanta (g/L)

4 (Guardia and Calvo, 2001), 4–5 (Xu et al., 1999), 9 (Xu et al., 1999)

Maximum growth rate on
acetate (h−1)

0.11–0.15c (Bernstein et al., 2012), 0.31 (Edwards et al., 2001), 0.19 (Guardia and Calvo, 2001), 0.33 (Oh
et al., 2002), 0.22 (Paalme et al., 1997), 0.05 (Xu et al., 1999), 0.06–0.08 (Xu et al., 1999)

Half-saturation acetate
concentration (g/L)

0.4 (Guardia and Calvo, 2001), 0.05 (Xu et al., 1999)

Acetate substrate inhibition
constant (g/L)

3.8 (Guardia and Calvo, 2001)

Biomass yield (gBiomass/
gGlucose consumed)a

0.23 (Bernstein et al., 2012), 0.26 (Chen et al., 1997), 0.18 (anaerobic) (Chen et al., 1997), 0.3 (Farmer and
Liao, 1997), 0.30 (Fuhrer et al., 2005), 0.43 (Kleman and Strohl, 1994), 0.50 (Paalme et al., 1997), 0.36
(Varma and Palsson, 1994), 0.13 (anaerobic) (Varma and Palsson, 1994), 0.52 (Xu et al., 1999), 0.49–0.51
(Xu et al., 1999), 0.15 (anaerobic) (Xu et al., 1999)

Acetate yield (gBiomass/
gAcetate produced)a

0.4 (Guardia and Calvo, 2001), 0.3–0.9 (Kleman and Strohl, 1994)

Ratio (gAcetate produced/
gGlucose consumed)a

0.25 (Farmer and Liao, 1997), 0.38 (Kleman and Strohl, 1994)

Biomass yield (gBiomass/
gAcetate consumed)

0.38 (Edwards et al., 2001), 0.21–0.30 (Paalme et al., 1997), 0.4 (Xu et al., 1999)

a
the growth and yield of wildtype E. coli on glucose includes contributions from the acetate metabolism pathway, except in anaerobic conditions.

b
growth rate of mutant with acetate consumption pathway knocked out.

c
growth rate of mutant with glucose consumption pathway knocked out.
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Table 2

Selected yield values for monoculture and binary culture systems.

Parameter Selected value Notes

Y11 0.152 from anaerobic growth experiments reaction stoichiometry calculated, Y21 = Y11/r

r = Y11/Y21 0.667

Y21 0.227

Y22 0.400
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Table 3

Selected parameter values for growth and inhibition functions given in Eqs. (20), (21), (22), dilution rates, and

substrate inflow concentrations.

Parameter Selected value Notes

μ1,max 0.6 h−1 max (f(G)) = 0.6 h−1

KG 0.05 g/L

KIP 0.5 g/L

μ2,max 0.8 h−1 max (m(A)) = 0.2 h−1

KA 1.5 g/L half-saturation at A=0.23 g/L

KIS 0.7 g/L inhibited to half maximum at A=4.6 g/L

D 0.1 h−1 chosen to prevent wash-out

Gin 10 g/L chosen to ensure excess substrate
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